MINIMAL SURFACES

 IN THE THREE SPHERE

 IN THE THREE SPHERE
 In fond remembrance of Gene Calabi

A minimal surface in S^{3} is a regular surface Σ such that for any compactly supported variation $\Sigma_{t},|t|<\epsilon$

$$
\left.\frac{d}{d t} \operatorname{Area}\left(\Sigma_{t}\right)\right|_{t=0}=0
$$

A minimal surface in S^{3} is a regular surface Σ such that for any compactly supported variation $\Sigma_{t},|t|<\epsilon$

$$
\left.\frac{d}{d t} \operatorname{Area}\left(\Sigma_{t}\right)\right|_{t=0}=0
$$

This is equivalent to the vanishing of the mean curvature of the surface.

A minimal surface in S^{3} is a regular surface Σ such that for any compactly supported variation $\Sigma_{t},|t|<\epsilon$

$$
\left.\frac{d}{d t} \operatorname{Area}\left(\Sigma_{t}\right)\right|_{t=0}=0
$$

This is equivalent to the
vanishing of the mean curvature of the surface.
It is also equivalent to a certain differential equation.

RELATED ARE MINIMAL CONES

RELATED ARE MINIMAL CONES

A compact surface $\Sigma \subset S^{3}$
is minimal

$$
\begin{aligned}
\text { its cone } C(\Sigma)= & \{t x: x \in \Sigma \text { and } t \geq 0\} \subset \mathbb{R}^{4} \\
& \text { is minimal. }
\end{aligned}
$$

RELATED ARE MINIMAL CONES

A compact surface $\Sigma \subset S^{3}$
is minimal

$$
\begin{aligned}
\text { its cone } C(\Sigma)= & \{t x: x \in \Sigma \text { and } t \geq 0\} \subset \mathbb{R}^{4} \\
& \text { is minimal. }
\end{aligned}
$$

EVERY MINIMAL VARIETY IN A RIEMANNIAN MANIFOLD HAS TANGENT CONES AT EVERY POINT

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

We consider ψ to be \mathbb{R}^{4}-valued with $|\psi|^{2}=1$.

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

We consider ψ to be \mathbb{R}^{4}-valued with $|\psi|^{2}=1$.

$$
z=x_{1}+i x_{2} \quad \text { and } \quad \partial=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{1}}\right)
$$

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

We consider ψ to be \mathbb{R}^{4}-valued with $|\psi|^{2}=1$.

$$
\begin{array}{cc}
z=x_{1}+i x_{2} \quad \text { and } & \partial=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{1}}\right) \\
d s^{2}=2 F|d z|^{2} & F=|\partial \psi|^{2}
\end{array}
$$

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

We consider ψ to be \mathbb{R}^{4}-valued with $|\psi|^{2}=1$.

$$
\begin{gathered}
z=x_{1}+i x_{2} \quad \text { and } \quad \partial=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{1}}\right) \\
d s^{2}=2 F|d z|^{2} \quad F=|\partial \psi|^{2} \\
K=-\frac{1}{F} \partial \bar{\partial} \log F
\end{gathered}
$$

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

We consider ψ to be \mathbb{R}^{4}-valued with $|\psi|^{2}=1$.

$$
\begin{gathered}
z=x_{1}+i x_{2} \quad \text { and } \quad \partial=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{1}}\right) \\
d s^{2}=2 F|d z|^{2} \quad F=|\partial \psi|^{2} \\
K=-\frac{1}{F} \partial \bar{\partial} \log F \\
B_{i j}=\left\langle\frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}, \eta\right\rangle \quad \eta=\text { unit normal in } S^{3} .
\end{gathered}
$$

OUR SET-UP

Fix a Riemann surface \mathcal{R} and a conformal immersion

$$
\psi: \mathcal{R} \longrightarrow S^{3} \subset \mathbb{R}^{4}
$$

We consider ψ to be \mathbb{R}^{4}-valued with $|\psi|^{2}=1$.

$$
\begin{gathered}
z=x_{1}+i x_{2} \quad \text { and } \quad \partial=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{1}}\right) \\
d s^{2}=2 F|d z|^{2} \quad F=|\partial \psi|^{2} \\
K=-\frac{1}{F} \partial \bar{\partial} \log F \\
B_{i j}=\left\langle\frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}, \eta\right\rangle \quad \eta=\text { unit normal in } S^{3} .
\end{gathered}
$$

$$
4 F^{2}(1-K)=B_{12}^{2}-B_{11} B_{22}
$$

THE MINIMAL SURFACE CONDITION

THE MINIMAL SURFACE CONDITION

Definition:

