Columbia Lectures on the stability of Kerr

Sergiu Klainerman

October 25, 2023



Abstract. The main goals of these lectures are:

1. Provide a comprehensive introduction to the proof of the nonlinear stability of slowly
rotating Kerr black holes established recently in the sequence of works [K-S:Kerr],
[GKS-2022], [K-S:GCMI], [K-S:GCM2| and [Shen], and briefed in [K-S:review]

2. Discuss the geometric formalism based on non-integrable null horizontal structures
used in these works. Derive the main Teukolsky and generalized Regge- Wheeler
equations. These follow the material 1 of Part 1 in [GKS-2022].

3. Discuss the proof of the basic hyperbolic estimates, Morawetz and rP-weighted,
following Part 2 of |[GKS-2022].

4. Discuss open problems related to these topics.
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Chapter 1

General Introduction

This a brief introduction to the sequence of works [K-S:Kerr|, [GKS-2022], [K-S:GCMI],
[K-S:GCM2] and [Shen] which establish the nonlinear stability of Kerr black holes with
small angular momentum. This chapter is essentially the review paper [K-S:review| with
a few additions.

1.1 Kerr stability conjecture

1.1.1 Kerr spacetime

Let (K(a,m), 8am) denote the family of Kerr spacetimes depending on the parameters
m (mass) and a (with J = am angular momentum). In Boyer-Lindquist coordinates the
Kerr metric is given by

A

Y?(sin6)? 2amr  \*  |ql?
= () + ——— | dp— dt = (dr)* 2(dh)? 1.1.1
g = = a0 + U (o= 20 ) 4 Bt aPa@sr, (1)

where

(1.1.2)

A =71r?+a®—2mr, q=r+iacos0,
Y2 = (r? 4+ a?)|q|* + 2mra®(sin0)? = (r* + a?)? — a*(sin 0)%A.

The asymptotically ﬂatE] metrics g, ,, verify the Einstein vacuum equations (EVE)
Ric(g) =0, (1.1.3)

!That is they approach the Minkowski metric for large 7.

13



14 CHAPTER 1. GENERAL INTRODUCTION

are stationary and axially symmetricﬂ7 possess well-defined event horizon r = r (the
largest root of A(r) = 0), domain of outer communication r > r, and smooth future null
infinity Z* where r = +00. The metric can be extended smoothly inside the black hole
region, see Figure The boundary r = r_ (the smallest root of A(r) = 0) inside the
black hole region is a Cauchy horizon across which predictability failsEl.

Figure 1.1: Penrose diagram of Kerr for 0 < |a| < m. The surface r = r,, the larger root of A = 0,
is the event horizon of the black hole, » > r, the domain of outer communication, ZT is the future null
infinity, corresponding to r = 4oc.

Here are some of the most important properties of K(a, m):

e [C(a,m) possesses a canonical family of null pairs, called principal null pairs, of the
form (Aeq, A"lez), with A > 0 an arbitrary scalar function, and

r? 4+ a® A a r? + a?

a
ey = ——0 + —0, + — 05, eg = —
g2 " g2 (g A

A

0 — 0y + —0,.  (1.1.4)

e The horizontal structure, perpendicular to es, ey, denoted H, is spanned by the
vectors

1 asin @ 1
_897 €2 = + . 0p-
lq] ldf " Jg|sing?

The distribution generated by H is non-integrable for a # 0.

(1.1.5)

€1 =

2That is K(a, m) possess two Killing vectorfields: the stationary vectorfield T = ;, which is time-like
in the asymptotic region, away from the horizon, and the axial symmetric Killing field Z = 0.
3Infinitely many smooth extensions are possible beyond the boundary.
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e The horizontal structure (es, e4, H) has the remarkable property that all components
of the Riemann curvature tensor R, decomposed relative to them, vanish with the
exception of those which can be deduced fromﬁ R(eq, €3, €p, €4).

e K(a,m) possesses the Killing vectorfields T, Z which, in BL coordinates, are given

e In addition to the symmetries generated by T, Z, C(a, m) possesses also a non-trivial
Killing tensorﬂ, i.e. a symmetric 2-tensor C,g verifying the property D, C,g) = 0.
The tensor carries the name of its discoverer B. Carter, see [Carter], who made use
of it to show that the geodesic flow in Kerr is integrable. Its presence, in addition
to T and Z, as a higher order symmetry, is at the heart of what Chandrasekhar,
see [Chand3]|, called the most striking feature of Kerr, “the separability of all the
standard equations of mathematical physics in Kerr geometry”.

e The Carter tensor can be used to define the Carter operator
C = D,(C*’Dy), (1.1.6)

a second order operator which commutes with U, ,,,. This property plays a crucial
role in the proof of our stability result, Theorem [1.1.1} more precisely in Part II of

[GKS-2022].

1.1.2 Kerr stability conjecture

The discovery of black holes, first as explicit solutions of EVE and later as possible
explanations of astrophysical phenomenaﬂ has not only revolutionized our understanding
of the universe, it also gave mathematicians a monumental task: to test the physical
reality of these solutions. This may seem nonsensical since physics tests the reality of its
objects by experiments and observations and, as such, needs mathematics to formulate the

4One can in fact complexify the curvature tensor by setting C = R + 14 *R so that *C = —iC. All
null components of C vanish except C(es, ey, e3,6e4) = —212L,

®Given by the expression C = —a?cos? g + O, O = |q|*(e1 ® 1 + €2 ® €3).

6 According to Chandrasekhar “Black holes are macroscopic objects with masses varying from a few
solar masses to millions of solar masses. To the extent that they may be considered as stationary and
isolated, to that extent, they are all, every single one of them, described exactly by the Kerr solution.
This is the only instance we have of an exact description of a macroscopic object. Macroscopic objects, as
we see them around us, are governed by a variety of forces, derived from a variety of approximations to a
variety of physical theories. In contrast, the only elements in the construction of black holes are our basic
concepts of space and time. They are, thus, almost by definition, the most perfect macroscopic objects
there are in the universe. And since the general theory of relativity provides a single two parameter
family of solutions for their description, they are the simplest as well.”
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theory and make quantitative predictions, not to test it. The problem, in this case, is that
black holes are by definition non-observable and thus no direct experiments are possible.
Astrophysicists ascertain the presence of such objects through indirect observationd’| and
numerical experiments, but both are limited in scope to the range of possible observations
or the specific initial conditions in which numerical simulations are conducted. One can
rigorously check that the Kerr solutions have vanishing Ricci curvature, that is, their
mathematical reality is undeniable. But to be real in a physical sense, they have to
satisfy certain properties which, as it turns out, can be neatly formulated in unambiguous
mathematical language. Chief among themf)| is the problem of stability, that is, to show
that if the precise initial data corresponding to Kerr are perturbed a bit, the basic features
of the corresponding solutions do not change muchﬂ

Conjecture (Stability of Kerr conjecture). Vacuum, asymptotically flat, initial data sets,
sufficiently close to Kerr(a,m), |a|/m < 1, initial data, have mazimal developments with
complete future null infinity and with domain of outer communicatior]| which approaches
(globally) a nearby Kerr solution.

1.1.3 Resolution of the conjecture for slowly rotating black holes
Statement of the main result

The goal of this article is to give a short introduction to our recent result in which we
settle the conjecture in the case of slowly rotating Kerr black holes.

Theorem 1.1.1. The future globally hyperbolic development of a general, asymptotically
flat, initial data set, sufficiently close (in a suitable topology) to a Kerr(ag, mo) initial data

"The physical reality of these objects was recently put to test by LIGO-Viergo which is supposed
to have detected the gravitational waves generated in the final stage of the in-spiraling of two black
holes. Rainer Weiss, Barry C. Barish and Kip S. Thorne received the 2017 Nobel prize for their “decisive
contributions” in this respect. The 2020 Nobel prize in Physics was awarded to R. Genzel and A. Ghez
for providing observational evidence for the presence of super massive black holes in the center of our
galaxy, and to R. Penrose for his theoretical foundational work: his concept of a trapped surface and the
proof of his famous singularity theorem.

80Other such properties concern the rigidity of the Kerr family, see [[K-review] for a current survey,
or the dynamical formations of black holes from regular configurations, see the [Chr-BH], [KI-Rod1] and
the introduction to [?] for an up to date account of more recent results.

9If the Kerr family would be unstable under perturbations, black holes would be nothing more than
mathematical artifacts.

10This presupposes the existence of an event horizon. Note that the existence of such an event horizon
can only be established a posteriori, upon the completion of the proof of the conjecture.
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set, for sufficiently small |ag|/mo, has a complete future null infinity T+ and converges in
its causal past J~1(ZT) to another nearby Kerr spacetime Kerr(ay, mys) with parameters
(ar,my) close to the initial ones (ag, myo).

Figure 1.2: The Penrose diagram of the final space-time in Theorem with initial hypersurface
¥, future space-like boundary A, and Z* the complete future null infinity. The hypersurface H is the
future event horizon of the final Kerr.

The precise version of the result, all the main features of the architecture of its proof, as
well as detailed proofs for most of the main steps are to be found in [K-S:Kerr|. The full
proof relies also on our joint work [GKS-2022] with E. Giorgi, our papers [K-S:GCMI],
[K-S:GCM2] on GCM spheres, and the extension [Shen| to GCM hypersurfaces by D.
Shen.

Brief comments on the proof

We will discuss the main ideas of the proof in more details in section [1.4l It pays however
to give already a graphic sense of the main building blocks of our approach, which we call
general covariant modulated (GCM), admissible spacetimes.

The main features of these finite spacetimes M = =) AM U EPIAM U "D M with future
boundaries AU °P)Y U ¥, and past boundaries B, U B, are as follows:

e The capstone of the entire construction is the sphere S, on the future boundary 3,
of *) M, which verifies a set of specific extrinsic and intrinsic conditions denoted
by the acronym GCM.

e The spacelike hypersurface X, initialized at S,, verifies a set of additional GCM
conditions.
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Figure 1.3: The Penrose diagram of a finite GCM admissible space-time M = (62 MU (toP) Ay (7D AL,
The future boundary X, initiates at the GCM sphere S.. The past boundary of M, B; U By, is included
in the initial layer £y, in which the spacetime is assumed given.

e Once Y, is specified the whole GCM admissible spacetime M is determined by a
more conventional construction, based on geometric transport type equationﬂ.

e The construction, which also allows us to specify adapted null frameﬁ is made
possible by the covariance properties of the Einstein vacuum equations.

e The past boundary B; U B, of M, which is itself to be constructed, is included in
the initial layer £ in which the spacetime is assumed to be knowr["] i.e. a small
vacuum perturbation of a Kerr solution.

The proof of Theorem [1.1.1] is centered around a limiting argument for a continuous
family of such spacetimes M together with a set of bootstrap assumptions (BA) for the

U More precisely (¢*Y) M can be determined from ¥, by a specified outgoing foliation terminating in
the timelike boundary 7, (") M is determined from 7 by a specified incoming one, and (*P) M is a
complement of (¢*Y M U (") A which makes M a causal domain.

2Tn our work we prefer to talk about horizontal structures, see the brief discussion in section [1.4.3]
Another important novelty in the proof of Theorem [I.1.1] is that it relies on non-integrable horizontal
structures, see section

13The passage form the initial data, specified on the initial spacelike hypersurface X¢, to the initial
layer spacetime Ly, can be justified by arguments similar to those of [KI-Nil] [KI-Ni2], based on the
methods introduced in [Ch-KI.
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connection and curvature coefficients, relative to the adapted frames. Assuming that a
given finite, GCM admissible, spacetime M saturates BA we reach a contradiction as
follows:

e First improve BA for some of the components of the curvature tensor with respect to
the frame. These verify equations (called Teukolsky equations) which decouple, up
to terms quadratic in the perturbation, and are treated by wave equations methods.

e Use the information provided by these curvature coefficients together with the gauge
choice on M, induced by the GCM condition on ¥, to improve BA for all other
Ricci and curvature components.

e Use these improved estimates to extend M to a strictly larger spacetime M’ and
then construct a new GCM sphere S’, a new boundary Y/ which initiates on S,
and a new GCM admissible spacetime M, with ¥ as boundary, strictly larger than
M.

Remark 1.1.2. The critical new feature of this argument is the fact that the new GCM
sphere S.. has to be constructed as a co-dimension 2 sphere in M’ with no reference to the
iniatial conditz’onﬂ. This construction appears first in [K-S:Schul] in a polarized situation.
The general construction appears in the GCM papers [K-S:GCMI|, [K-S:GCM2]. The
construction of X, from S, appears first in [K-S:Schul] in the polarized case. The general
construction used in our work is due to D. Shen [Shen).

1.2 Linear and nonlinear stability

1.2.1 Notions of nonlinear stability

Consider a stationary solution ¢y of a nonlinear evolution equation
N¢] = 0. (1.2.1)

There are two distinct notions of stability, orbital stability, according to which small
perturbations of ¢g lead to solutions ¢ which remain close to ¢q for all time, and asymptotic
stability (AS) according to which the perturbed solutions converge as t — 0o to ¢p. In
the case where ¢q is non trivial, there is a third notion, which we call asymptotic orbital
stability (AOS), to describe the fact that the perturbed solutions may converge to a

1See a more detailed discussion in section m



20 CHAPTER 1. GENERAL INTRODUCTION

different stationary solution. This happens if ¢y belongs to a multi-parameter smooth
family of stationary solutions, or by applying a gauge transform to ¢, which keeps the
equation invarianﬂ.

For quasilinear equationﬂ, such as EVE, a proof of stability means necessarily AS or AOS
stability. Both require a detailed understanding of the decay properties of the linearized
equation, i.e.

Lol =0, (1.2.2)

with L[¢g] the Fréchet derivative N'[¢g]. This is, essentially, a linear hyperbolic system
with variable coefficients which, typically, presents instabilitiesm.

In the exceptional situation, when stability can ultimately be established, one can tie all
the instability modes to the following properties of the nonlinear equation:

M1. If ¢, is a family of stationary solutions, near ¢q, verifying N'[¢,] = 0. Then 1)y =
(%gb,\) r=o verifies N[gglehg = 0, i.e. 1o is a nontrivial, stationary, bound state of

the linearized equations (|1.2.2)).

M2. If ®, is a smooth family of diffeomorphisms of the background manifold, &, = I,
such that N[®%(¢o)] = 0. Then ¥y = (£®%(¢o)),_, verifies N'[¢o]¥o = 0, i.e. ¥y
is also a stationary bound state of the linearized equation ([1.2.2]).

These linear instabilities are responsible for the fact that a small perturbation of the fixed
stationary solution ¢y may not converge to ¢ but to another nearby stationary solution@.

To prove the asymptotic convergence of ¢ to a final state ¢y, different form ¢y, we need
to establish sufficiently strong rates of decaylﬂ for ¢ — ¢;. Rates of decay however are
strongly coordinate dependent, i.e. dependent on the choice of the diffeomorphism (or
gauge) ® in which decay is measured. Thus, to prove a nonlinear stability result we need
to know both the final state ¢y and the coordinate system ®; in which sufficient decay,
and thus convergence to ¢y, can be established. The difficulty here is that neither ¢y
nor ®; can be determined a-priori (from the initial perturbation), they have to emerge

15Tn the case of Kerr, both cases are present as we shall see below.

16Orbital stability can be established directly (i.e. without establishing the stronger version) only in
rare occasions, such as for hamiltonian equations with weak nonlinearities.

1"In unstable situations may have exponentially growing solutions, see for example [DKSW].

18The methodology of tracking this asymptotic final state, in general different from ¢g, is usually
referred to as modulation. See for example [Ma-Me|,[Me-R] for how modulation theory can be used to
deal with some examples of scalar nonlinear dispersive equations.

9To control the nonlinear terms of the equation.
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dynamically in the process of convergence. Moreover, in all examples involving nonlinear
wave equations in 1 + 3 dimensions, the nonlinear terms have to also cooperate, that is
an appropriate version of the so called null condition has to be verified.

