MINIMAL SURFACES IN THE THREE SPHERE

In fond remembrance of Gene Calabi

A minimal surface in S^3 is a regular surface Σ such that for any compactly supported variation Σ_t , $|t| < \epsilon$

$$\left. \frac{d}{dt} \operatorname{Area}(\Sigma_t) \right|_{t=0} = 0.$$

э

∃ ⊳

A minimal surface in S^3 is a regular surface Σ such that for any compactly supported variation Σ_t , $|t| < \epsilon$

$$\left.\frac{d}{dt}\operatorname{Area}(\Sigma_t)\right|_{t=0} = 0.$$

This is equivalent to the

vanishing of the mean curvature of the surface.

A minimal surface in S^3 is a regular surface Σ such that for any compactly supported variation Σ_t , $|t| < \epsilon$

$$\left.\frac{d}{dt}\operatorname{Area}(\Sigma_t)\right|_{t=0} = 0.$$

This is equivalent to the

vanishing of the mean curvature of the surface.

It is also equivalent to a certain differential equation.

RELATED ARE MINIMAL CONES

Blaine Lawson

æ

RELATED ARE MINIMAL CONES

A compact surface $\Sigma \subset S^3$ is minimal \iff its cone $C(\Sigma) = \{tx : x \in \Sigma \text{ and } t \ge 0\} \subset \mathbb{R}^4$ is minimal.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э.

RELATED ARE MINIMAL CONES

A compact surface $\Sigma \subset S^3$ is minimal \iff its cone $C(\Sigma) = \{tx : x \in \Sigma \text{ and } t \ge 0\} \subset \mathbb{R}^4$ is minimal.

EVERY MINIMAL VARIETY IN A RIEMANNIAN MANIFOLD HAS TANGENT CONES AT EVERY POINT

Fix a Riemann surface ${\mathcal R}$ and a conformal immersion

$$\psi: \mathcal{R} \longrightarrow S^3 \subset \mathbb{R}^4$$

э

Fix a Riemann surface $\ensuremath{\mathcal{R}}$ and a conformal immersion

$$\psi:\mathcal{R}\longrightarrow S^3\subset \mathbb{R}^4$$

We consider ψ to be \mathbb{R}^4 -valued with $|\psi|^2 = 1$.

э

Fix a Riemann surface $\ensuremath{\mathcal{R}}$ and a conformal immersion

$$\psi: \mathcal{R} \longrightarrow S^3 \subset \mathbb{R}^4$$

We consider ψ to be \mathbb{R}^4 -valued with $|\psi|^2 = 1$.

 $z = x_1 + ix_2$ and $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_1} \right)$

3

Fix a Riemann surface $\ensuremath{\mathcal{R}}$ and a conformal immersion

$$\psi: \mathcal{R} \longrightarrow S^3 \subset \mathbb{R}^4$$

We consider ψ to be \mathbb{R}^4 -valued with $|\psi|^2 = 1$.

$$z = x_1 + ix_2$$
 and $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_1} \right)$
 $ds^2 = 2F |dz|^2$ $F = |\partial \psi|^2$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

Fix a Riemann surface ${\mathcal R}$ and a conformal immersion

$$\psi: \mathcal{R} \longrightarrow S^3 \subset \mathbb{R}^4$$

We consider ψ to be \mathbb{R}^4 -valued with $|\psi|^2 = 1$. $z = x_1 + ix_2$ and $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_1} \right)$ $ds^2 = 2F |dz|^2$ $F = |\partial \psi|^2$ $K = -\frac{1}{\epsilon} \partial \overline{\partial} \log F$

Fix a Riemann surface ${\mathcal R}$ and a conformal immersion

$$\psi: \mathcal{R} \longrightarrow S^3 \subset \mathbb{R}^4$$

We consider ψ to be \mathbb{R}^4 -valued with $|\psi|^2 = 1$. $z = x_1 + ix_2$ and $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_1} \right)$ $ds^2 = 2F |dz|^2$ $F = |\partial \psi|^2$ $K = -\frac{1}{F} \partial \overline{\partial} \log F$

$$B_{ij} = \langle rac{\partial^2 \psi}{\partial x_i \partial x_j}, \eta
angle \qquad \eta = ext{unit normal in } S^3.$$

Fix a Riemann surface ${\mathcal R}$ and a conformal immersion

$$\psi: \mathcal{R} \longrightarrow S^3 \subset \mathbb{R}^4$$

We consider ψ to be \mathbb{R}^4 -valued with $|\psi|^2 = 1$. $z = x_1 + ix_2$ and $\partial = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_1} \right)$ $ds^2 = 2F |dz|^2$ $F = |\partial \psi|^2$ $K = -\frac{1}{F} \partial \overline{\partial} \log F$ $B_{ij} = \langle \frac{\partial^2 \psi}{\partial x_1 \partial x_1}, \eta \rangle$ η = unit normal in S^3 .