ψ is minimal $\Longleftrightarrow \operatorname{tr}(B)=0$

THE MINIMAL SURFACE CONDITION

Definition:

ψ is minimal $\Longleftrightarrow \operatorname{tr}(B)=0$

$$
\partial \bar{\partial} \psi=-F \psi
$$

THE MINIMAL SURFACE CONDITION

Definition:

ψ is minimal $\Longleftrightarrow \operatorname{tr}(B)=0$

$\partial \bar{\partial} \psi=-\boldsymbol{F} \psi$
$\Longleftrightarrow \quad \Delta \psi=-2 \psi$

THE MINIMAL SURFACE CONDITION

Definition:

ψ is minimal $\Longleftrightarrow \operatorname{tr}(B)=0$

$$
\begin{array}{ll}
\Longleftrightarrow & \partial \bar{\partial} \psi=-F \psi \\
\Longleftrightarrow & \Delta \psi=-2 \psi
\end{array}
$$

Proposition. Let $\omega=\varphi d z^{2}$ where

$$
\varphi \equiv \frac{1}{2}\left(B_{11}-i B_{12}\right) .
$$

Then φ is holomorphic, i.e., ω is a holomorphic 2 -form on \mathcal{R}

THE MINIMAL SURFACE CONDITION

Definition:

$$
\psi \text { is minimal } \Longleftrightarrow \operatorname{tr}(B)=0
$$

$$
\begin{array}{ll}
\Longleftrightarrow & \partial \bar{\partial} \psi=-F \psi \\
\Longleftrightarrow & \Delta \psi=-2 \psi
\end{array}
$$

Proposition. Let $\omega=\varphi d z^{2}$ where

$$
\varphi \equiv \frac{1}{2}\left(B_{11}-i B_{12}\right) .
$$

Then φ is holomorphic, i.e., ω is a holomorphic 2 -form on \mathcal{R} and

$$
4 F^{2}(1-K)=|\varphi|^{2}
$$

$K \leq 1$ and $K=1$ at the zeros of a holomorphic form.

$K \leq 1$ and $K=1$ at the zeros of a holomorphic form.

THEOREM. Let \mathcal{R} be compact with $\operatorname{genus}(\mathcal{R})=g$.
$K \leq 1$ and $K=1$ at the zeros of a holomorphic form.

THEOREM. Let \mathcal{R} be compact with $\operatorname{genus}(\mathcal{R})=g$.
(1) (F. Almgren) If $g=0$, then $\psi(\mathcal{R})$ is a totally geodesic 2 -sphere.

$K \leq 1$ and $K=1$ at the zeros of a holomorphic form.

THEOREM. Let \mathcal{R} be compact with $\operatorname{genus}(\mathcal{R})=g$.
(1) (F. Almgren) If $g=0$, then $\psi(\mathcal{R})$ is a totally geodesic 2 -sphere.
(2) If $g \geq 1$, then

$$
4 g-4=\sum_{p \in \mathcal{R}} d_{p}
$$

$d_{p}+1=$ the degree of contact at p of the surface with a tangent geodesic 2 -sphere.

These local lines of intersection must propagate to the boundary

These local lines of intersection must propagate to the boundary since any minimal surface in a hemisphere H with boundary on ∂H must lie completely in ∂H by a maximum principle.

THE CLIFFORD TORUS

Write $\mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2}$ and consider
$\mathbb{T}=S^{1}\left(\frac{1}{\sqrt{2}}\right) \times S^{1}\left(\frac{1}{\sqrt{2}}\right) \subset S^{3}$

THE CLIFFORD TORUS

$$
\begin{aligned}
& \text { Write } \mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2} \text { and consider } \\
& \mathbb{T}=S^{1}\left(\frac{1}{\sqrt{2}}\right) \times S^{1}\left(\frac{1}{\sqrt{2}}\right) \subset S^{3}
\end{aligned}
$$