To summarize, given a nonlinear system AN[¢] = 0 which possesses both a smooth family
of stationary solutions ¢, and a smooth family of invariant diffeomorphisms a proof of
the nonlinear stability of ¢g requires the following ingredients:

e The only non-decaying modes of the linearized equation L£(¢g)y = 0 are those due
to the items M1-M2 above. In particular there are no exponentially growing modes.

e A dynamical construction of both the final state ¢ and the final gauge ® in which
convergence to the final state takes place.

e The nonlinear terms in the equation

Ll = N(1)

obtained by expanding the equation N[¢] near ¢y, in the gauge given by the diffeo-
morphism @, has to verify an appropriate version of the null condition.

1.2.2 The case of the Kerr family

The issue of the stability of the Kerr family has been at the center of attention of GR
physics and mathematical relativity for more than half a century, ever since their discovery
by Kerr in [Kerr]. In this case we have to deal not only with a 2-parameter family
of solutions, corresponding to the parameters (a,m), but also with the entire group of
diffeomorphism?” of M. In what follows we try to discuss the main difficulties of the
problem. In doing that it helps to compare these to those arising in the simplest case
when a = m = 0, i.e. stability of Minkowski.

1.2.3 Stability of Minkowski space

Until very recently the only space-time for which full nonlinear stability had been estab-
lished was the Minkowski space, see [Ch-KI|. The proof is based on some important PDE
advances of late last century:

20Indeed, according to the covariant properties of the Einstein vacuum equations we cannot distinguish
between g and ®*g, for any diffeomorphism ® of M.
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(i) Robust approach, based on the vectorfield method, to derive quantitative decay
based on generalized energy estimates and commutation with (approximate) Killing
and conformal Killing vectorfields.

(ii) The null condition identifying the deep mechanism for nonlinear stability, i.e. the
specific structure of the nonlinear terms which enables stability despite the low
decay of the perturbations.

(iii) Elaborate bootstrap argument according to which one makes educated assumptions
about the behavior of solutions to nonlinear wave equations and then proceeds, by
a long sequence of a-priori estimates, to show that they are in fact satisfied. This
amounts to a conceptual linearization, i.e. a method by which the equations become,
essentially, linear@ without actually linearizing them.

The main innovation in the proof in [Ch-KI| is the choice of an appropriate gauge condi-
tion, readjusted dynamically through the convergence process, by a continuity argument,
which allows one to separate the curvature estimates, treated by hyperbolic methods,
from the estimates for the connection coefficients. The key point is that these latter ver-
ify transport or elliptic equations in which the curvature terms appear as sources. Thus
both the curvature components and connection coefficients can be controlled by a boot-
strap argument. The gauge condition is based on the constructive choice of a maximal
time function ¢ and two outgoing optical functions (mt) and (ef"’t) covering the interior
and exterior parts of the spacetime.

Another novelty of [Ch-KI| was the reliance on null frames adapted to the S-foliations
induced by the level surfaces of t and u. These define integrable horizontal structures
(in the language of part I of [GKS-2022]), by contrast with the non-integrable ones used
in the proof of Theorem and discussed in section [1.4.3, The functions ¢, u and this
integrable horizontal structure can be used to define approximate Killing vectorfields used
in estimating the curvature.

2INote that in the context of EVE, and other quasilinear hyperbolic systems, this differs substantially
from the usual notion of linearization around a fixed background.

22The interior optical function is initialized on a timelike geodesic from the initial hypersurface.

23The exterior optical function (¢*Y4 is initialized on the last slice ¢t = t,, by the construction of a
foliation (inverse lapse foliation) initialized at space-like infinity. It is thus readjusted dynamically as
t, — 00.



1.2. LINEAR AND NONLINEAR STABILITY 23

1.2.4 Main difficulties

There are a few major obstacles in passing from the stability of Minkowski to that of
Kerr:

1. The first one was already discussed in section [1.2.1] in the general context of the
stability of a stationary solution ¢y. In the case when ¢q is trivial there are no
nontrivial bound states for the linearized problem and thus we expect that the final
state does actually coincide with ¢y. This is precisely the case for the special member
of the Kerr family a = m = 0, i.e. the Minkowski spacd®] (R*3,m). On the other
hand, in perturbations of Kerr, general covariance affects the entire construction
of the spacetime. In the proof of Theorem the crucial concept of a GCM
admissible spacetime is meant to deal with both finding the final parameters and
the gauge in which convergence to the final state takes place.

2. A fundamental insight in the stability of the Minkowski space was that the Bianchi
identities decouple at first order from the null structure equations which allows one
to control curvature first, as a Maxwell type system (see [Ck-KI0]), and then proceed
with the rest of the solution. This cannot work for perturbations of Kerr due to the
fact that some of the null componentﬁ of the curvature tensor are non-trivial in
Kerr.

3. Even if one succeeds in tackling the above mentioned issues, there are still major
obstacles in understanding the decay properties of the solution. Indeed, when one
considers the simplest, relevant, linear equation on a fixed Kerr background, i.e. the
scalar wave equation [, ,,7 = 0, one encounters serious difficulties to prove decay.
Below is a very short description of these:

e The problem of trapped null geodesics. This concerns the existence of null
geodesicﬂ neither crossing the event horizon nor escaping to null infinity,
along which solutions can concentrate for arbitrary long times. This leads to
degenerate energy-Morawetz estimates which require a very delicate analysis.

e The trapping properties of the horizon. The horizon itself is ruled by null
geodesics, which do not communicate with null infinity and can thus concen-

24Note however that even though the linearized system around Minkowski does not contain instabilities,
the proof of the nonlinear stability of the Minkowski space in [Ch-KI| takes into account (in a fundamental
way!) general covariance. Indeed the presence of the ADM mass affects the causal structure of the far,
asymptotic, region of the perturbed space-time.

25With respect to the principal null directions of Kerr, i.e a distinguished null pair which diagonalizes
the full curvature tensor, the middle component P = p + i “p is nontrivial.

26Tn the Schwarzschild case, these geodesics are associated with the celebrated photon sphere r = 3m.
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trate energy. This problem was solved by understanding the so called red-shift
effect associated to the event horizon, which counteracts this type of trapping.

e The problem of superradiance. This is the failure of the stationary Killing field
T = 0, to be everywhere timelike in the domain of outer communication?’}, and
thus, of the associated conserved energy to be positive. Note that this problem
is absent in Schwarzschild and, in general, for axially symmetric solutions of
EVE. In both cases however there still is a degeneracy along the horizon.

e Superposition problem. This is the problem of combining the estimates in the
near region, close to the horizon, (including the ergoregion and trapping) with
estimates in the asymptotic region, where the spacetime is close to Minkowski.

Figure 1.4: Penrose diagram of the Kerr exterior to the future of a spacelike hypersurface. Note that
the ergoregion, in red, and the trapping region in blue are separated only if |a|/m is sufficiently small.

4. Though, as seen above, the analysis of the scalar wave equation in Kerr presents
formidable difficulties, it is itself just a vastly simplified model problem. A more
realistic equation is the so called spin 2 wave equation, or Teukolsky equation, which
presents many new Challenge@

5. The full linearized system, whatever its formulation, presents many additional dif-
ficulties due to its complex tensorial structure and the huge gauge covariance of
the equationﬂ. The crucial breakthrough in this regard is the observation, due to
Teukolsky [Teuk], that the extreme components of the linearized curvature tensor
are both gauge invariant (see below in section and verify decoupled spin 2
equations, that is the Teukolsky equations mentioned above.

2TThe stationary Killing vectorfield T is timelike only outside of the so-called ergoregion.

Z8Unlike the scalar wave equation [, ,,,% = 0, which is conservative, the Teukolsky equation is not, and
we thus lack the most basic ingredient in controlling the solutions of the equation, i.e. energy estimates.

29 As mentioned earlier, rates of decay are heavily dependent on a proper choice of gauge, thus affecting
the issue of convergence.
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6. A crucial simplification of the linear theory, by comparison to the full nonlinear case,
is that one can separate the treatment of the gauge invariant extreme curvature
components form all the other gauge invariant quantities. In the nonlinear case
this separation is no longer true, all quantities need to be treated simultaneously.
Moreover, methods based on separation of variables, developed to treat scalar and
and spin 2 wave equations in Kerr, are incompatible with the nonlinear setting which
requires, instead, robust methods to derive decay.

1.2.5 Linear stability

Linear stability for the vacuum equations is formulated in the following way. Given the
Einstein tensor G.g = Rap — %Rgag and a stationary solution gy, i.e. a fixed Kerr metric,
one has to solve the system of equations

G'(g) 0g = 0. (1.2.3)

The covariant properties of the Einstein equations, i.e. the equivalence between a solution
g and ®*(g), leads us to identify dg with dg + Lx(go) for arbitrary vectorfields X in M,
ie.

e 2-parameter family Kerr(a,m).

d d

G(ga;m,) =0= G/(ga,’rrb) (%ga,ma %ga,nl) = 0.

e General covariance

* d *
G(q))\ga,m) =0= G/(ga,m)(a@)\ga,m

) = 0.

We can now attempt to formulate a version of linear stability for (1.2.3), loosely related
to the nonlinear stability of Kerr conjecture, as follows.
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Definition 1.2.1. By linear stability of the Kerr metric gy we understand a result which
achieves the following:

Given an appropriate initial data for a perturbation &g, find a vectorfield X such that,
after projecting away the bound states generated by the parameters a, m, according to M1—

M2 in section a solution of the form 0g + Lxgo to (1.2.3)), decays, relative to an
appropriate null frame of K(ag, mo), sufficiently fast in time.

Remark 1.2.2. The definition above is necessarily vague. What is the meaning of suffi-
ciently fast? In fact various components of the metric dg, relative to the canonical null
frame of K(a,m), are expected to decay at different slow polynomial rates, some of which
are not even integrable. Unlike in the nonlinear context, where one needs precise rates
of decay for components of the curvature tensor and Ricci coefficients, as well as their
deriwatives, to be able to control the nonlinear terms, in linear theory any type of nontrivial
control of solutions may be regarded as satisfactorﬂ Thus linear stability, as formulated
above, can only be regarded as a vastly simplified model problem. Nevertheless the study
of linear stability of the Kerr family has turned out to be useful in various ways, as we
shall see below.

Historically, the following versions of linear stability have been considered.

(a) Metric Perturbations. At the level of the metric itself, i.e. as above in (1.2.3)).

(b) Curvature Perturbations. Via the Newman-Penrose (NP) formalism, based on null
frames.

The strategy followed in both caseﬂ is:

e Find components of the metric (in case (a)) or curvature tensor (in case (b)), invari-
ant with respect to linearized gauge transformations [1.2.4] which verify decoupled
wave equations. The main insight of this type was the discovery, by Teukolsky
[Teuk], in the context of (b) above, that the extreme components of the linearized
curvature tensor verify both these properties.

e Analyze these components by showing one of the following:

30 Thus, for example, in their well known linear stability result around Schwarzschild [DHRI, the
authors derive satisfactory results (compatible with what is needed in nonlinear theory) for components
of the curvature tensor, and some Ricci coefficients, but not all. Similar comments apply to [HKW] and
[Johnson].

31In the article we refer mainly to the curvature perturbation approach.
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— There are no exponentially growing modes. This is known as mode stability.
— Boundedness for all time.

— Decay (sufficiently fast) in time.

e Find a linearized gauge condition, i.e. a vectorfield X, such that all remaining
(gauge dependent) components (at the metric or curvature level) inherit the property
mentioned above: no exponentially growing modes, boundedness, or decay in time.
In the physics literature this is known as the problem of reconstruction.

Mode stability

All results on the linear stability of Kerr in the physics literature during the 10-15 years
after Roy Kerr’s 1963 discovery, often called the “Golden Age of Black Hole Physics”,
are based on mode decompositions. One makes use of the separability] of the linearized
equations, more precisely the Teukolsky equations, on a fixed Kerr background, to derive
simple ODEs for the corresponding modes. One can then show, by ingenious methods,
that these modes cannot exhibit exponential growth. The most complete result of this
type is due to Bernard Whiting [Whit] in the case of the scalar wave equation.

The obvious limitation of these results are as follows:

e They are far from even establishing the boundedness of general solutions to the
Teukolsky equations, let alone to establish quantitative decay for the general solu-
tions.

e Results based on mode decompositions depend strongly on the specific symmetries
of Kerr which cannot be adapted to perturbations of Kerr.

Robust methods to deal with both issues have been developed in the mathematical com-
munity, based on the vectorfield method which we discuss below.

Classical vectorfield method

The vectorfield method, as an analytic tool to derive decay, was first developed in con-
nection with the wave equation in Minkowski space. As well known, solutions of the
wave equation [(J¢p = 0 in the Minkowski space R"*! both conserve energy and decay

328ee discussion in section m
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n—1
2

uniformly in time like ¢~ *. While conservation of energy can be established by a simple
integration by parts, and is thus robust to perturbations of the Minkowski metric, decay
was first derived either using the Kirchhoff formula or by Fourier methods, which are
manifestly not robust. An integrated version of local energy decay, based on an inspired
integration by parts argument, was first derived by C. Morawetz [Morl], [Mor2]. The
first derivation of decay based on the commutations properties of [J with Killing and con-
formal Killing vectorfields of Minkowski space together with energy conservation appear
in [Kl-vectl] and [Kl-vect2]. The same method also provides precise information about
the decay properties of derivatives of solutions with respect to the standard null frame of
Minkowski space, an important motivating factor in the discovery of the null condition
[KI-ICM], [Chy] and [Kl-null].

The crucial feature of the methodology initiated by these papers, to which we refer as
the classical vectorfield method, is that it can be easily adapted to perturbations of the
Minkowski space. As such the method has had numerous applications to nonlinear wave
equations and played an important role in the proof of the nonlinear stability of Minkowski
space, as discussed in section[1.2.3] It has also been applied to later versions of the stability
of Minkowski in [KI-NilI]-[KI-Ni2], [Lind-Rodn], [Bi], [Lind|, [Huneau], [HV2)], [Graf], and
extensions of it to Einstein equation coupled with various matter fields in [BiZi], [FJS],
[Lind-Ta], [BEJT], [Wal, [L-Ma], [IP].

New vectorfield method

To derive decay estimates for solutions of wave equations on a Kerr background one has
to substantially refine the classical vectorfield method. The new vectorfield method is an
extension of the classical method which compensates for the lack of enough Killing and
conformal Killing vectorfields in Kerr by introducing, new, cleverly designed, vectorfields
whose deformation tensors have coercive properties in different regions of spacetime, not
necessarily causal. The method has emerged in the last 20 years in connection to the
study of boundedness and decay for the scalar wave equation in Schwarzschild and Kerr,
see section [1.3.2] for more details.

1.2.6 Model problems

To solve the stability of Kerr conjecture one has to deal simultaneously with all the
difficulties mentioned above. This is, of course, beyond the abilities of mere humans.
Instead the problem was tackled in a sequence of steps based on a variety of simplified
model problems, in increasing order of difficulty. To start with we can classify model
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problems based on the following criteria:

1. Whether the result refers to Schwarzschild i.e. a = 0, slowly rotating Kerr i.e.
la| < m or full non-extremal Kerr |a| < m.

2. Whether the result refers to linear or nonlinear stability.

3. Whether the result, in linear theory, refers to scalar wave equation, i.e. spin 0,
Teukolsky equation, i.e. spin 2, or the full linearized system.

4. Whether the stability result, in linear theory, is a mode stability result, a bound-
edness result, one that establishes some version of quantitative decay or one that
establishes an optimal version of quantitative decay

1.3 Short survey of model problems

We give below a short outline of the main developments concerning linear and nonlinear
model problems for the Kerr stability problem, paying special attention to those which
had a measurable influence on our work.

1.3.1 Mode stability results

These are mode stability results, using the method of separation of variables, obtained in
the physics community roughly during the period 1963-1990. They rely on what Chan-
drasekhar called the most striking feature of Kerr i.e. “the separability of all the standard
equations of mathematical physics in Kerr geometry”.