$$4F^2(1-K) = B_{12}^2 - B_{11}B_{22}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Definition:

 ψ is minimal \iff tr (*B*) = 0

・ロト ・回ト ・ヨト ・ヨト … ヨ

Definition:

$$\psi$$
 is minimal \iff tr (B) = 0
 $\iff \partial \overline{\partial} \psi = -F\psi$

・ロト ・回ト ・ヨト ・ヨト

æ

Definition:

 ψ is minimal \iff tr (B) = 0 \iff

Definition:

 ψ is minimal \iff tr (B) = 0 $\iff \partial \overline{\partial} \psi = -F\psi$ $\iff \Delta \psi = -2\psi$

Proposition. Let $\omega = \varphi dz^2$ where $\varphi \equiv \frac{1}{2}(B_{11} - iB_{12}).$

Then φ is holomorphic, i.e., ω is a holomorphic 2-form on \mathcal{R}

Definition:

 ψ is minimal \iff tr (B) = 0 $\iff \partial \overline{\partial} \psi = -F\psi$ $\iff \Delta \psi = -2\psi$

Proposition. Let $\omega = \varphi dz^2$ where $\varphi \equiv \frac{1}{2}(B_{11} - iB_{12}).$

Then φ is holomorphic, i.e., ω is a holomorphic 2-form on \mathcal{R} and

$$4F^2(1-K) = |\varphi|^2$$

$K \leq 1$ and K = 1 at the zeros of a holomorphic form.

æ

$K \le 1$ and K = 1 at the zeros of a holomorphic form.

THEOREM. Let \mathcal{R} be compact with $genus(\mathcal{R}) = g$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

$K \leq 1$ and K = 1 at the zeros of a holomorphic form.

THEOREM. Let \mathcal{R} be compact with $genus(\mathcal{R}) = g$.

(1) (F. Almgren) If g = 0, then $\psi(\mathcal{R})$ is a totally geodesic 2-sphere.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э.

$K \leq 1$ and K = 1 at the zeros of a holomorphic form.

THEOREM. Let \mathcal{R} be compact with $genus(\mathcal{R}) = g$.

(1) (F. Almgren) If q = 0, then $\psi(\mathcal{R})$ is a totally geodesic 2-sphere.

(2) If $g \ge 1$, then

$$4g-4 = \sum_{p \in \mathcal{R}} d_p$$

 $d_p + 1$ = the degree of contact at *p* of the surface with a tangent geodesic 2-sphere.

These local lines of intersection must propagate to the boundary

These local lines of intersection **must propagate to the boundary** since any minimal surface in a hemisphere *H* with boundary on ∂H must lie completely in ∂H by a maximum principle.

THE CLIFFORD TORUS

Write $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$ and consider $\mathbb{T} = S^1\left(\frac{1}{\sqrt{2}}\right) \times S^1\left(\frac{1}{\sqrt{2}}\right) \subset S^3$

・ロット (母) ・ ヨ) ・ ヨ)

э.

THE CLIFFORD TORUS

Write
$$\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$$
 and consider
 $\mathbb{T} = S^1\left(\frac{1}{\sqrt{2}}\right) \times S^1\left(\frac{1}{\sqrt{2}}\right) \subset S^3$

This is the intersection of S^3 with the algebraic variety

$$X_1^2 + X_2^2 = X_3^2 + X_4^2$$

or by a linear change of coordinates

$$Y_1 Y_2 + Y_3 Y_4 = 0$$

THE REFLECTION PRINCIPLE

・ロト ・日本 ・ヨト ・ヨト

æ

THE REFLECTION PRINCIPLE

Let $\Sigma \subset S^3$ be a minimal surface with a partial C^2 boundary

 $\partial_0 \Sigma = \gamma$ a geodesic (or great circular) arc.

10/29

THE REFLECTION PRINCIPLE

Let $\Sigma \subset S^3$ be a minimal surface with a **partial** C^2 boundary

 $\partial_0 \Sigma = \gamma$ a geodesic (or great circular) arc.

Proposition. Let $\varphi: S^3 \to S^3$ be the isometry of order 2 which fixes γ . Then

 $\Sigma \cup \varphi(\Sigma)$

is a real analytic extension of Σ across γ .

TWO GEODESIC PIECES OF THE BOUNDARY MEETING IN INTERIOR ANGLE $\frac{\pi}{k+1}$, $k \ge 1$

13/29

REFLECT 2K+1 TIMES

WE GET A REGULAR SURFACE

with a possible singularity at the center which can be shown not to exist.

・ロン ・回 ・ ・ ヨン・

Suppose it bounds a minimal surface Σ as above.