This is the intersection of S^{3} with the algebraic variety

$$
X_{1}^{2}+X_{2}^{2}=X_{3}^{2}+X_{4}^{2}
$$

or by a linear change of coordinates

$$
Y_{1} Y_{2}+Y_{3} Y_{4}=0
$$

THE REFLECTION PRINCIPLE

THE REFLECTION PRINCIPLE

Let $\Sigma \subset S^{3}$ be a minimal surface with a partial C^{2} boundary

$$
\partial_{0} \Sigma=\gamma \text { a geodesic (or great circular) arc. }
$$

THE REFLECTION PRINCIPLE

Let $\Sigma \subset S^{3}$ be a minimal surface with a partial C^{2} boundary

$$
\partial_{0} \Sigma=\gamma \text { a geodesic (or great circular) arc. }
$$

Proposition. Let $\varphi: S^{3} \rightarrow S^{3}$ be the isometry of order 2 which fixes γ. Then

$$
\Sigma \cup \varphi(\Sigma)
$$

is a real analytic extension of Σ across γ.

TWO GEODESIC PIECES OF THE BOUNDARY MEETING IN INTERIOR ANGLE $\frac{\pi}{k+1}, k \geq 1$

REFLECT 2K+1 TIMES

WE GET A REGULAR SURFACE with a possible singularity at the center which can be shown not to exist.

SUPPOSE WE HAVE A GEODESIC QUADILATERAL

SUPPOSE WE HAVE A GEODESIC QUADILATERAL

Suppose it bounds a minimal surface Σ as above.

SUPPOSE WE HAVE A GEODESIC QUADILATERAL

Suppose it bounds a minimal surface Σ as above.
Let $\gamma_{1}, \ldots, \gamma_{4} \in \mathrm{O}(4)$ be the reflections across the four arcs

SUPPOSE WE HAVE A GEODESIC QUADILATERAL

Suppose it bounds a minimal surface Σ as above.
Let $\gamma_{1}, \ldots, \gamma_{4} \in \mathrm{O}(4)$ be the reflections across the four arcs
Let $G \subset O(4)$ be the group generated by $\gamma_{1}, \ldots, \gamma_{4}$.

SUPPOSE WE HAVE A GEODESIC QUADILATERAL

Suppose it bounds a minimal surface Σ as above.
Let $\gamma_{1}, \ldots, \gamma_{4} \in \mathrm{O}(4)$ be the reflections across the four arcs
Let $G \subset O(4)$ be the group generated by $\gamma_{1}, \ldots, \gamma_{4}$.

$$
G \cdot \Sigma \subset S^{3}
$$

IS A COMPETE MINIMAL SURFACE IMMERSED IN S^{3}

SUPPOSE WE HAVE A GEODESIC QUADILATERAL

Suppose it bounds a minimal surface Σ as above.
Let $\gamma_{1}, \ldots, \gamma_{4} \in \mathrm{O}(4)$ be the reflections across the four arcs
Let $G \subset O(4)$ be the group generated by $\gamma_{1}, \ldots, \gamma_{4}$.

$$
G \cdot \Sigma \subset S^{3}
$$

IS A COMPETE MINIMAL SURFACE IMMERSED IN S^{3}
IF G IS FINITE, THE SURFACE IS COMPACT

LET US REVIEW STEREOGRAPHIC PROJECTION

For S^{2}

Great circles through the north pole \longrightarrow lines through the origin

Great circles through the north pole \longrightarrow lines through the origin All other great circles \longrightarrow circles which meet $\partial \Delta$ in antipodal points

Great circles through the north pole \longrightarrow lines through the origin All other great circles \longrightarrow circles which meet $\partial \Delta$ in antipodal points

We transfer all this to stereographic projection

$$
S^{3}-\{N\} \longrightarrow \mathbb{R}^{3}
$$

THE SURFACES $\xi_{m, k}$

Solve the Plateau Problem for a minimal disk with boundary $\Gamma_{m, k}$ (Work of Charles Morrey)

Solve the Plateau Problem for a minimal disk with boundary $\Gamma_{m, k}$ (Work of Charles Morrey)
The solution is real analytic up to the boundary (away from the vertices). (Work of Stefan Hildebrandt)

Solve the Plateau Problem for a minimal disk with boundary $\Gamma_{m, k}$ (Work of Charles Morrey)
The solution is real analytic up to the boundary (away from the vertices). (Work of Stefan Hildebrandt)

One can show that :
The surface is regularly embedded in the interior of the simplex.