1. Regge-Wheeler (1957). Even before the discovery of the Kerr solution physicists
were interested in the mode stability of Schwarzschild space, i.e. K(0,m). The first
important result goes back to T. Regge and J.A Wheeler [Re-W], in which they
analyzed linear, metric perturbations, of the Schwarzschild metric. They showed
that in a suitable gauge, equation decouples into even-parity and odd-parity
perturbations, corresponding to axial and polar perturbations. The most important
discovery in that paper is that of the master Regge-Wheeler equation, a wave equa-
tion with a favorable potential, verified by an invariant scalar component ¢ of the
metric, i.e.

4 2
Onp =V, V=1 (1 - —m> . (1.3.1)



30

CHAPTER 1. GENERAL INTRODUCTION

where [J,, denotes the wave operator of the Schwarzschild metric of mass m. The R-
W study was completed by Vishveshwara [Vishev] and Zerilli [Ze]. A gauge-invariant
formulation of metric perturbations was then given by Moncrief [Moncr].

. Teukolsky (1973). The curvature perturbation approach, near Schwarzschild, based

on the Newman-Penrose (NP) formalism was first undertaken by Bardeen-Press [?].
This approach was later extended to the Kerr family by Teukolsky [Teuk], see also
[P-T], who made the important discovery that the extreme curvature components,
relative to a principal null frame, are gauge invariant and satisfy decoupled, sepa-
rable, wave equations. The equations, bearing the name of Teukolsky, are roughly
of the form

Omt = L[] (1.3.2)

where L[] is a first order linear operator in .

. Chandrasekhar (1975). In [Chand2] Chandrasekhar initiated a transformation the-

ory relating the two approaches. He exhibited a transformation which connects
the Teukolsky equations to a Regge-Wheeler type equation. In the particular case
of Schwarzschild the transformation takes the Teukolsky equation to the Regge-
Wheeler equation in ([1.3.1). The Chandrasekhar transformation was further elu-
cidated and extended by R. Wald [Wald] and recently by Aksteiner and al [?].
Though originally it was meant only to unify the Regge-Wheeler approach with
that of Teukolsky, the Chandrasekhar transformation, and various extensions of it,
turn out to play an important role in the field.

. Whiting (1989). As mentioned before, the full mode stability, i.e. lack of exponen-

tially growing modes, for the Teukolsky equation on Kerr is due to Whitingiﬂ, see
[Whit]. Stronger quantitative versions were proved in [AWPW], [Fins2|, [Te].

. Reconstruction. Once we know that the Teukolsky variables, i.e. the extreme com-

ponents of the curvature tensor verify mode stability, i.e. there are no exponentially
growing modes, it still remains to deal with the problem of reconstruction, i.e. to
find a gauge relative to which all other components of the curvature and Ricci co-
efficients enjoy the same property. We refer the reader to Wald [Wald] and the
references within for a treatment of this issue in the physics literature.

33For the analogous result in the case of the scalar wave equation, see [Finsl]. See also [SR] for a
stronger quantitative version which was used in [D-R-SR].
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1.3.2 Quantitative decay for the scalar wave equation

As mentioned in section [[.2.5] mode stability is far from establishing even the bound-
edness of solutions. To achieve thatlﬂ and, more importantly, to derive realistic decay
estimates, one needs an entirely different approach based on what we called the “new
vectorfield method” in section [1.2.5l The method has emerged in connection to the study
of boundedness and decay for the scalar wave equation in K(a,m),

Hom¢ = 0. (1.3.3)

The starting and most demanding part of the new method, which appeared first in [B-S1],
is the derivation of a global, combined, Energy-Morawetz estimate which degenerates in
the trapping region. Once an Energy-Morawetz estimate is established one can commute
with the Killing vectorfields of the background manifold, and the so called red shift
vectorfield introduced in [DaRol], to derive uniform bounds for solutions. The most
efficient way to also get decay, and solve the superposition problem (see section |1.2.4)),
originating in [Da-Ro3], is based on the presence of family of r?-weighted, quasi-conformal
vectorfields defined in the non-causal, far r region of spacetimﬂ

The first Energy-Morawetz type results for scalar wave equation in Schwarzschild,
i.e. a = 0, are due to Blue-Soffer [B-S1], [B-S2] and Blue-Sterbenz [B-St], based on
a modified version of the classical Morawetz integral energy decay estimate. Further
developments appear in the works of Dafermos-Rodnianski, see [DaRoll], [Da-Ro3], and
Marzuola-Metcalfe-Tataru-Tohaneanu [Ma-Me-Ta-To]. The vectorfield method can also
be extended to derive decay for axially symmetric solutions in Kerr, see [[-KI] and™| [St],
but it is known to fail for general solutions in Kerr, see Alinhac [Al].

In the absence of axial symmetry the derivation of an Energy-Morawetz estimate in
K(a,m) for |a/m| < 1 requires a more refined analysis involving both the vectorfield
method and either micro-local methods or mode decompositions. The first full quantita-
tive decaym result, based on micro-local analysis techniques, is due to Tataru-Tohaneanu
[Ta-To]. The derivation of such an estimate in the full sub-extremal case |a| < m is even

34The first realistic boundedness result for solutions of the scalar wave equation in Schwarzschild
appears in [K-Wald] based on a clever use of the energy method which takes into account the degeneracy
of T at the horizon.

35These replace the scaling and inverted time translation vectorfields used in [Kl-vectl] or their cor-
responding deformations used in [Ch-KI|. A recent improvement of the method allowing one to derive
higher order decay can be found in [AArGal.

36In his Princeton PhD thesis Stogin establishes a Morawetz estimate even for the full subextremal
case |a] < m.

37See also [DaRo2] for the first proof of boundedness of solutions, based on mode decompositions.
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more subtle and was achieved by Dafermos-Rodnianski-Shlapentokh-Rothman [D-R-SR]
by combining the vectorfield method with a full separation of variables approach. A purely
physical space proof of the Energy-Morawetz estimate for small |a/m/|, which avoids both
micro-local analysis and mode decompositions, was pioneered by Andersson-Blue in [A-BJ.
Their method, which extends the classical vectorfield method to include second order op-
erators (in this case the Carter operator, see section , has the usual advantages of
the classical vectorfield method, i.e it is robust with respect to perturbations. It is for
this reasons that we rely on it in the proof of Theorem [1.1.1], more precisely in part II of
[GKS-2022].

1.3.3 Linear stability of Schwarzschild

A first quantitative proof of the linear stability of Schwarzschild spacetime was estab-
lishedlﬂ by Dafermos-Holzegel-Rodnianski (DHR) in [DHR]. Notable in their analysis is
the treatment of the Teukolsky equation in a fixed Schwarzschild background. While the
Teukolsky equation is separable, and amenable to mode analysis, it is not variational and
thus cannot be treated directly by energy type estimates. As mentioned earlier in section
[[.3.1] Chandrasekhar was able to relate the Teukolsky equation to the Regge-Wheeler
(RW) equation, which is both variational and coercive (the potential V' has a favorable
sign). In [DHR] the authors rely on a physical space version of the Chandrasekhar trans-
formation. Once decay estimates for the RW equation have been established, based on
the technology developed earlier for the scalar wave equation in Schwarzschild, the au-
thors recover the expected boundedness and decay for solutions to the original Teukolsky
equation.

The remaining work in [DHR] is to derive similar control for the other curvature com-
ponents and the linearized Ricci coefficients associated to the double null foliation. This
last step requires carefully chosen gauge conditions, which the authors make within the
framework of a double null foliation, initialized both on the initial hypersurface and the
background Schwarzschild horizonf’} This gauge fixing from initial data leads to sub-
optimal decay estimates for some of the metric Coefﬁcientﬂ and is thus inapplicable to
the nonlinear case. This deficiency was fixed in the PhD thesis of E. Giorgi, in the con-
text of the linear stability of Reissner-Nordstrom, see |[Giorgi|, by relying on a linearized

38 A somewhat weaker version of linear stability of Schwarzschild was subsequently proved in [HKW]
by using the original, direct, Regge-Wheeler, Zerilli approach combined with the vectorfield method and
adapted gauge choices. See also [Johnson| for an alternate approach of linear stability of Schwarzschild
using wave coordinates.

39The authors use a a scalar condition for the linearized lapse along the event horizon (part of what the
authors call future normalized gauge), itself initialized from initial data, see (212) and (214) in [DHR].

108ee (250)—(252) and (254) in [DHR].
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version of the GCM construction in [K-S:Schw].

1.3.4 Linear stability of Kerr for small angular momentum

The first breakthrough result on the linear stability of Kerr, for |a|/m < 1, is due
to Ma [Ma), see also [DHR-Kerr]. Both results are based on a generalization of the
Chandrasekhar transformation to Kerr which takes the Teukolsky equations, verified by
the extreme curvature components, to generalized versions of the Regge-Wheeler (gRW)
equation. Relying on separation of variables and vectorfield techniques, similar to those
developed for the scalar wave equation in slowly rotating Kerr, the authors derive Energy-
Morawetz and rP estimates for the solutions of the gRW equations. Note that these results
were recently extended to the full subextremal range, |a| < m, in [SR-Tel], [SR-Te2] and
[Millet].

The first stability results for the full linearized Einstein vacuum equations near K(a,m),
for |a|/m < 1, appeared in [ABBMa2019] and [HHV]. The first paper, based on the
GHP formalismfT] see [GHP], builds on the results of [Ma] while the second paper is
based on an adapted version of the metric formalism and builds on the seminal work of
the authors on Kerr-de Sitter [H-V1]. Though the ultimate relevance of these papers to
nonlinear stability remains open, they are both remarkable results in so far as they deal
with difficulties that looked insurmountable even ten years ago.

1.3.5 Nonlinear model problems
Nonlinear stability of Kerr-de Sitter

There is another important, simplified, nonlinear model problem which has drawn atten-
tion in recent years, due mainly to the striking achievement of Hintz and Vasy [H-VI].
This is the problem of stability of Kerr-de Sitter concerning the Einstein vacuum equation
with a strictly positive cosmological constant

Rag + Agag =0, A > 0. (134)

In their work, which relies in part on the important mode stability result of Kodama and
Ishibashi [Ko-Is|, Hintz and Vasy were able prove the nonlinear stability of the stationary
part of Kerr-de Sitter with small angular momentum, the first nonlinear stability result

41 An adapted spinorial version of the NP formalism.
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of any nontrivial stationary solutions for the Einstein equationﬂ. It is important to note
that, despite the fact that, formally, the Einstein vacuum equation ([1.1.3)) is the limit/*’| of
(1.3.4) as A — 0, the global behavior of the corresponding solutions is radically different/**|

The main simplification in the case of stationary solutions of is that the expected
decay rates of perturbations near Kerr-de Sitter is exponential, while in the case A = 0
the decay is lower degree polynomiaﬂ with various components of tensorial quantities
decaying at different rates, and the slowest decaying rate@ being no better than ¢t~!. The
Hintz-Vasy result was recently revisited in the work of A. Fang [Fang2] [Fangl] where he
bridges the gap between the spectral methods of [H-V1] and the vectorfield methods.

Nonlinear stability of Schwarzschild

The first nonlinear stability result of the Schwarzschild space was established in [K-S:Schw].
In its simplest version, the result states the following.

Theorem 1.3.1 (Klainerman-Szeftel [K-S:Schw]). The future globally hyperbolic develop-
ment of an axially symmetric, polarized, asymptotically flat initial data set, sufficiently
close (in a specified topology) to a Schwarzschild initial data set of mass mg > 0, has
a complete future null infinity T+ and converges in its causal past J~(Z") to another
nearby Schwarzschild solution of mass my close to my.

The restriction to axial polarized perturbations is the simplest assumption which insures
that the final state is itself Schwarzschild and thus avoids the additional complications of
the Kerr stability problem. We refer the reader to the introduction in [K-S:Schw]| for a
full discussion of the result.

The proof is based on a construction based on GCM admissible spacetimes similar to that

42This is also the first general nonlinear stability result in GR establishing asymptotic stability towards
a family of solutions, i.e. full quantitative convergence to a final state close, but different from the initial
one.

43To pass to the limit requires one to understand all global in time solutions of with A = 1, not
only those which are small perturbations of Kerr-de Sitter, treated by [H-VI].

44Major differences between formally close equations occur in many other contexts. For example, the
incompressible Euler equations are formally the limit of the Navier-Stokes equations as the viscosity tends
to zero. Yet, at fixed viscosity, the global properties of the Navier-Stokes equations are radically different
from that of the Euler equations.

45While there is exponential decay in the stationary part treated in [H-V1], note that lower degree
polynomial decay is expected in connection to the stability of the complementary causal region (called
cosmological or expanding) of the full Kerr-de Sitter space, see e.g. [Vol.

46Responsible for carrying gravitational waves at large distances so that they are detectable.
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briefly discussed in section [1.1.3]in the context of slowly rotating Kerr. There are however
several important simplifications to be noted:

e The assumption of polarization makes the constructions of the GCM spheres S,
and spacelike hypersurface X, significantly simpler, see Chapter 9 in [K-S:Schw]|, by
comparison to the general case treated in [K-S:GCMI], [K-S:GCM2] and [Shen].

e The spacetime has only two components M = (@Y A U ") M and the null hori-
zontal structures, defined on each component, are integrable.

e As in the case of the scalar wave equation on Schwarzschild space the main spin-2
Teukolsky wave equations can be treated (via the passage to the Regge-Wheeler
equation) by a vectorfield approach. This is no longer true in Kerr and even less so
in perturbations of Kerr.

Figure 1.5: The GCM admissible space-time M. By comparison to Figure ??, M does not have (°P) M,
the past boundaries Cy U C,, and future boundary C U C, are null and the horizontal structures (induced
by geodesic foliations) are integrable. As in Theorem the crucial GCM sphere S, is defined and
constructed with no reference to the initial data.

Recently Dafermos-Holzegel-Rodnianski-Taylor [DHRT]| have extendedm the result of
[K-S:Schw] by properly preparing a co-dimension 3 subset of the initial data such that
the final state is still Schwarzschild. Like in [K-S:Schw]|, the starting point of [DHRT]
is to anchor the entire construction on a far away@ GCM type sphere S,, in the sense

4TThe novelty of [DHRT], compared to [K-S:Schw], is the well preparation of the initial data, based on
an additional three dimensional modulation. Note however that [DHRT] requires substantially stronger
asymptotic conditions for the initial data compared to [K-S:Schw].

48That is 7 > u, similar to the dominant in r condition (3.3.4) of [K=S:Schw].
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of [K-S:GCMI] [K-S:GCM2], with no direct reference to the initial data. It also uses
the same definition of the angular momentum as in (7.19) of [K-S:GCM2|. Finally, the
spacetime in [DHRT] is separated in an exterior region (Y M and an interior region
() MM, with the ingoing foliation of (Y M, initialized based on the information induced
by ) M, as in [K-S:Schw]. We note, however, that [DHRT] does not use the geodesic
foliation of [K-S:Schw], but instead both ("M and (¢ M are foliated by double null
foliations, and thus, the process of estimating the gauge dependent variables is somewhat
different.

1.4 Main ideas in the proof of Theorem 1.1.1

1.4.1 The bootstrap region

As mentioned in section the proof of Theorem is centered around a continuity
argument for a family of carefully constructed finite generally covariant modulated (GCM)
admissible spacetimes M = (@) MU tP) AU 7D M As can be seen in Figure below,
the future boundary of the spacetime is given by AU P)Y U S, where ¥, is a spacelike,
generally covariant modulated (GCM) hypersurface, that is a hypersurface verifying a set
of crucial, well-specified, geometric conditions, essential to our proof of convergence to a
final state.