< 67 ▶

Suppose it bounds a minimal surface Σ as above. Let $\gamma_1, ..., \gamma_4 \in O(4)$ be the reflections across the four arcs

Suppose it bounds a minimal surface Σ as above. Let $\gamma_1, ..., \gamma_4 \in O(4)$ be the reflections across the four arcs Let $G \subset O(4)$ be the group generated by $\gamma_1, ..., \gamma_4$.

Suppose it bounds a minimal surface Σ as above.

Let $\gamma_1, ..., \gamma_4 \in O(4)$ be the reflections across the four arcs

Let $G \subset O(4)$ be the group generated by $\gamma_1, ..., \gamma_4$.

$G \cdot \Sigma \subset S^3$

IS A COMPETE MINIMAL SURFACE IMMERSED IN S^3

Suppose it bounds a minimal surface Σ as above.

Let $\gamma_1, ..., \gamma_4 \in O(4)$ be the reflections across the four arcs

Let $G \subset O(4)$ be the group generated by $\gamma_1, ..., \gamma_4$.

$G \cdot \Sigma \subset S^3$

IS A COMPETE MINIMAL SURFACE IMMERSED IN S³

IF G IS FINITE. THE SURFACE IS COMPACT

Blaine Lawson

Projective Hulls, Linking, and Relative Hodge Question

February 15, 2024

LET US REVIEW STEREOGRAPHIC PROJECTION

For S^2

Great circles through the north pole \longrightarrow lines through the origin

Great circles through the north pole \longrightarrow lines through the origin All other great circles \longrightarrow circles which meet $\partial \Delta$ in antipodal points

イロト イポト イヨト イヨト

э

Great circles through the north pole \longrightarrow lines through the origin All other great circles \longrightarrow circles which meet $\partial \Delta$ in antipodal points

We transfer all this to stereographic projection $S^3 - \{N\} \longrightarrow \mathbb{R}^3$

THE SURFACES $\xi_{m,k}$

Solve the Plateau Problem for a minimal disk with boundary $\Gamma_{m,k}$ (Work of Charles Morrey)

Image: Second second

э

Solve the Plateau Problem for a minimal disk with boundary $\Gamma_{m,k}$ (Work of Charles Morrey) The solution is real analytic up to the boundary (away from the vertices). (Work of Stefan Hildebrandt) Solve the Plateau Problem for a minimal disk with boundary $\Gamma_{m,k}$ (Work of Charles Morrey) The solution is real analytic up to the boundary (away from the vertices). (Work of Stefan Hildebrandt)

One can show that :

The surface is regularly embedded in the interior of the simplex.

We now apply the **Reflection Principle**.

・ロト ・日本 ・ヨト ・ヨト

< 3 >

As I said before

This disk is a regular analytic surface at P_1 .

As I said before

This disk is a regular analytic surface at P_1 .

We now reflect this surface around the point Q_1 where the angle of the boundary is $2\pi/(k+1)$.

As I said before

This disk is a regular analytic surface at P_1 .

We now reflect this surface around the point Q_1 where the angle of the boundary is $2\pi/(k+1)$.

This gives a compact minimal surface

 $\xi_{m,k} \subset S^3$

We have a triangulation of S^3 into 4(m+1)(k+1) congruent spherical simplicies.

Our surface lies in half of these in a checkerboard array.

Blaine Lawson

Projective Hulls, Linking, and Relative Hodge Questio

$$\int_{\Sigma} K \, dA = \pi \left[2 - 2 \frac{k}{k+1} - 2 \frac{m}{m+1} \right]$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\int_{\Sigma} K \, dA = \pi \left[2 - 2 \frac{k}{k+1} - 2 \frac{m}{m+1} \right]$$

$$2\pi\chi(\xi_{m,k}) = 2(k+1)(m+1)\int_{\Sigma} K \, dA = 2\pi(2-2mk)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\int_{\Sigma} K \, dA = \pi \left[2 - 2 \frac{k}{k+1} - 2 \frac{m}{m+1} \right]$$

$$2\pi\chi(\xi_{m,k}) = 2(k+1)(m+1)\int_{\Sigma} K \, dA = 2\pi(2-2mk)$$

 $genus(\xi_{m,k}) = mk$

・ロン ・回 と ・ ヨン・

$$\int_{\Sigma} K \, dA = \pi \left[2 - 2 \frac{k}{k+1} - 2 \frac{m}{m+1} \right]$$

$$2\pi\chi(\xi_{m,k}) = 2(k+1)(m+1)\int_{\Sigma} K \, dA = 2\pi(2-2mk)$$

$$genus(\xi_{m,k}) = mk$$

 $\xi_{1,1}$ = the Clifford Torus

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

THE SURFACES $\tau_{m,k}$

Projective Hulls, Linking, and Relative Hodge Question

 $\Psi_{m,k}: \mathbb{R}^2 \to S^3$ with (m,k) = 1.