We now apply the Reflection Principle.

We now apply the Reflection Principle.

Reflecting around the lower vertex P_{1} with angle $\frac{\pi}{m+1}$
$2 m+1$ times gives a surface with P_{1} at the center.

We now apply the Reflection Principle.
Reflecting around the lower vertex P_{1} with angle $\frac{\pi}{m+1}$
$2 m+1$ times gives a surface with P_{1} at the center.

As I said before
This disk is a regular analytic surface at P_{1}.

We now apply the Reflection Principle.
Reflecting around the lower vertex P_{1} with angle $\frac{\pi}{m+1}$
$2 m+1$ times gives a surface with P_{1} at the center.

As I said before
This disk is a regular analytic surface at P_{1}.
We now reflect this surface around the point Q_{1} where the angle of the boundary is $2 \pi /(k+1)$.

We now apply the Reflection Principle.
Reflecting around the lower vertex P_{1} with angle $\frac{\pi}{m+1}$
$2 m+1$ times gives a surface with P_{1} at the center.

As I said before
This disk is a regular analytic surface at P_{1}.
We now reflect this surface around the point Q_{1} where the angle of the boundary is $2 \pi /(k+1)$.

This gives a compact minimal surface

$$
\xi_{m, k} \subset S^{3}
$$

We have a triangulation of S^{3}
into $4(m+1)(k+1)$ congruent spherical simplicies．

Our surface lies in half of these in a checkerboard array．

By Gauss-Bonnet:

$$
\int_{\Sigma} K d A=\pi\left[2-2 \frac{k}{k+1}-2 \frac{m}{m+1}\right]
$$

By Gauss-Bonnet:

$$
\begin{gathered}
\int_{\Sigma} K d A=\pi\left[2-2 \frac{k}{k+1}-2 \frac{m}{m+1}\right] \\
2 \pi \chi\left(\xi_{m, k}\right)=2(k+1)(m+1) \int_{\Sigma} K d A=2 \pi(2-2 m k)
\end{gathered}
$$

By Gauss-Bonnet:

$$
\begin{gathered}
\int_{\Sigma} K d A=\pi\left[2-2 \frac{k}{k+1}-2 \frac{m}{m+1}\right] \\
2 \pi \chi\left(\xi_{m, k}\right)=2(k+1)(m+1) \int_{\Sigma} K d A=2 \pi(2-2 m k) \\
\operatorname{genus}\left(\xi_{m, k}\right)=m k
\end{gathered}
$$

By Gauss-Bonnet:

$$
\begin{gathered}
\int_{\Sigma} K d A=\pi\left[2-2 \frac{k}{k+1}-2 \frac{m}{m+1}\right] \\
2 \pi \chi\left(\xi_{m, k}\right)=2(k+1)(m+1) \int_{\Sigma} K d A=2 \pi(2-2 m k) \\
\operatorname{genus}\left(\xi_{m, k}\right)=m k
\end{gathered}
$$

$$
\xi_{1,1}=\text { the Clifford Torus }
$$

THE SURFACES $\tau_{m, k}$

The same discussion applies.
However, in this case there is an explicit formula.

$$
\Psi_{m, k}: \mathbb{R}^{2} \rightarrow S^{3} \quad \text { with }(m, k)=1 .
$$

The same discussion applies. However, in this case there is an explicit formula.

$$
\Psi_{m, k}: \mathbb{R}^{2} \rightarrow S^{3} \quad \text { with }(m, k)=1 .
$$

$\Psi_{m, k}(x, y)=(\cos m x \cos y, \sin m x \cos y, \cos k x \sin y, \sin k x \sin y)$ We divide by a lattice. Euler Characteristic is zero

The same discussion applies. However, in this case there is an explicit formula.

$$
\Psi_{m, k}: \mathbb{R}^{2} \rightarrow S^{3} \quad \text { with }(m, k)=1 .
$$

$\Psi_{m, k}(x, y)=(\cos m x \cos y, \sin m x \cos y, \cos k x \sin y, \sin k x \sin y)$
We divide by a lattice. Euler Characteristic is zero

- $\operatorname{Im}\left\{z^{k} \bar{w}^{m}\right\}=0$.