The capstone as well as the most original part of the entire construction is the sphere S,
the future boundary of ., which verifies a set of rigid, extrinsic and intrinsic, conditions.
Once Y, is specified the whole GCM admissible spacetime M is determined by a more
conventional construction, based on geometric transport type equations. More precisely
() M can be determined from ¥, by a specified outgoing foliation terminating in the
timelike boundary 7, ") M is determined from 7 by a specified incoming one, and
(o)) M is a complement of ““) M U (") M which makes M a causal domainf®} The
past boundary B; U B, of M, which is itself to be constructed, is included in the initial
layer Ly in which the spacetime is assumed to be known, i.e. a small perturbation of
a Kerr solution. The passage from the initial data specified on >, to the initial layer
spacetime L is justified by D. Shen in [Shen:Kerr-ext] by arguments similar to those
of [KI-Nil]-[KI-Ni2], based on the mathematical methods and techniques introduced in
[Ch-KI].

Each of the spacetime regions =) M, (") M, (*P) M come equipped with specific geomet-

49This is required because of the fact that, in our construction, the future boundary of (¢*Y) MU (it A
is not causal. By contrast, in [K=S:Schw], M = (<*) M U (7D M.
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Figure 1.6: The Penrose diagram of a finite GCM admissible space-time M = (62 MU (toP) Ay (70 AL,
The spacetime is prescribed in the initial layer £y and has AU t°P)X UY, as future boundary, with ¥, a
spacelike “generally covariant modulated (GCM)” hypersurface. Its past boundary, By UB;, is itself part
of the construction. (¢*Y) M is initialized by the GCM hypersurface ¥, while (Y M is initialized on T
by the foliation induced by (¢*) M. The main inovation is the GCM sphere S,, defined and constructed
with no reference to the initial data prescribed in the initial data layer L.

ric structure including specific choices of null frames and functions such as r, u, u. These
are first defined on 3, and then transported to (<®O M, (M) AL, (top) AL

Another important insight in the proof is the separate treatment of the quasi—invarianﬂ
extreme curvature components A, A and all other Ricci and curvature components. In
fact the entire hyperbolic character of the EV equations is carried over by A, A, via the
Teukolsky equations they verify, while all other quantities are controlled according to the
following:

1. The control of A, A and the GCM conditions on Y,. This allows us to control all
other quantities on X,.

2. The control of all quantities on X,, except A, from their control on >, and the V4
transport equations they verify. It is essential here that the corresponding equations
have a triangular structure!

3. The control of all quantities in ) M using the control of A in ) M, the control

50i.e. quadratic invariant



38

CHAPTER 1. GENERAL INTRODUCTION

of all quantities on 7, induced by the control on (*) M, and their V3 transport
equations. Once more the triangular structure of these equations important.

. The control of all quantities in *?) M usuing their control on ¢*) M U ™) M and

‘the ‘smallness” of (tP) M.

1.4.2 Main intermediary results

The proof of Theorem is divided in nine separate steps, Theorems M0-MS8. These
steps are briefly described below, see section 3.7 in [K-S:Kerr] for the precise statements:

1. Theorem MO (Control of the initial data in the bootstrap gauge). The smallness of

the initial perturbation is given in the frame of the initial data layer £y. Theorem
MO transfers this control to the bootstrap gauge in the initial data layer.

. Theorems M1-M2 (Decay estimates for o (Theorem M1) and o« (Theorem M2)).

This is achieved using Teukolsky equations and a Chandrasekhar type transform in
perturbations of Kerr.

. Theorems M3-M5 (Decay estimates for all curvature, connection and metric com-

ponents). This is done making use of the GCM conditions on ¥, as well as the
control of o and « established in Theorems M1 and M2. The proof proceeds in the
following order:

e Theorem M3 provides the crucial decay estimates on >,

e Theorem M4 provides the decay estimates on (“*) M,

e Theorem M5 provides the decay estimates on " M and “P) M.

. Theorems M6 (Existence of a bootstrap spacetime). This theorem shows that there

exists a GCM admissible spacetime satisfying the bootstrap assumptions, hence
initializing the bootstrap procedure.

. Theorems M7 (Extension of the bootstrap region). This theorem shows the existence

of a slightly larger GCM admissible spacetime satisfying estimates improving the
bootstrap assumptions on decay.

. Theorem M8 (Control of the top derivatives estimates). This is based on an induc-

tion argument relative to the number of derivatives, energy-Morawetz estimates and
the Maxwell like character of the Bianchi identities.
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The paper [K-S:Kerr| provides the proof of Theorem MO, Theorems M3 to M7, and
half of Theorem M8 (on the control of Ricci coefficients and metric components). The
proof of Theorems M1 and M2, and of the other half of Theorem M8 (on the control
of curvature components), based on nonlinear wave equations techniques, are provided
in [GKS-2022]. The construction of GCM spheres in [K-S:GCMI1] [K-S:GCMZ2]|, and of
GCM hypersurfaces in [Shen| are used in the proof of Theorems M6 and M7 to construct
respectively the terminal GCM sphere S, and the last slice hypersurface X, from S,.

1.4.3 Main new ideas of the proof

Here is a short description of the main new ideas in the proof of Theorem [1.1.1] and how
they compare with ideas used in other nonlinear results.

GCM admissible spacetimes

e As mentioned already the crucial concept in the proof of Theorem is that of a
GCM admissible spacetime, whose construction is anchored by the GCM sphere S,
in Figure GCM sphereﬂ, are codimension 2 compact surfaces, unrelated to
the initial conditions, on which specific geometric quantities take Schwarzschildian
values (made possible by taking into account the full general covariance of the
Einstein vacuum equations). In addition to these extrinsic conditions the sphere S,
is endowed with a choice of “effectivﬂ isothermal coordinates”, (6, ) verifying the
following properties:

— The metric on S, takes the form g = ¢?*r?((d6)? + sin® 0(dy)?).

— The integrals on S, of the { =1 mode JO = cosf, J&) := sinfsin ¢ and
J*) .= sin  cos ¢ vanish identically.

e Given the GCM sphere S, and the effective isothermal coordinates (6, ¢) on it,
our GCM procedure allows us, in particular, to define the mass m, the angular
momentum a and a virtual axis of rotation which converge, in the limit, to the final
parameters as, my and the axis of rotation of the final Kenﬁ. We refer the reader

51See the discussion in the introductions to [K=S:GCMI], [K-S:GCM?2].

52This is meant to insure the rigidity of the uniformization map, see [K=S:GCM2].

53This is a natural generalization of £ = 1 spherical harmonics.

5 Previous definitions of the angular momentum in General Relativity were given in [Rizzi], [Chenl,
[Chen2], see also [Sz] for a comprehensive discussion of the subject.
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to section 7.2 in [K-S:GCM2] for our intrinsic definition of a and of the virtual axis
of symmetry on a GCM sphere.

The boundary X, called a GCM hypersurface, is initialized at S, and verifies ad-
ditional conditions. In the polarized setting the first such construction appears in
[K-S:Schw]. The general case needed for our theorem is treated in [Shen)|.

The concepts of GCM spheres has appeared first in [K-S:Schw| in the context of
polarized symmetry. The construction of GCM spheres, without any symmetries,
in realistic perturbations of Kerr, is treated in [K=S:GCMIT], [K-S:GCM2[]

The main novelty of the GCM approach is that it relies on gauge conditions initial-
ized at a far away co-dimension 2 sphere S, with no direct reference to the initial
conditions. Previously known geometric constructions, such as in [Ch-KI|, [KI-Nii]
and [KI-L-R], were based on codimension-1 foliations constructed on spacelike or
null hypersurfaces and initialized on the initial hypersurfacﬂ Gauge conditions
initialized from the future with no direct reference to the initial conditions, which

was initiated in [K-S:Schw], have since been used in other works, see [Giorgi] [Graf]
[DHRT].

The GCM construction introduces the following new important conceptual difficulty.
The foliation on ¥, induced from the far away sphere S,, needs to be connected,
somehow, to the initial conditions (i.e. the initial layer £y in Figure [B.1]). This is
achieved in both [K-S:Schw] and [K-S:Kerr] by transporting®| the sphere S, to a
sphere S; in the the initial layer and compare it, using the rigidity properties of the
GCM conditions, to a sphere of the initial data layer. This induces a new foliation
of the initial layer which differs substantially from the original one, due to a shift of
the center of mass frame of the final black hole, known in the physics literature as
a gravitational wave recoi]@.

Non integrability of the horizontal structure

As mentioned in section [I.1.1], the canonical horizontal structure induced by the principal
null directions (es,e4) in ([1.1.4) of Kerr are non integrable. The lack of integrability is

55See also chapter 16 of [DHRT] in the particular case of perturbations of Schwarzschild, where the
same concept appears instead under the name “teleological”.

56The first such construction appears in the proof of the nonlinear stability of the Minkowski space
[Ch-KI] where the “inverse lapse foliation” was constructed on the “last slice”, initialized at spacelike
infinity i°. Similar constructions, where the last slice is null rather than spacelike, appear in [KI-Nil] and
IKI-L-R].

5TThat is, we transport the £ = 1 modes of some quantities from S, to Si, see section 8.3.1 in [K=S:Kert].

%8We refer the reader to section 8.3 in [K-S:Ker1] for the details.
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dealt with by the Newman-Penrose (NP) formalism by general null frames (es, e4, €1, €2),
with e, es a specified basiﬂ of the horizontal structure induced by the null pair (es, e4).
It thus reduces all calculations to equations involving the Christoffel symbols of the frame,
as scalar quantities. This un-geometric feature of the formalism makes it difficult to use
it in the nonlinear setting of the Kerr stability problem. Indeed complex calculations
depend on higher derivatives of all connection coefficients of the NP frame rather than
only those which are geometrically significant. This seriously affects and complicates the
structure of non-linear corrections and makes it difficult to avoid artificial gauge type
singularitieﬂ. This difficulty is avoided in [Ch-KI| by working with a tensorial approach
adapted to S-foliations, i.e. {e3,es}* coincides, at every point, with the tangent space to

S.

In our work we extend, with minimal changes, the tensorial approach introduced in [Ch-KI|
to general non-integrable foliations. The idea is very simple: we define Ricci coefficients
Xo X>1:1,6,€, €, w, w exactly as in [Ch-KI|, relative to an arbitrary basis of vectors (e, )q—12
of H := {es, e, }+. In particular, the null fundamental forms y and X, are given by

Xab - g(Dae?n 617)7 Xab = g(Dae47 eb)'
Due to the lack of integrability of H, the null fundamental forms x and x are no longer
symmetric. They can be both decomposed as follows

e X6 + & € @ty + R Lt X0+ & € Dtry 4 3
ab = =TI a = Ca T aby = Zr a = Ca T 5
Xab 9 XOab 5 Cab X T Xab Xab 9 XOab 5 Cab X T X,

where the new scalars “try, (“)trx measure the lack of integrability of the horizontal
structure. The null curvature components are also defined as in [Ch-KI|,

1 1 1 . 1,
Qap = Raaps;, fa = §Ra4347 éa = §Ra334, a,, = Razpz, p= ZR3434’ p= 1 Ra434-
The null structure and null Bianchi equations can then be derived as in the integrable
case, see chapter 7 in [Ch-KI|. The only new features are the presence of the scalars
@try, (“)trx in the equations. Finally we note that the equations acquire additional
simplicity if we pass to complex notationﬂ,

A=a+i*a, B:=p+i*8, P:=p+i’*p,

Bi=p+ !

1?1‘4.1)

590r rather the complexified vectors m = e; + ies and m = e; — ies.

60There are no smooth, global choices of a basis (eq,e3). The choice in Kerr, for example, is
singular at 6 = 0, 7.

61The dual here is taken with respect to the antisymmetric horizontal 2-tensor €.
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Frame transformations and choice of frames

Given an arbitrary perturbation of Kerr, there is no a-priori reason to prefer an horizontal
structure to any other one obtained from the first by another perturbation of the same size.
It is thus essential that we consider all possible frame transformations from one horizontal
structure (ey, e3, 1) to another one (e, e5, H') together with the transformation formulas
I' - I", R — R’ they generate. The most general transformation formulas between two
null frames is given in Lemma 3.1 of [K-S:GCMI]. It depends on two horizontal 1-forms
[, f and a real scalar function A and is given by

1
= (64 + flep + Z|f’2€3> ,

¢
e, (62 + %iafb) ey + %Lﬂ + (éfa + %'Wia) es, (1.4.2)
=t (13 L4 gl PUP Yoot (£ U0 ) et gl ).

The very important transformation formulas I' — IV, R — R’ are given in Proposition
3.3 of [K-S:GCMI].

Definition 1.4.1. A spacetime M, endowed with an horizontal structure (es,eq, H) is
said to be an O(€) perturbation of Kerr if all quantities which vanish in Kerr are O(e),
and if all other quantities stay bounded in an O(e) neighborhood of their correspondinﬂ
Kerr values.

The definition is, of course, ambiguous in the sense that any other horizontal structure
(e, €y, H') connected to (es, eq, H) by the frame transformation (1.4.2) with f, f = O(e)
and A = 14+0(e) is also an O(e)-perturbation of Kerr. Nevertheless the definition is useful
in that it brings to light the remarkable fact that the extreme curvature components are
in fact O(e?) invariant. This can be easily seen from the transformation formulas

ARl —ank (18- 18 )+ (B - 3718 °F) o4 3B 1) 0+ O

)\QQI

a+([BB— “f8°8)+ (1Bf — 5 B Do+ S(1BS) B+0(),

DN | —

see Proposition 2.2.3 of [K-S:Kerr].

52To make this precise, we also need a definition of functions (r,6) and of a complex 1-form J, see
section 77.



1.4. MAIN IDEAS IN THE PROOF OF THEOREM ?? 43

Remark 1.4.2. [t is this fact that allows us to treat o, o differently from all other quan-
tities. In addition to being less sensitive to frame transformations they do also verify
wave equations, the Teukolsky equations, which decouple, in linear theory, from all other
curvature components. See further discussion below.

The case of K(a,m), a # 0 presents an interesting new feature which can be described as
follows:

e To capture the simplicity induced by the principle null directions in Kerr it is natural
to work with non-integrable frames. We do in fact define all our main quantities
relative to frames for which all quantities which vanish in Kerr are of the size of the
perturbation.

e A crucial aspect of all important results in GR, based on integrable S- foliations,
is that one can rely on elliptic Hodge theory on each 2-surface S. This is no longer
possible in context where our main quantities and the basic equations they verify
are defined relative to non integrable frames. In our work we deal with this problem
by passing back and forth, whenever needed, from the main non-integrable frame to
a well chosen adapted integrable frame, according to the transformation formulas
mentioned above.

Renormalization procedure and the canonical complex 1-form J

We first notice that our main complex quantities introduced in (|1.4.1)) take a particularly
simple form in the principal null frame (1.1.4)) of Kerr:

2
q
~ o~ 2 A 2
X=X=0, trX =——ro, trX = ——, (1.4.3)
q ] q
aq . aq . aq .
z=5  H=-"%5 m--"T3
|q? lq/? lq?
where ¢ = r 4 1a cos #, and where the regularﬁ complex 1-form J is given by
- 7sin 6 - sin 6
3= —, Jo= —, (1.4.4)
lqi lqi

see sections 2.4.2 and 2.4.3 in [K-S:Kerr]. In particular, the following holds for the com-
plexified horizontal tensors of (|1.4.1]) in the principal null frame (|1.1.4)) of Kerr:

63Note that J is regular including at 6 = 0, .



44 CHAPTER 1. GENERAL INTRODUCTION

e the complex scalars P, trX and trX are functions of » and cos#,

e the non vanishing complex 1-forms H, H and Z consist of functions of r and cos @
multiplied by J,

e the traceless symmetric complex 2-tensors A, A, X and X vanish identically.

Based on that observation, for a given horizontal structure perturbing the one of Kerr, we
can define a renormalization procedure by which, once we havﬂ suitable constants (a, m),
suitable scalar functions (7, ), and a suitable complex 1-form J, and after subtracting the
corresponding values in Kerr computed from (a, m,r, 6,J) for all the Ricci and curvature
coefficients, we obtain quantities which are first order in the perturbation.