18 N

э

 $\Psi_{m,k}: \mathbb{R}^2 \to S^3$ with (m,k) = 1.

 $\Psi_{m,k}(x, y) = (\cos mx \cos y, \sin mx \cos y, \cos kx \sin y, \sin kx \sin y)$ We divide by a lattice. Euler Characteristic is zero

 $\Psi_{m,k}: \mathbb{R}^2 \to S^3$ with (m,k) = 1.

 $\Psi_{m,k}(x,y) = (\cos mx \cos y, \sin mx \cos y, \cos kx \sin y, \sin kx \sin y)$

We divide by a lattice. Euler Characteristic is zero

•
$$\operatorname{Im}\{z^k \bar{w}^m\} = 0.$$

24/29

 $\Psi_{m,k}: \mathbb{R}^2 \to S^3$ with (m,k) = 1.

 $\Psi_{m,k}(x,y) = (\cos mx \cos y, \sin mx \cos y, \cos kx \sin y, \sin kx \sin y)$

We divide by a lattice. Euler Characteristic is zero

•
$$\operatorname{Im}\{z^k \bar{w}^m\} = 0.$$

•
$$\tau_{m,k}$$
 is non-orientable \iff 2/mk.

24/29

 $\Psi_{m,k}: \mathbb{R}^2 \to S^3$ with (m,k) = 1.

 $\Psi_{m,k}(x,y) = (\cos mx \cos y, \sin mx \cos y, \cos kx \sin y, \sin kx \sin y)$

We divide by a lattice. Euler Characteristic is zero

• $\operatorname{Im}\{z^k \bar{w}^m\} = 0.$

• $\tau_{m,k}$ is non-orientable \iff 2/mk.

• $\tau_{m,k}$ is geodesically ruled. (This characterizes these varieties even locally)

24/29

 $\Psi_{m,k}: \mathbb{R}^2 \to S^3$ with (m,k) = 1.

 $\Psi_{m,k}(x,y) = (\cos mx \cos y, \sin mx \cos y, \cos kx \sin y, \sin kx \sin y)$

We divide by a lattice. Euler Characteristic is zero

• $\operatorname{Im}\{z^k \bar{w}^m\} = 0.$

• $\tau_{m,k}$ is non-orientable \iff 2/mk.

• $\tau_{m,k}$ is geodesically ruled. (This characterizes these varieties even locally)

• Area $(\tau_{m,k}) \geq \min\{m,k\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Any minimal embedding of a compact surface into S^3 is unknotted.

→

э

Any minimal embedding of a compact surface into S^3 is unknotted.

In particular, any minimal embedding of the torus can be taken to the Clifford torus by a diffeomorphism.

Any minimal embedding of a compact surface into S^3 is unknotted.

In particular, any minimal embedding of the torus can be taken to the Clifford torus by a diffeomorphism. In this paper in 1970 I conjectured that **The Clifford torus is the only embedded minimal torus in** *S*³

Any minimal embedding of a compact surface into S^3 is unknotted.

In particular, any minimal embedding of the torus can be taken to the Clifford torus by a diffeomorphism. In this paper in 1970 I conjectured that **The Clifford torus is the only embedded minimal torus in** *S*³ After many failed attempts over the years:

Theorem (Simon Brendle, 2012)

The conjecture is true
THE SURFACES $\eta_{m,k}$

Theorem:

To each ordered pair of positive integers (m, k), where k is odd, there corresponds a compact, non-orientable minimal surface $\eta_{m,k}$ containing $\gamma_{m,k}$ and having Euler characteristic 1 - mk.

THEOREM

Every compact orientable surface can be minimally embedded into S^3 . Every non-orientable surface can be minimally immersed into S^3 except for the real projective plane which is prohibited by Almgren's theorem.

Given a compact oriented surface and a minimal immersion

 $\Psi:\Sigma\subset\textit{S}^3$

there is an associated polar map

 $\Psi^*:\Sigma\subset \textit{S}^3$

э

Given a compact oriented surface and a minimal immersion

 $\Psi:\Sigma\subset S^3$

there is an associated polar map

 $\Psi^*:\Sigma\subset S^3$

which is **minimal** with **branch points** where K = 1 for Ψ

э

Given a compact oriented surface and a minimal immersion

 $\Psi:\Sigma\subset S^3$

there is an associated polar map

 $\Psi^*:\Sigma\subset S^3$

which is **minimal** with **branch points** where K = 1 for Ψ $\Psi(x)$ is just the unit normal to Ψ at x.

 $\Psi^{**}~=~\Psi$

29/29