The same discussion applies. However, in this case there is an explicit formula.

$$
\Psi_{m, k}: \mathbb{R}^{2} \rightarrow S^{3} \quad \text { with }(m, k)=1 .
$$

$\Psi_{m, k}(x, y)=(\cos m x \cos y, \sin m x \cos y, \cos k x \sin y, \sin k x \sin y)$
We divide by a lattice. Euler Characteristic is zero

- $\operatorname{Im}\left\{z^{k} \bar{w}^{m}\right\}=0$.
- $\tau_{m, k}$ is non-orientable $\Longleftrightarrow 2 / \mathrm{mk}$.

The same discussion applies.
However, in this case there is an explicit formula.

$$
\Psi_{m, k}: \mathbb{R}^{2} \rightarrow S^{3} \quad \text { with }(m, k)=1 .
$$

$\Psi_{m, k}(x, y)=(\cos m x \cos y, \sin m x \cos y, \cos k x \sin y, \sin k x \sin y)$
We divide by a lattice. Euler Characteristic is zero

- $\operatorname{Im}\left\{z^{k} \bar{w}^{m}\right\}=0$.
- $\tau_{m, k}$ is non-orientable $\Longleftrightarrow 2 / m k$.
- $\tau_{m, k}$ is geodesically ruled.
(This characterizes these varieties even locally)

The same discussion applies.
However, in this case there is an explicit formula.

$$
\Psi_{m, k}: \mathbb{R}^{2} \rightarrow S^{3} \quad \text { with }(m, k)=1 .
$$

$\Psi_{m, k}(x, y)=(\cos m x \cos y, \sin m x \cos y, \cos k x \sin y, \sin k x \sin y)$
We divide by a lattice. Euler Characteristic is zero

- $\operatorname{Im}\left\{z^{k} \bar{w}^{m}\right\}=0$.
- $\tau_{m, k}$ is non-orientable $\Longleftrightarrow 2 / \mathrm{mk}$.
- $\tau_{m, k}$ is geodesically ruled.
(This characterizes these varieties even locally)
- $\operatorname{Area}\left(\tau_{m, k}\right) \geq \min \{m, k\}$

The Unknottedness Theorem

The Unknottedness Theorem

Any minimal embedding of a compact surface into S^{3} is unknotted.

The Unknottedness Theorem

Any minimal embedding of a compact surface into S^{3} is unknotted.

In particular, any minimal embedding of the torus can be taken to the Clifford torus by a diffeomorphism.

The Unknottedness Theorem

Any minimal embedding of a compact surface into S^{3} is unknotted.

In particular, any minimal embedding of the torus can be taken to the Clifford torus by a diffeomorphism.

In this paper in 1970 I conjectured that
The Clifford torus is the only embedded minimal torus in S^{3}

The Unknottedness Theorem

Any minimal embedding of a compact surface into S^{3} is unknotted.

In particular, any minimal embedding of the torus can be taken to the Clifford torus by a diffeomorphism.

In this paper in 1970 I conjectured that
The Clifford torus is the only embedded minimal torus in S^{3}
After many failed attempts over the years:

Theorem (Simon Brendle, 2012)
The conjecture is true

THE SURFACES $\eta_{m, k}$

Theorem:

To each ordered pair of positive integers (m, k), where k is odd, there corresponds a compact, non-orientable minimal surface $\eta_{m, k}$ containing $\gamma_{m, k}$ and having Euler characteristic $1-m k$.

THEOREM

Every compact orientable surface can be minimally embedded into S^{3}.
Every non-orientable surface can be minimally immersed into S^{3}
except for the real projective plane which is prohibited by Almgren's theorem.

Given a compact oriented surface and a minimal immersion

$$
\psi: \Sigma \subset S^{3}
$$

there is an associated polar map

$$
\psi^{*}: \Sigma \subset S^{3}
$$

Given a compact oriented surface and a minimal immersion

$$
\Psi: \Sigma \subset S^{3}
$$

there is an associated polar map

$$
\psi^{*}: \Sigma \subset S^{3}
$$

which is minimal with branch points where $K=1$ for ψ

Given a compact oriented surface and a minimal immersion

$$
\Psi: \Sigma \subset S^{3}
$$

there is an associated polar map

$$
\psi^{*}: \Sigma \subset S^{3}
$$

which is minimal with branch points where $K=1$ for ψ
$\Psi(x)$ is just the unit normal to Ψ at x.

$$
\Psi^{* *}=\Psi
$$