More precisely, once (a,m), (r,6) and J have been chosen, we renormalize the quantities
in (T.41)) that do not vanish in Kerr as follows"}

~

2 — 2 A — 2
P .= P+—?, trX =trX — — trX =trX + —,
q q

2
5 ! 5 . aldl _ - (1.4.5)
Z=2z-5 H=n-23 H=H+ 13

4] 4 4]

Principal Geodesic and Principal Temporal structures

In addition to the GCM gauge conditions on >, we need to construct a gauge on M
which relates the non integrable horizontal structure to the scalars (7, 0) and the complex
1-form J. Two such gauges were introduced in [K-S:Keri]:

e Principal Geodesic (PG) structure, which is a generalization of the geodesic foliation
to non-integrable horizontal structures,
e Principal Temporal (PT) structure, which favors transport equations along a null

direction.

The PG structurﬂ is well suited for decay estimates, but fails to be well posed. Indeed,
due to the lack of integrability of the horizontal structure, we cannot control the null

64The constants m and a are computed on our GCM sphere S,, see section r, 8 and J are chosen
on S, transported to ¥, and then to M. The horizontal structure is also defined first on ¥, and then
transported to M.

65The renormalization is written here in the case of a null pair (es, e4) with an ingoing normalization.

6Note that, in the integrable context of [K-S:Schw], the PG structure coincides with the standard
(integrable) geodesic foliation used there. Thus the PG structure, defined in [K-S:Kerr], is a suitable
generalization to the non-integrable case of perturbations of Kerr.
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structure equation@ without a loss of derivative. The PT structure, on the other hand,
is designed so that the loss of derivatives in the null structure equations, in the incoming
or outgoing direction, is completely avoided. Note however that the PT structure is not
well suited to the derivation of decay estimates on (“*Y M where r can take arbitrary
large values. In [K-S:Kerr] we work with both gauge conditions, depending on the goal
we want to achieve, and rely on the transformation formulas to pass from one to
the other.

In the outgoing normalization both the outgoing PG and PT structures consist of a choice
(€3, eq, H), with e, null geodesic, together with a scalar functions r, # and a complex 1-form
J such that e4(r) = 1, e4(0) =0, V4(¢J) = 0 where ¢ = r + iacosf. In addition:

1. In a PG structure the gradient of r, given by N = g*?95rd,, is perpendicular to H,

2. In a PT structure H = WJ, ie. H =0 in view of ({2.1.1] -

A similar definition of incoming PG and PT structures is obtained by interchanging the
roles of e3, e4. Note that both structures still need to be initialized. The outgoing PG and
PT structures of ¢*Y) M are both initialized on 3, from the GCM frame of >, while the
ingoing PT structures of ") M and (“?) M are initialized on the the timelike hypersurface
T, see Figure [B.1] using the data induced by the outgoing structures.

Control of the extreme curvature components A, A

It was already observed by Teukolsky that, in linear theory, the extreme components
of the curvature are both gauge invariant and verify decoupled wave equation@. In
our nonlinear context this translates to the statement that the horizontal 2-tensors A, A,
defined relative to an O(e) perturbation of the principal frame of Kerr, are O(e?)-invariant,
relative to O(e) frame transformationﬂ and verify tensorial wave equations of the form

(bA+L[A] = En(D,R),  [hA+ L[A] = Ex(T, R). (1.4.6)

Here [, denotes the wave operator on horizontal symmetric traceless 2-tensors, L and
L are linear first order operators and F R denote the linearized Ricci and curvature
coefficients. The error terms Err(I', R), Err(F R) are nonlinear expressions in I R.

57In integrable situation, like in the case of S-foliations, the Hodge systems on the leaves of the S-
foliation allows us to avoid the loss.

68See discussion in section

9This means that f, f, A — 1 are O(e) in the transformation formulas (1.4.2)).
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In linear theory, i.e. when g is the Kerr metric and the error terms are not present, these
equations have been treated by [DHR] in Schwarzschild™|and by [Ma] and [DHR-Kerr] in
slowly rotatingE] Kerr, i.e. |a|/m < 1. More precisely both results derive realistic decay
estimates for A, A. The methods are however not robust. Indeed, a crucial ingredient
in the proof, the Energy-Morawetz estimates, is based on separation of variables. The
control of A and A in perturbations of Kerr in [GKS-2022] contains the following new
features:

e Derivation of the gRW equation. The derivation of the generalized Regge-Wheeler
equations in Kerr, in [Mal and [DHR-Kerr|, is done starting with the complex,
scalar, Teukolsky equations, derived via the NP, or GHP formalism, by applying
a Chandrasekhar type transformation. In part I of |[GKS-2022] we extend their
derivation, using our non-integrable horizontal formalism, to perturbations of Kerr.
By contrast with [Ma], [DHR-Kerr]|, we derive gRW equations for the horizontal
symmetric traceless 2—tensorﬁ q,q, rather than for complex scalars. The main
difficulty here is to make sure that the non-linear error terms verify a favorable
structure.

o Nonlinear error terms. The control of the nonlinear terms and their associated null
structure was already understood in perturbations of Schwarzschild in [K-S:Schw]
and is extended to perturbations of Kerr in [GKS-2022].

o Energy-Morawetz. To derive energy-morawetz estimates for A, A in Part II of
[GKS-2022] we vastly extend the pioneering idea of Andersson and Blue [A-B],
based on commutations with T, Z and the second order Carter operator C, devel-
oped in the context of the scalar wave equation in slowly rotating Kerr, to treat our
tensorial Teukolsky and gRW equations in perturbations of Kerr.

Comments on the full sub-extremal range

Though the full sub-extremal range |a| < m remains open we remark that a large part
of our work does not require the smallness of |a|/m. This is the case for [K-S:GCMI]
[K-S:GCM2] [Shen] and [K-S:Kerr|. In fact the smallness assumption is only needed in
[GKS-2022], mostly in the derivation of the main Energy-Morawetz estimates in parts 1T
and ITI.

70See discussion in section [1.3.3
"1See discussion in section [1.3.4
™Derived from A, A, see Definition 5.2.2 and 5.3.3 in [GKS-2022].




Chapter 2

Introduction III.

In these lectures I will concentrate on the results proved in |[GKS-2022] more precisely on
the proof of Theorems M1 and M2 as well the curvature estimates of Theorem MS, which
were stated without proof in sections 3.7.1 and 9.4.7 of [K-S:Kerr].

2.1 Geometric set-up

2.1.1 Spacetime M

The geometric setting of our work consists of an Einstein vacuum Lorentzian manifold
(M, g) with boundaries equipped with the following:

1. A regular horizontal structure defined by a null pair (es, es), and the space H or-
thogonal to it. Note that the horizontal structure considered here is not integrabld']
The formalism of non-integrable horizontal structures, on which of our entire work
is based, is developed in full in Chapter 2 of [GKS-2022].

2. Two constants (a,m) with |a| < m, two scalar functions (r, ) and a time function
7 on M. In addition, M possesses a horizontal complex 1-formP|J, used to linearize
all horizontal 1-forms in perturbations of Kerr.

'In other words, the space H forms a non integrable distribution. The formalism was originally
mentioned in [[-K]| and developed in [GKS-2020].
2By this, we mean J = j +14 *j where j is a real horizontal 1-form. In Kerr this quantity is specifically

introduced in Definition

47



48 CHAPTER 2. INTRODUCTION II1.

3. Boundaries given by OM = AU X(7,) U X, U X(1) where
e A is the spacelike hypersurface given by
A = Mn{r=r(1-4)}, ryi=m+vm? — a2,

where 0y > 0 a sufficiently small constant.

e Y(1) and X(7,) denote the spacelike level hypersurfaces 7 = 1 and 7 = 7, with
7.>1land 1 <7 <7, 0on M.

e Y, is a uniformly spacelike hypersurface connecting (1) to X(7.).
4. Two spacetime regions ™) M and () M such that
M = (mt)M U (e:vt)./\/l7 (emt)M _ MT>T07 (mt)M _ Mr<ro’
where r9 > m is a sufficiently large constant.

Remark 2.1.1. Note that the spacetime M considered above does not require any specific
gauge conditions. Indeed, in this paper, we only provide gauge independent curvature
estimates. The control of Ricci coefficients is provided in [K-S:Kerr] where specific gauge
choices are made, see section 2.3 and 2.8 for the definitions of PG and PT structures
in [K-S:Kerr]. We also note that the scalar functions r,0 and T are not aligned with the
frame, i.e. unlike in the stability of Minkowski space, in [Ch-KIJ, and all other subsequent
workﬂ our frames are in no way adapted to foliations.

The function 7 is used to define the regions of integrations M(7y, 72) where 1y < 7 < 7.
We also define the following significant regions of M, see Definition ?7?.

Definition 2.1.2. We define the following regions of M:

1. We define the trapping region of M to be the set

7]

1
Mtrap =MnN {F < 5trap} ) 5trap -

1_0)

where T =T = r® — 3mr? + a*r +ma®. This is the region that contains all trapped
null geodesics, for sufficiently small a/m.

2. We denote th/p the complement to the trapping region Miyqp.

3. We denote Myeq := M N {r < ry(1+ 25red)}, for a sufficiently small constant
Orea > 0, the region where the red shift effect of the horizon is manifest.

3We note however that in the treatment of the Regge Wheeler equation in Chapter 10 of [K-S:Schw]
the foliations used are also not aligned with the frame.
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2.1.2 Ricci and curvature coefficients
Definition of the Ricci and curvature coefficients

We can define, with respect to the horizontal structure associated to (es, e4), connection
and curvature coefficients similar to those in the integrable case, as in [Ch-KI|,

1 1
Xab = g<Da€37 65)7 Xab = g(DCLe47 eb)a éa = §g<D3€3, €a), ga = ég(D4e47 €a>,
1 1 1 1
W= Zg(D3€3, es), W = Zg(D4€4, e3), n, = §g(D463, €a); Na = §g(D3€4,€a),
1
Ca = §g(Da€4, e3),
1 1 1 . 1,
Qo = Raaps,  fo = §Ra4347 ﬁa = §Ra3347 g = Razs, p= ZLR3434’ P = 1 Ri434,

and derive the corresponding null structure and null Bianchi equations. The non-symmetric
2 tensors x, x are decomposed as follows.

Rub - SOt X+ 2 €y @t Lt Loty k2w @
ab — a 5 9%ablT 5 Sa rx, = 5 9abtr 5 Sa rx,
Xab Xab 5 Oab X o Cab X Xav = Xap 5 Oab X 5 Cab X

where the scalars tr x, tr x and @try, (“)trx are given by
tr X = 6" Xab, try = 5“bxab, @try =€ Y, (“)trx =g X,

Remark 2.1.3. The non integrability of (es, e4) corresponds to the non vanishing @ try
and (a)trx. A well known example of a non integrable null frame, is the principal null

frame of Kerr for which “try and trx are indeed non trivial, see section .

2.1.3 Basic equations and complexification

The null structure and null Bianchi equations verified by the Ricci and curvature coeffi-
cients are derived in sections 2.2. These equations simplify considerably, see section 2.4,
by introducing complex notations:

A=a+i’a, B=p+i"3, Pw=p+i'p, B:=pF+i "8, A=a+i’q,

Xo=x+i1x, X:=x+i"x, H:=n+i"n, H:=n+i'n, Z:=(+i

Bi=g+itE, E=g+iTE
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where * denotes the Hodge dual. In particular, note that trX = trx — i @try, trX =
tr y—1 Dtry, while X and X denote the symmetric traceless part of X and X respectively.
Further useful simplifications of the equations can be obtained with the help of conformally
invariant derivative operators introduced in section 2.2.9.

- — 2 A — 2

P=P+ —, trX = trX———2, trX =trX + —,

Z;—Z—%g, ﬁ:—H-%g, E;—ﬂ+%3.
q

Notation (I'j;,T',) for Ricci coefficients

We group the linearized Ricci coefficients in two subsets reflecting their expected decay
properties, see section 4.1.2 [GKS-2022]:

Fg = {t?)/(a )?7 t?X, E7 Z? &37 5}7
I-‘b = {X? ﬁ; W, E}

Remark 2.1.4. In fact, (I'y,T,) also include the linearization of the derivatives of the
scalar functions (r,cos ), and of the complex horizontal 1-form J, see section 4.1.2.

The justification for the above decompositions has to do with the expected decay prop-
erties of the linearized components in perturbations of Kerr, with respect to 7 and r. See
discussion in section 2.2.3] below.

More precisely,

< . _9 _1/9— 1 —1—
‘D—ng] < emin {r 212 00ee =il 5d“},

(2.1.2)
}OSSFb‘ < er~ byl 0dec

for a small constant d4e. > 0, where 0 = {V3,7V4, 7V} denotes weighted derivatives, and

e > 0 is a sufficiently small bootstrap constant. We note also that the curvature com-

ponents A, rB behave in the same way as 'y, while T(ﬁ, B, A) behave like I'y. Moreover

A, B get the optimal decay in powers of r, i.e.

41,1B] S 7120w
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2.2 Main theorems

We refer to section 3.4 of [K-S:Kerr| for a precise statement of our Main Theorem con-
cerning the stability of Kerr and to section 3.7 of [K-S:Kerr| the main steps in the proof.
Here we concentrate on a simplified set of assumptions needed for the proof of Theorems
M1, M2 and the curvature estimates for Theorem MS.

2.2.1 Smallness constants

The following constants are involved in the statement of Theorems M0-MS, see section
3.4. in [K-S:Kerr]:

e The constants mg > 0 and |ag| < my are the mass and the angular momentum of
the Kerr solution relative to which our initial perturbation is measured.

e The integer kjqrg. Which corresponds to the maximum number of derivatives of the
solution.

e The size of the initial data perturbation is measured by ¢, > 0.

e The size of the bootstrap assumption norms are measured by € > 0.
e 15 > 0 is tied to IM N =DM = {r = ry}.

e The constant dy tied to the definition of A= {r =r (1 —dy)}.

® )4 is tied to decay estimates in 7 for the linearized quantities of section ?7.

These constants are chosen such that

0 < 634, Odec < min{mg — |ao|, 1},

1 2.2.1
ro > max{mo, ]-}7 klarge > 5_ ( )
dec
Then, € and ¢y are chosen such that
. 1 1
0 < €, € K min | dgec, —, ——, Mo — |ag, 1 ¢, (2.2.2)
To klm’ge

€0, € < |ag| in the case ag # 0, (2.2.3)
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and

(=X

(2.2.4)

Also, we introduce the integer kg4 which corresponds to the number of derivatives for
which the solution satisfies decay estimates. It is related to kigrge by

1
Esman = \‘éklargeJ + 1 (225)

From now on, in the rest of the paper, < means bounded by a constant depending only
on geometric universal constants (such as Sobolev embeddings, elliptic estimates,...) as
well as the constants

Mo, Go, 5?—[7 5dec7 70, klarge>

but not on € and ¢q.

2.2.2 Initial data assumptions

The initial data norm denoted by J;, measures the size of the perturbation from Kerr at
7 =1, for the top k derivatives of the curvature tensoxﬂ

Definition 2.2.1. We define the following initial data norms on 3,

Jp = sup 3108 <H0k (A, B)HLQ(S) + HDkBHL2(S)>
SC¥q . . i (226)
TR (T " Pll o)+ 7[% Bl 25 + [l2 AHLQ(S))'

1

In [GKS-2022] we make the following assumption on the control of the initial data norm{?]
jklarge+7 S €0- (227)

The bound ({2.2.7) will be used both in Part II and Part III as assumptions on the initial
data.

4The definition used here differs slightly from the one in Definition 9.4.9 in [K-S:Kerr], but easily
follows from it by a local existence argument.

®The original assumption on initial data in [K=S:Kerr] is stated for kjq,ge + 10 derivatives, see (3.4.7)
in that paper, in a given frame of an initial data layer £(ag,mo). The control in the frames used in this
paper are obtained in Theorem MO of section 3.7.1 in [K-S:Kerr], and in Theorem 9.4.12 in [K-S:Kerr]
for kigrge + 7 derivatives.
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2.2.3 Quantitative assumptions on the spacetime M

The quantitative assumptions made in this article depend on a large positive integer
kr, representing the maximal number of derivatives for the linearized Ricci and curva-
ture coefficients (I'; R) which are required in the proof. There are in fact two types of
assumptions:

1. For the proof of Theorem M1 and M2 of [K-S:Kerr|, we rely on the following point-
wise quantitative assumptions on I'y and I'y, for k& < ki,

DSkFg] <,

(TZT%+ﬁdm +_r71+6@c)

(2.2.8)
r71+6dec|D§ka| <e.

for a small constant dge. > 0, where 0 = {V3, 7V, rV} denotes weighted derivatives,
and € > 0 is a sufficiently small bootstrap constant.

2. For the proof of the curvature estimates of Theorem M8 of [K-S:Kert|, we introduce
weighted energy-Morawetz type norms for curvature and Ricci coefficients, denoted
respectively by SRy and &, see section 13.5 for the precise definition. We then rely
on the following quantitative assumptions on Ry and &y

Re + 6 <, 0<k<kyp, (2.2.9)
as well as the following pointwise quantitative assumptions on I'y and I'y

r2 T, | + r[ofTy| < i 0<k< b (2.2.10)

trap

where the scalar function 7,4, defined by

1+7 on My,
Ttrap *= \ 1 on /\/ltr (/p .

The integer k;, is chosen as follows:

e For the proof of Theorem M1 and M2 of [K-S:Kerr] (restated in Theorem and
below), we choose k1, = kgney+120. Then, follows by interpolation from
the bootstrap assumptions (3.5.1) (3.5.2) in [K-S:Kerr] together with the construc-
tion of the global frame in section 3.6.3 of [K-S:Kerr], where (3.5.1) in [K-S:Keri]
are bootstrap assumptions on boundedness for k < kj,¢e derivatives, and (3.5.2) in
[K-S:Keri| are bootstrap assumptions on decay for k < kg,q derivatives.
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e For the proof of the curvature estimates of Theorem M8 (see Theorem below),
we choose ki, = Kjgrge + 7. Then, follows from the bootstrap assumptions
(9.4.20) of [K-S:Ker1] together with the construction of the global frame in section
9.4 of [K-S:Kerr]. Also, is a non sharp consequence of the bootstrap as-
sumptions (9.4.22) in [K-S:Kerr] together with the construction of the global frame
in section 9.4 of [K-S:Keri].

2.2.4 Statement of the main theorems

Recall that the nonlinear stability of the Kerr family for small angular momentum, i.e
la|/m < 1, is stated in the Main Theorem in section 3.4 of [K-S:Kerr|. The proof is
divided in a sequence of nine intermediary steps, called Theorem M0-MS, see section 3.7
in [K-S:Kerr]. The goal of the present paper is to provide the proof of Theorems M1 and
M2 as well the curvature estimates of Theorem M8, which were stated without proof in
Theorem 9.4.15 of [K-S:Kerr] and all involve curvature estimates of hyperbolic type.

Theorems M1 and M2

In what follows, we restatd’] Theorem M1 and M2, see section 3.7.1 in [K=S:Kerr].

Theorem 2.2.2 (Theorem M1 in [K-S:Kerr]). Assume that the spacetime M as defined
m section verifies the quantitative assumptions , and the assumption ([2.2.7))
on initial data. Then, if g > 0 is sufficiently small, there exists depira > Ogec Such that we
have the following estimates in M, for all k < kp — 20,

sup <7271+6ema +r3(2r + T)%+5esz“> <|DkA| + T|Dk_1V3A|) < €o-
M

Also, the quantity q introduced below, see section |2.5.1], satisfies, for all k < kp — 20,

/ |V3Dk‘—1q|2 5 EST—Q—Q(Sextra.
Zu(27)

Theorem 2.2.3 (Theorem M2 in [K-S:Kerr]). In addition to the assumptions of Theorem
we make the following assumptior]| on ¥,

I%il’l?“ > §,eq i ot (2.2.11)

6 A more precise statement is given in Theorems ?? and ?7?.
"This is the dominant condition of 7 on ¥, see (3.4.5) in [K-S:Kerr].
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for some small universal constant 6, > 0. Then, we have the following decay estimates
for A along 3,

AP S e

max 72+ 20dec
0<k<kp—40 [y,

Both results are proved in Part II of [GKS-2022].

Curvature estimates in Theorem M8

Theorem M8 in [K-S:Kerr| is proved through an iteration procedure described in section
9.4.7 of [K-S:Kerr]. The control of the Ricci coefficients have been derived in Chapter 9
of [K-S:Kerr]. In the present paper, we derive the remaining estimates for the proof of
Theorem M8, i.e the estimates for curvature stated in Theorem 9.4.15 of [K-S:Kert|. To
this end, we introduce weighed L? type norms R, and &, respectively for curvature and
Ricci coefﬁcient, and decompose Ry, and &, in their restrictions IR, (") to () M
and #)R, (2@ to (¥ M, see section 13.5 in [GKS-2022] for the precise definition of
these norms. In view of the results in Chapter 9 of [K-S:Kerr], the proof of Theorem 8
reduces to the following result on the control of the curvature norm *Ry.

Theorem 2.2.4 (Theorem 9.4.15 of [K-S:Kert]). Assume that the spacetime M as defined

in section |2.1.1| verifies the quantitative assumptions (2.2.9) (2.2.10) for ki, = Kigrge + 7,
and the assumption (2.2.7) on wnitial data. Let kgpay —1 < J < kigrge +6. Then, we have

the following boundedness estimates for all components of curvature

Ry ) Sret <€J((’5J+1 +Ryp1) + €5+ 6(2)> + |a|ri®7,,

27 3 1
+ry 67, (60 +vervV G4+ %J—i-l) 27

(ext)¢ya2 34+0p (int)sn2 —6B (ext) g2 2
Ry Sro R+ 1o &1t o

where the constant in < is independent of ro and €y is such that &5+ R; < €.

Part III of [GKS-2022] is entirely dedicated to the proof of Theorem [2.2.4]

8As well as derivatives of (r,cos ) and J.
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2.3 Derivation and estimates for the gRW equations

2.3.1 Teukolsky and gRW equations in our approach

In section we derive, using the formalism developed in the previous sectiond’] the
nonlinear version of the Teukolsky equations for A and A of the form

LIA] = Err[L[A]],  L[A] = Exr[[L[A]], (2.3.1)

where L, L are second order tensorial wave operators on our spacetime M, and where
Err[L[A]], Err[ £]A]] are nonlinear errors depending on all linearized Ricci and curvature
coefficients.

Just as in linear theory, to be able to control A, A we need to perform transformations
q = q[4], 9 = q[A], which take solutions A, A of the Teukolsky equation into
solutions of nonlinear, tensorial, versions of Regge-Wheeler equations, which we call gRW
equations.

In the setting of polarized perturbations of Schwarzschild [K-S:Schw|, the derivation of
the RW equation fOIEGI q was performed using null frames, which had the feature to be
both adapted to an integrable foliation and diagonalize the curvature tensor up to error
terms. One could thus rely on the geometric formalism developed in the context of the
proof of the nonlinear stability of Minkowski space [Ch-KI|. In Chapter 2 of [GKS-2022]
we rely on an extension of the formalism of [Ch-KI| which allows for non integrable null
frames. Our results on the derivation of gRW in perturbations of Kerr are obtained in
Chapter 5 of [GKS-2022] and can be summarized as follows.

Theorem 2.3.1. There exist complex 2 tensors q,q € $2(C) derived from A, A as follows,

0@ (V3 OV3A+ C1 OV3A+ CrA),

2.3.2
7¢° (VL OVA+ CLOVA+ CLA), o

@ <
Il

9This follows from the complex form of the null Bianchi identities, see Proposition [3.4.17
1%Note that [K-S:Schw] did not rely on g.
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where ¢ =1+ iacosf OV, OV, are conformal derivatives, see section 7?7, and

(@) 52
Cy =2try —2 X — 43 @Dry,
1 3 (a)t 4 (a)t 3
Cy = §t7’X2 — 4(a)m_<2 + 277 %( +1 (—2trx(“)t7x+4 ; X ,
TX s (2.3.3)
(@) gy 2
C,=2tryxy—2 — 4 Dy,
1 3 @ty @y
Cy=-tr?—4@tn2 4+ 20 i opy @y g X
2 2 try? trx
which verify gRW equations of the forn{"
. 4 0 .
[l — i~ Vpq — Vg = Ly[A] + Err{Tsq),
I
4a cos 6 (2.3.4)
g+ i1 Vra — Va = Lyl4] + ErrCh.

with T an appropriately defined deformation of the stationary Killing v-field in Kerr. The
potentials V,V_ are real and positive and the terms Ly[A], Lq[A] are linear in A, resp A and
have have important specific properties described in detail in sections 5.2.8 and 5.3.4 of
[GKS-2029]. Finally the error terms Err{[aq], Err{Uaq] depending on all linearized Ricci
and curvature coefficients are acceptable error terms, i.e. they verify important structural
properties, reminiscent to the null condition.

Remark 2.3.2. Due to the presence of the linear terms in A, resp. A, on the right
hand side of (2.3.4), one has to view the wave equations in (2.3.4) as coupled with the

defining equations for q, q given by (2.3.2)), that is coupleaE| with second order transport
type equations in A, resp. A.

Remark 2.3.3. Note that, in the case of Kerr, the corresponding gRW type equations in
[Md] are complez scalars Y verifying the equation

Oam®™ +ia c(r,0)000™ + V (r,0)01*) = aL (o). (2.3.5)

These scalars are connected to our tensorial quantities q, q via the relations Yt = qler,e1),

Yl = q(ey,e1). The equations ([2.3.5) can be obtained by projecting our tensorial equa-
tions (2.3.4). Note however that the projection modifies the equations by the appearance
of Christoffel symbolﬁ of the horizontal fmme{ﬂ.

"Here [J, is the covariant wave operator for horizontal 2-tensors, see section 2.3. in the paper.
12This is different from the case of Schwarzschild, see [K=S:Schw|, where these equations decouple.

13 With O, the Kerr D’Alembertian, ¢,V are real function of r,6 and Li(a[i2]) lower order terms.
HGingular on the axis, i.e. at =0, .

15See Section 5.2.2 of the paper for a discussion of the projection and the relation with equation .
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2.3.2 RW model equations

The most demanding part in the analysis of the gRW equations is to derive global
Energy-Morawetz type estimates for (g, A) and respectively (g, A). To do this, it helps
to analyze first the reduced equations in which the right hand side of both equations are
treated as sources. Taking also v = R(q), ©» = R(q) we are led to the real RW model
equations N B

dacosf | 4A
D2¢—V¢:—W VTw‘i‘N, V:m,
. 4a cos 6 4A (2.3.6)
O — Vip = ——— "V + N, Ve ——— .
W VE= T Vet (r* + a?)|q|?

A significant part in the proof of Theorems [2.2.2 is to derive the following result for
¥, 1.

Theorem 2.3.4. The following estimates hold true for solutions 1,1 € sy of the wave
equations (2.3.6) on spacetime region M(11,73), for alld <p<2—0§ and 2 < s < ky,

BERS6)(m, ) S BEf)(m) + N2, N](r ), (237)
BEF,[)(m1,72) S Ep[](11) + N[, N|(11, 72), (2.3.8)

where
BEF [{](T1,72) = es[up ]E;[w] (1) + By [Y)(11, 72) + F [¥](11, T2)- (2.3.9)

The energy flux norms E3[¢], F[¢], bulk norms Bp[+)] and source norms N, with p
referring to 7 weights and s to the number of derivatives, are defined in section 7?7 of
these notes. For the sake of this introduction it suffices to take a closer look at the crucial

bulk terms B;, which degenerate at the trapped set My.qp, see Definition [2.1.2]
Definition 2.3.5. For 0 < p < 2 we define, with 0 = (rVy,rV,V3), the bulk norms
By[](m1,72) = Y < Bp[0*Y]

Bp[)(11,72) = MOT[¢](71,T2)+/

M 4m (71,72)

Mor{y|(m1,m2) = /M( )T_2|V§1/)|2+T_3|¢|2+/ (7«—2|v3¢|2+r—1|v¢|2).

M (11,72)
tr%)

Pl + 7 (oul? + 2.
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Figure 2.1: The spacetime region M(7,72) = M N{m <7 < 7} between the spacelike
hypersurfaces ¥; = X(71) and Xy = X(73), with the grey region denoting the trapped set.

The important thing in this definition is that B,[¢)] controls the spacetime integrals of
|V #0|? and [¢|* everywhere and all other derivatives away from the trapped set.

In addition, we also derive estimates for the quantity @E = r?(eq) + #d)) for which one
can prove stronger r” estimates{ﬂ see Theorem ?77.

The content of the section below are to be found in the Introduction to [GKS-2022]

2.4 Main steps in the proof of Theorems M1 and M2
2.5 Main ideas in the proof of Theorem (2.3.4

2.6 Main ideas in the proof of Theorem

16These results are the analog in perturbations of Kerr, to Theorem 5.17 and Theorem 5.18 of
I[K-S:Schw] for perturbations of Schwarzschild. They are based on improved r? weighted hierarchy first
introduced in [AArGal.
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Part 11

Formalism and derivation of the
main equations
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Chapter 3

The geometric formalism of null
horizontal structures

We summarize the content of Chapters 2 in [GKS-2022] which provides the general for-
malism used in our stability of Kerr papers. The formalism extends the one used for
perturbations of Minkowski space [Ch-KI| to perturbations of Kerr spacetimes. Such
formalism can be adapted to any Lorentzian spacetime possessing a null pair and not
necessarily foliated by surfaces. The formalism in this section is very general and does
not rely on the Einstein equation.

3.0.1 Null pairs and horizontal structures

Let (M, g) be a Lorentzian spacetime. Consider an arbitrary null pair e3 = L, eq = L,
i.e.
g(€37 63) = g(e47 64) = 07 g(€37 64) = —2.
Definition 3.0.1. We say that a vectorfield X is (L, L)-horizontal, or simply horizontal,
of
g<LvX) = g(L7X> =0.

We denote by O(M) the set of horizontal vectorfields on M. Given a fized orientation
on M, with corresponding volume form €, we define the induced volume form on O(M)

by,

€(X,Y):==-€(X,Y,L,L). (3.0.1)

DN | —

63
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Given a null pair (L, L), the horizontal vectorfields O(M) define a horizontal distribu-
tion, i.e. a sub-bundle of the tangent bundle T(M) of the manifold. In the standard
terminology used in differential topology, a subbundle £ C T(M) of the tangent bundle
is said to be integrable if for any vectorfields X and Y taking values in F, the Lie bracket
[X, Y] takes values in E as well. We recall that Frobenius’ theorem states that a subbun-
dle FE is integrable (or involutive) if and only if the subbundle E arises from a regular

foliation of M, i.e. if locally the subbundle E can be realized as the tangent space of a
submanifold of M.

In the context of Lorentzian spacetimes, we are often interested in foliations of the man-
ifold given by compact surfaces S, called S-folaitions in [Ch-KI|]. We therefore formulate
the following definition.

Definition 3.0.2. We say that the horizontal structure O(M) is integrable if there exists
a foliation by compact surfaces S, i.e. an S-foliation of M, such that the horizontal
vectors in O(M) at every point coincide with the tangent space of S, i.e. O(M) = T(S).

Here we will work with general, not necessarily integrable, horizontal structures.

Clearly, any linear combination of horizontal vectorfields is again horizontal. However, the
commutator [X, Y] of two horizontal vectorfields may fail to be horizontal. Such failure is
precisely related to the existenceﬂ of an S-foliation. More precisely, if O(M) is integrable
according to Definition [3.0.2] i.e. admits an S-foliation, then X,Y € O(M) implies that
[X.,Y] € O(M). Conversely, if O(M) is not close under the Lie bracket, then it can not
be foliated by compact surfaces.

Given an arbitrary vectorfield X we denote by (X its horizontal projection,
1 1
WX = X+ og(X, L)L+ 38X, I)L

Definition 3.0.3. A k-covariant tensor-field U is said to be horizontal, and denoted
U € Ox(M), if for any vectorfields X1, ... Xy we have,

UXy,. .. Xp) =U(MX,, ... WXy).

We can define the projection operator,
1
o = g + 5(_L“LV + LM LY).

Clearly Hgl‘[ﬁ =TII%. An arbitrary tensor U, is horizontal, if

1---0m

I8 19 Us, g = Unyooom-

LConsistent to Frobenius’ theorem.
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Definition 3.0.4. For any horizontal X,Y we deﬁneﬂ
1XY) = g(X)Y) (3.0.2)

and

{ X(X,Y) = g(DxL,Y), (3.0.3)

X(X,Y) =g(Dx L,Y).
where D denotes the covariant derivative of g.
Observe that x and x are symmetric if and only if the horizontal structure is integrable.
Indeed this follows easily from the formulas,

X(X,Y) = x(Y,X) = g(DxL,Y)—gDyL, X)=—g(L,[X,Y]),
X(X,Y)—x(Y,X) = g(DxLY)-gDyL,X)=—g(L,[X,Y]).

We can view v, x and x as horizontal 2-covariant tensor-fields by extending their definition
to arbitrary vectorfields X, Y according to,

YX,Y) = y(Mx, My)
and

Y(X,Y) = x(MWx, My), X(X,Y) = (WX, M),

Given a general 2-covariant horizontal tensor U we decompose it in its symmetric and
antisymmetric part as follows,

OU(X,Y) = =(UX,Y)+U(Y,X)),

N =N =

@WU(X,Y) = - (UX,Y)-U®Y,X)).

Given a horizontal structure defined by e = L, e, = L we associate a null frame by choos-
ing orthonormal horizontal vectorfields ey, e such that y(e,, €5) = dap. By convention, we
say that (ey, ep) is positively oriented on O(M) if,

€ (e1,e2) =€ (e1,€9,63,64) = 1. (3.0.4)

Remark 3.0.5. We note that the particular choice of an orthonormal basis for H 1is
immaterial. All the quantities we work with are tensorial with respect to the horizontal
structure.

2In the particular case where the horizontal structure is integrable, « is the induced metric, and x and
X are the null second fundamental forms.
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Given a covariant horizontal 2-tensor U and an arbitrary orthonormal horizontal frame
(€q)a=12 We have,

U = %(Uab + Upa), @y 4 = %(Uab ~ Uba)-
Definition 3.0.6. The trace of a horizontal 2-tensor U is defined by
tr(U) == 6%Uy, = 0% U 4. (3.0.5)
We define the anti-trace of U by,
@tr(U) :=€® Uy, =€ DU . (3.0.6)

Observe that the first trace is independent of the particular choice of the frame ey, es.
On the other hand, for fized es,es, ‘Dtr depends on the orientation of ei,es. Also, by
interchanging es, eq, Ytr changes sign.

A general horizontal 2-tensor U can be decomposed according to,
(5) (@) 54 L L @
Uwp = Uuw + Uwp=Uuw + §5ab tl”(U) + 5 Cab tl"(U). (307)

where U denotes the symmetric traceless part of U.

Definition 3.0.7. We introduce the notation

try = tr(x), Wtry:= Ditr(y), try = tr(x), (“)trx = (“)tr(x). (3.0.8)

The quantities X, tr x and X, trx are called, respectively, the shear and expansion of the

horizontal distribution O(M). The scalars @ty and (“)tm_( measure the integrability
defects of the distribution.

Accordingly, we decompose x, x as follows

R 1 1 ()
Xab = Xab Tt §6abtrx + 5 Cab tT’X,

Xop = Xgp T 500X+ 5 €ap X

The scalars tr x, trx are called expansions and x, x are called the shears of the horizontal
structure.

In what follows we fix a null pair e3, ¢4 and an orientation on O(M). Consider the set of
all smooth k-horizontal tensorfields { = &,, 4, which are fully symmetric and traceless,
i.e.

6 = 5(041...(lk)? ’Yaiajgal...ai...aj‘..ak = O
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Definition 3.0.8. We denot(ﬂ by O (M) the set of all horizontal tensor-fields of rank k
on M. We denote by sg = so(M) the set of pairs of scalar functions on M, s1 = s1(M)
the set of horizontal 1-forms on M and for, k > 2, s,(M) the set of fully symmetric trace-
less horizontal tensors of rank k. In particular so = s9(M) denotes the set of symmetric
traceless horizontal 2-tensors on M.

In particular, try, tr x, @try, (“)trx € 50 and X, X € s2. Any horizontal 1-form belongs
to $7.

Definition 3.0.9. We define the left and right duals of a horizontal of tensors £ € sy,
k=12

*ga =Cab &N 5* a — gb Cbas
( *g)ab =Cqc gcby (é*)ab = fac Ceb -

Lemma 3.0.10. Given £ € 19, we have
*( *5) = _57 *5 - _5*'
Proof. Straightforward verification. m

Given &, 7 € s; 2 we define all the possible dot products between then

§"Na if §nes

§ Nab, if {€s5, neEs

En=4q &an’, if £€s, nes
fabﬁaba if &, 7m € s,.

L Sy, i §m E 52

Lemma 3.0.11. Given £,n € s;2 we have,
="

Proof. Straightforward verification. O

Lemma 3.0.12. Given £, € s5 we have, with respect to an arbitrary orthonormal basis,

éacncb + nacfcb = 5ab€ -1

3Using the convention of raising and lowering indices we make no distinction here between covariant
and contravariant tensors.
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Proof. Straightforward verification using an orthonormal basis ey, es. m

Definition 3.0.13. Given &,n € 51 we denote

5 no= 5abfa77b7
5 A n = Eab ganba
(E@Map = Eamp + &N — 0ab - 7).

Given £ € s1, n € 59 we denote

(f"f?)a = 5bcfbnac~

Given £, n € 55 we denote

(5 A n)ab = Eab gacncb-

Lemma 3.0.14. Given &,n € sq,
o =ER -, t(E8n) = R, R n=—E&n.
Proof. Write

@ = (E&n)a = &n + &,
(f@) Mu = &) — &) = &me + Sen,
(") = ("im — (TE)ame = Lo + &,

(E@me = &amp— &,
(5@ Mz = & "+ & m=—&m + Ean,
("6 = “&mp+ “&m o= —&im + .

Hence,

"(ERn) = *E®N =R 1.

Lemma 3.0.15. Given &,n € s1, u € 59 we have

E&(n - u) +n®(& - u) = 2(£ - n)u.

Proof. Straightforward verification using direct verification as above. m
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3.0.2 Horizontal covariant derivative

Given X,Y € O(M) the covariant derivative DxY fails in general to be horizontal. We
thus define the horizontal covariant operator V as follows,

VxY = ®W(DyY)=DyxY — %X(X, Y)L — %X(X, Y)L. (3.0.9)
Proposition 3.0.16. For all X, Y € O(M),
VxY —VyX = [X,Y]- @y(X,Y)L - “x(X,Y)L
= [X,Y]— % (@try L+ @try L) € (X,Y).
In particular,
WX, Y] = %(<a>t@L+ @ry L) € (X,Y). (3.0.10)

For all X,Y,Z € O(M),
Z9(X,Y) = Y (V2 X,Y) + (X, V5Y).

Remark 3.0.17. In the integrable case, V coincides with the Levi-Civita connection of
the metric induced on the integral surfaces of O(M).

Given a general covariant, horizontal tensor-field U we define its horizontal covariant
derivative according to the formula,

VUXy, ... X)) = Z(U(Xy, ... Xi)) — U(VzX1,...X3) —
— U(Xy,...V2Xp).

Given X horizontal, D;, X and D ;X are in general not horizontal. We define VX and
V X to be the horizontal projections of the former. More precisely,

VX = WD X)=D,X —g(X,D, L)L —g(X,D,L)L

=

ViX = (h)(DLX) =D X —-g(X,D,L)L —g(X,D,L)L

We can extend the operators V, and V  to arbitrary k-covariant, horizontal tensor-fields
U as follows,

VoUXy, .., X)) =LUXy, ..., X)) — UVLXy,. .. Xg) —
o= U(Xy,... VX,

VoUXy, . Xk) = LUXy, .., X)) — U( )
- U( )

The following proposition follows easily from the definition.
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Proposition 3.0.18. The operators V, Vi and V1 take horizontal tensor-fields into
horizontal tensor-fields. We have,

Vy=Vy=Vy=0. (3.0.11)

We now extend the definition of horizontal covariant derivative to any X € T(M) in the
tangent space of M and Y € O(M).

Definition 3.0.19. Given X € T(M) and Y € O(M) we define,
DyY = ®W(DyY).

Given an orthonormal frame ey, e3 € O(M) we write

D,uea = Z (A,u)ba €b, (Au)aﬂ = g(Dueﬁ7 eoc)‘

b=1,2

Definition 3.0.20. Given a general, covariant, S-horizontal tensor-field U we define its
horizontal covariant derivative according to the formula,

DxU(Yy,... V) = XUV, ...Y,) — UDxY;,...Y:) —...—U(Y1,...DxYs),
where X € T(M) and Yi,...Y), € O(M).
Proposition 3.0.21. For all X € T(M) and Y1,Ys € O(M),

Xh(Y1,Ys) = h(DxY3,Ys) 4+ h(Y:, DxYa).

Proof. Indeed,

Xh(Y1,Ys) = Xg(¥i,Ys) = g(DxY1,Ys) +g(V1,DxYs) = g(Dx Y1, Ya) + g(Y1, DxYs)
h(DxY1,Ys) + h(Y1, DxY3)

as desired. O

We consider tensors Ty (M) @ O;(M), i.e. tensors of the form Uy, ., 4,4 for which we
define,

DuUul...uk,al...al = quljl...I/k,al...al - UDuyl...Vk,al...al T T Uyl...Duuk,al...al

v1..vp,Dyar...a; v1...V,01...Dyag

We are now ready to prove the following.
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(D,D, = D,D,)¥, = Ry, V" (3.0.12)

where, with connection coefficients (Ay)py = g(Daes, €5),

. 1
Rab,uzz = Rabuu + _Bab,uu

2 (3.0.13)
B = (A)3a(Aw)ba + (Ap)aa(A)pz — (A)3a(Ap)ba — (Ay)aa(Ay)b3-
More generally, for a mized tensor ¥ € T1(M) ®@ O1(M), we have
(D,D, —D,D,)¥y, = Ry7 T, + R, Ty
with an immediate generalization to tensors W € Tj(M) ® Oy(M).
Proof. See proof of Proposition 2.1.27 in [GKS-2022]. O

Remark 3.0.23. Note that the tensor Bay, is anti-symmetric in both puv and ab.

Corollary 3.0.24. Let X, Y be arbitrary vectorfields on M and U € O1(M) an horizontal

tensor. We havd’
(VxVy = VyVx)U = Vixy)U + R(X,Y)U

with an immediate generalization to U € Oy (M).

Proof. We have

VyVxU, = (Y *Dy)(X"D,)U, = Y*X*D,\D,U, + (Y D,)(X*)D,U,,
VxVyU, = X"Y*D,D,\U, + (X"D,)(Y")DyU,.

Hence,

(VxVy - VyVx)U, = Y*X*(D,D, —D,D,)U, + (Dx(Y*) — Dy(X*))D,U,
XuYVRab,uuUb + D[X,Y} Ua7

as stated.

4 With an immediate generalization to tensors ¥ € O;(M).
SHere (R(X,Y)U)q i= XPY "Ry UL
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3.0.3 The Gauss equation

Note that in the case of a non-integrable structure, we are missing the traditional Gauss
equation which connects the Gauss curvature of a sphere to a Riemann curvature com-
ponent. In what follows we state a result which is its non-integrable analogue.

Proposition 3.0.25. The following identity holds true.

1
VaViXe = ViVaXe = Ruw X" + 5 € (@t Vs + @i Va) X,

. (3.0.14)
- 5 <XaCde + Xachd - Xbcxad - XbCXad) Xd>
where Regay denotes the Riemann curvature of (M, g).
Proof. See the proof of Proposition 2.1.41 in |[GKS-2022]. H

Remark 3.0.26. We note that (3.0.14) can be derived from Corollary|3.0.24 according
to which, relative to an arbitrary frame e,,

(VY = V. V)X = Vi, e X + Ry, e,)X

with R = R + %B and B defined in (3.1.39). The Gauss formula follows then easily by
evaluating the components Begay of the tensor B and the term Vi, ¢ X.

We now specialize the Gauss equation (3.0.14)) to tensors.

Proposition 3.0.27. The following identities hold true.

1. For a scalar i:

Vo, Vil = (%(<“>trxv3+<a>m_<v4)¢> Eap - (3.0.15)

2. The only non-vanishing component of Bupeq 1S given by

(3.0.16)

<)

1 1 ~
Bi212 = —Bigo1 = Boio1 = —§t7” Xtrx — B (a)tTX (a)”?_("’ X

3. For € s fork=1,2,

1
Vo, Vit = (§(<a>trxv3+ @tV +k WK *¢> €w  (3.0.17)

where

1 1
WK = ——trxtrx—z(“)trx(a)tTKjL

1 Rayisi.  (3.0.18)

1
XX~ 7

N | —
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Proof. The case of scalars can be easily checked directly.

We consider below the case ¢ € s5. From Corollary [3.0.24] applied to 1 € s9, we have

1 1 1
(Vavb - vaa)wst = 5 Cab ((a)trXV;g + (a)trXV4)Z/Jst + éBsdabwdt + §Btdabwsd
+ deabl/}dt + thab¢sd
where, by definition of B given in (3.1.39)),
Bcdab .= Xbc&ad + Xchad - XGCde - XaCde- (3019)

Note that by the symmetries of B, all components of B4 vanish except for Bis;5. We
have

Bioiz = —xuX,, — X X22 T X21X, T X, Xa2

1 ~ 1 - 1 ~ 1 ~
= — (Etrx + XH) (?rx + X22> — (?crx + Xu) (itrx + ng)

1 (a) % 1 (a) v 1 (a) - 1 (a) ~
+ 3 trx + X21 5 trz—l—xn + 5 trX+K21 3 trxy + Y12

1

1 a a S Y S oo S o
= —§t7“ Xtrx — 5 @try )UX — X11 X5y T X22X;; T X21 X5 T X12X,,

1 L @iy @tpy + 5.9
= —§t7"xtrx—§ trx “Utry + X - X

This implies for ¢ € s:

1
Vi Vau = S (Wi Vs + Dy Viy

1 1 1
— <§tr Xtrx + 3 @try (“)trx - X X+ §R3434) )
as stated. The case 1 € s; can be treated in the same manner. O

Remark 3.0.28. The quantity " K defined by becomes the standard Gauss cur-
vature in the case of an integrable structure. We note also that the value of WK for the
standard non-integrable structure (induced by the standard principal null directions, see
C’hapter@) of Kerr is given by the formula

" e — 4+ a*r?sin® 6 — 4ﬁa2r cos? § — a* cos? 9‘
40

Here is a more general version of Proposition [3.0.27
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Proposition 3.0.29. The following identity holds true for any horizontal tensor v € Oy
and set of horizontal indices [ =11 .. .1

1
[Va: Vilthr = <§((a)tTXV3 + (a)tTXV4)1/JI) Cab
(3.0.20)

+ WK [(gilagtb — GirvGta) V' igoiy T+ (Giralts — GirbGta) iy .. 1

with WK given by ([3.0.18)).
Proof. The proof is a simple extension of the proof of Proposition [3.0.27] and is left to
the reader. O

Remark 3.0.30. Observe that in the case when the horizontal structure is tangent to
a S-foliation, WK reduces to the Gauss curvature of S. In the integrable case we can
calculate directlgﬂ on any surface of integrability S with Gauss curvature K,

[vaa Vb]i/& - K(gsagtb - gsbgta)¢t = K(gsawb - gsbwa) =K € *ws

which coincides with formula (3.0.17) in this case. Also for v € Oy (but not necessarily

m 52),

[vm vb]wswg = K(gslagtb - gslbgta)wt so T K(QSQagtb - QSngm)%l !
= K<gs1a¢b82 - gslbwasg) + K(gsza¢s1b - gsgb¢51a>~

3.0.4 Horizontal Hodge operators

In this section we recall the Hodge operators on 2-spheres as defined in [Ch-KI| and extend
their properties to the case of non-integrable horizontal structure.

We first define the following operators on horizontal tensors.

Definition 3.0.31. For a given horizontal 1-form &, we define the frame dependent op-
erators,

dZUE = 6abvb§a) Curlg :Eab vagb7 (v®§)ba = nga + Vafb - 5ab(div f)

We collect below some Leibniz rules regarding the horizontal Hodge operators.

50ne can check directly that gsq¥s — gspVa =Cap *Vs-
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Lemma 3.0.32. We have for £,m € 51, u € 8o,

(divn)¢ — (curln) "¢ = &-Vn+&- "V 'y
ER(divu) = €-Vu+&- "V *u
£-(V®n) = & Vf—¢& "V

Proof. See the proof of Lemma 2.1.31 in [GKS-2022]. H

Definition 3.0.33. Given an orthonormal basis of horizontal vectors ey, eo we define the
Hodge type operators (recall Definition , as introduced in [Ch-KIJ.
o T takes s, intd]| sp:
DE = (divg, curl§),
o M, takes sy into sy:
(P26)a = VEa,
o D takes s into ;:
DS f) = —Vaf+ €w Vil
o D takes s1 into so:
»E = —%V@f :

Lemma 3.0.34. Note the following pointwise identities:

1. Given (f, f.) € 5o, u € s1 we have

DS f) - u=(f, fo) - Pru— Va(fu® + f.("u)). (3.0.21)
2. Gwen [ € 51, u € sy we have,
(P2f)-u = f-(Pou) — Va(fou™). (3.0.22)

Proof. To check (3.0.22) we write
(V@f) U = (Vafb + bea - (Sabdiv f)uab = Q(Vafb>uab = 2va(uabfb) - Q(dﬂ) ’LL) : f
O

In the particular case when the horizontal structure is tangent to 2-spheres S these op-
erators are elliptic on S and have the remarkable properties discussed in Chapter 2 of
|[Ch-KI| which we recall in the next section.

"Recall that sq refers to pairs of scalar functions.
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Hodge operators on spheres

The following results were derived in Chapter 2 of [Ch-KI| in the context of general 2-
dimensional compact surfaces S with strictly positive Gauss curvature K which we will
refer from now on as a 2-sphere.

Lemma 3.0.35. Given a 2-sphere S, we have the following:
- The kernels of both P, and P in L*(S) are trivial while the kernel of D" consists
of constant pairs in sg.
- The operators Dy, resp. s are the L? adjoints of By, respectively .

- The kernel of D5 is the space of conformal Killing vectorfields on S.

Moreover the following identities hold truﬂ see [Ch-KI:

@1*@1 - _Al + K7 @1@1*: _A(b

1 1 (3.0.23)
@2*@2:—§A2+K, DDy = —§(A1+K)-

Proof. The statements about L? adjoints follow immediately by integrating formulas
(13.0.21)-(3.0.22)) on S. The formulas (3.0.23) follow easily by using the definitions and
commuting derivatives. Note also that for £ € s

1
D¢ = —5557

where v denotes the induced horizontal metric as in Definition [3.0.4] O

As a simple consequence of (3.0.23)) one derives the following L* estimates.
Proposition 3.0.36. Let (S,7) be a compact manifold with Gauss curvature K.

i.) The following identity holds for vectorfields f on S':

/S(IVf| +K|f|)=/s(|dz'vf| +|curlf|):/s|1p1f| (3.0.24)

8Here Ay : 55, — 51, k=0, 1,2, is defined by (ArU)a =VeV,Ua.
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ii.) The following identity holds for symmetric, traceless, 2-tensorfields f on S:

[ Qvsp 42kl =2 [ 1o =2 [ 12 (3.0.25)

iii.) The following identity holds for pairs of functions (f, f.) on S:

/ (VS + VL) = / V4 (VLR = / B L)1 (3.0.26)
S S S

iv.) The following identity holds for vectors f on S,

[ Ovse = xise) =2 [ 19 3.0.27)
S S
Proof. See Chapter 2 in [Ch-KIJ. O

Bochner identities in the non-integrable case

We extend the identities above to the case of non-integrable horizontal structure.

Lemma 3.0.37. Given a general possibly non-integrable horizontal structure, the Hodge
operators and the Laplacians are related by the following relations for & € §1 and u € ss:

PIPE = L — 5 €ar [V V3] 6

1 1

ZDZZPSE = —§A1§ + 4_1 Eab [Va, Vb] *5, (3028)
1 1

ZDQ*%U = _§A2u - Z Eab [va; Vb] *u-

Proof. See the proof of Lemma 2.1.36 in [K-S:Kerr].

]

Using the pointwise relations (3.0.21]) and ([3.0.22)) and the above lemma, we can deduce
the following pointwise version of the L? estimates of Proposition [3.0.36
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Proposition 3.0.38. Given a not necessarily integrable horizontal structure, the following
pointwise relations hold:

i. The following identity holds for f € s,:

VI~ 5 € [V Vil “F - F = | PP+ Va(VF - F = (div ) — (eurl F)(*)°).

ii. The following identity holds for f € sy:

V- }l € [V Vi) “F - F = 2 Bof P Va(VOF - f = 2(div f™).

iii. The following identity holds for f € s;:

VAP € (Vo Vil *F - = 2ADHP +Va(VF - o+ 2P3f)5).

Proof. The above relations are obtained by multiplying relations (3.0.28)) by f and inte-
grating by parts in the horizontal directions. O

Remark 3.0.39. In the integrable case the commutator € [V,, V] is given by the
standard Gauss formula in terms of K. In the non-integrable case it can be computed by
using the generalized Gauss equation, see Proposition|3.0.25|

Observe that in the relations obtained in Proposition the divergence terms cannot
be discarded upon integration because of the absence of an integrable surface. There are
various ways to deal with this difficulty, such as to integrate (3.0.29)-(3.0.29) on the entire
spacetime manifold M.

Remark 3.0.40. Note that the divergence terms in Proposition can be re-expressed
i terms of spacetime divergences based on the following lemma.

Lemma 3.0.41. For f € s;, we havd)]
D%f, = Vifa+n+n)-f (3.0.29)

where 1= 18(eq, D L) and 1, := 38(eq, D L), see Definition 3.1.1]

9Here, we extend the horizontal 1-form f as a full 1-form on M by setting f3 = f4 = 0.
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Proof. We have, using ,
D*fo = Vfa = —%(D3f4 +Dyf3) = —%(63(f4) — fosa + ea(fs) — fpu3)

(2nafa+2n fa) = (+n)- f

as stated. O

DO | —

Using (3.0.17]) we can rewrite Proposition |3.0.38| as follows.

Proposition 3.0.42. Given a not necessarily integrable horizontal structure, the following
pointwise relations holﬂ:

i.  The following identity holds for f € s:
1 )
VAP + K= PS + 5 ((<a>trxv3 + DV, *f) [+ div [ D),

(3.0.30)
div [Py f) i= Vo (V2F - f = (div £)f* = (curl ))(*)").

ii. The following identity holds for f € sq:

912+ 20K =2 Puf P 4 5 ((nTak On®) ) g+ o[
div | Pof) = Va(V°F - f — 2(div Puf™).

(3.0.31)

iii. The following identity holds for f € sy:
1 . ¥
IVII? = WK|f]?=2|Psf - 3 (<(“)t7’xV3 + (a)tm_cvz;) *f) - f + div [ DS,

(3.0.32)
div [ D3] = Va(VF - [+ 2PN ).

Proof. From (3.0.17)), we have for f € s; and u € ss:
1 1
5 Sab [Va, Vo] °f = 5((a)trXV3 + @ty vy) *f — WK,

1 1
5 € [Va, Vi "u = 5((“)tr><v3 + @ty V) u— 2" Ku,

from which we obtain the stated identities. O

1ONote that according to Lemma [3.0.41 the divergence terms in the proposition can be re-expressed
in terms of the spacetime divergences, see Remark



S80CHAPTER 3. THE GEOMETRIC FORMALISM OF NULL HORIZONTAL STRUCTURES

3.1 Horizontal structures and Einstein equations

We apply the general formalism for non-integrable structures to the case of a spacetime
solution to the Einstein vacuum equation. For an application of the formalism to the
Einstein-Maxwell equation, see |[Giorgi:KN].

3.1.1 Ricci coefficients

Definition 3.1.1. We define the horizontal 1-forms,

(X) = J8(X.D,L),  (X) = 8(X,D,L)

3

1 1
With these definitions we have,

VX = W(DrX)=D X —n(X)L-¢X)L,
VX = WDX)=DX —§X)L —n(X) L.

In addition to the horizontal tensor-fields x, x,n,n,&,§ introduced above we also define
the scalars,

1
w = —-g(DyL,L), W= Zg<DLLa L),

and the horizontal 1-form,

((X) = L&(DxL, L)

We summarize below the definition of the the horizontal 1-forms £, £, 7,1, € Ox:

£(X)=1g(DLL,X), &X)=3ig(DLL,X),
n(X)=3g8(D.L,X), n(X)=3gD,L, X), (3.1.1)
((X)=3g(DxL, L),

and the real scalars

1 1
w= Zg(DLLy L), W= Zg(DLL7 L). (3.1.2)
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Definition 3.1.2. The horizontal tensor-fields x, x,n,1,¢,§,§,w,w are called the connec-
tion coefficients of the null pair (L, L). Given an arbitrary basis of horizontal vectorfields
e1, €2, we write using the short hand notation D, = D.,,a = 1,2,

X, = 8[DaL,e), Xab = 8(DaL; ),
§, = y8DuLe), &= 8Dile),
b = (&D,LL).  w=gD.L L)
b, = yeDile) =Dl
G = 8D, L)

We easily derive the Ricci formulae,

Daeb
Da€4
Da63
D3€a
Dgses
Dsey
D4€a
D4€4
D463

1 1
Vaes + SXabes + 5X,04

Xab€s — CaCd,

X, 1 Ga€s,

Vieq + 1aes + & €4,
—2wes + 2§, ey,
2wey + 2mpey,

Vieq + 1 es + aes,
—2wey + 2864,
2wes + ZQbeb.

(3.1.3)

3.1.2 Curvature and Weyl fields

Assume that W € T (M) is a Weyl field, i.e.

Waﬁuv =
Waﬁ,ul/ + Wauuﬁ + Wauﬁu = 07

_Wﬁauu = _Waﬁuu = Wul/oaﬁa

(3.1.4)

gﬁ”Wagu,, = 0.
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We define the null components of the Weyl field W, (W), a(W), o(W) € Oy(M) and
BW), B(W) € O1(M) by the formulas

(a(W)(X,Y)=W(L,X,L,Y),

a(W)(X,Y) =W(L X, L)Y),

BW)(X) =3W(X,L, L, L), (3.1.5)
BW)(X) = 3W(X, L, L, L),

L oW)(X,Y) =W(X, L,Y, L)

Recall that if W is a Weyl field its Hodge dual *W, defined by *Wyog,, = %EW”"WQB,,U,
is also a Weyl field. We easily check the formulas,

(W)= *a(W),  a(*W)=—"a(W),
W),  B(*W)=—"B(W), (3.1.6)
o( *W) = *o(W).

=Y
*
=
*

It is easy to check that a, o are symmetric traceless horizontal tensor-fields. On the other
hand the horizontal 2-tensorfield p is neither symmetric nor traceless. It is convenient to
express it in terms of the following two scalar quantities,

p(W)= JW(L LL L), “p(W) = ‘W(L LL L) (317
Observe also that,
p( W) = "p(W), (W) =—p
Thus,
oX,)Y)=(-py(X,Y)+ "p € (X,)Y)), VX, Y € OM). (3.1.8)
We have

Wasea = 0ap = (—pdap + “p €Ea),
Wabsa 2€qn "p,

Wabed — €avE€ed P

Waeas = €a "B,

—C

Wabc4 = —Cw *Bc'
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3.1.3 Pairing transformations

In addition to the Hodge duality we will need to take into account the duality with respect
to the interchange of e = L,e3 = L, which we call a pairing transformation. Clearly,
under this transformation, a <+ o, 8 <> =3, p <> p, *p <> *p, 0 <> 0 with 04 := 0pe. One
has to be careful however when combining the Hodge dual and pairing transformations.
In that case we have, *a + — *a, *f <> *f. This is due to the fact that under the
pairing transformation €,,— — €4 (Sir_lce Eawp=CEap34). Indeed, for example,

* * *
Qop = Q( W)ab = Wa3b3 = — E€q3c4 Wc3b3 =€qc34 Wc3b3 =Eqc Ay

* * *
Qap = CY( W)ab - Wa4b4 = — €q4c3 Wc4b4 = — €34 Wc4b4 = — Eqc Qp-

The reason * transforms to * and not — *f is that in this case there are two sign
changes. In the case of *p we have

* * ]' a 1 a *
47 = Riyss = B SEV bRab34 <~ B} €43 bRab43 =4 "p.

Here is a schematic presentation of all pairing transformations.

/ ~ o~
Xab < Xab (6ab<—> o eab
trX < try R — R
(a)trX o — (a)tI.X *Eab *g ab
A o,
§, & I,
W w *Z“ o “
1y < Mla *oza<—> — *i)z
Ca A _Ca o
* H *
Qo *ﬁ o *ﬁ
P P
B A _é * (C)Va oy * (C)Va
<
p '.i | curl <> —curl
L0 0

The decomposition above for Weyl fields applies in particular to the Riemann curvature
tensor R of a vacuum spacetime.

In the case of a vacuum spacetime, the non-integrable Gauss curvature defined by (|3.0.18))
becomes

TR (3.1.9)

DN | —

1 1
W = —Ztr xtrx — 1 @try (“)trx +
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3.1.4 Horizontal tensor B

We calculate below the components of the horizontal curvature tensor B defined by the

formula, see (3.1.39),
Babw/ = (Au)Ba(Au)M + (A,u)4a(AV)b3 - (AV)3a(Au)b4 - (Al/)4a(Ap)b3~
Proposition 3.1.3. The components of B are given by the following formulas:

Bapes = —Bapze = 2( - Xcanb + chna - Xcaéb + XCbéa)’
Bapes = —Bapae = 2( - Xcaﬂb + chﬂa - Kcagb + chga)7

(3.1.10)
Busss = —Buapas = 4( = & & + &&, — nanl, +1,7),
Babea = =Babde = XveX ;T Xy Xad = XacX,; — X, Xbd-
The above can also be written as
Babes = —tTX( calls — Oena) — “trx( €ca my— €t Ma)
+2( - X, + Xl — Xca§b+ch§a)7 (3.1.11)

Babc4 = —tr X((scaﬂb - 5cbﬂa) — (@ tTX( €ca ﬂb_ S ﬂa)
+ 2( - X\caﬂb + X\cbﬂa - Xcagb + chga) .

The only non vanishing component of Bapeq 1S given by

1 1 ~ o~
Bi212 = —Biaa1 = Baia1 = —5157“ Xtrx — 3 @ ry (a)t@+ XX

Proof. We write recalling the definition (A,)as = g(Dpes, eq) and definition of Ricci
coefficients, see Definition [3.1.2)]

Babc3 - (Ac)Ba(AB)b4 + (Ac)4a(A3)b3 - (A3)3a(Ac)b4 - (A3)4a(AC)b3
= _ZXCG% - 2Xca§b + 2§ach + 27](1ch

and
Bazs = (A3)30(Aa)ba + (A3)aa(Aa)bz — (Aa)3a(A3)ba — (Aa)aa(As)ss
= 4(—=& )& + 4(—na)n, — 4(=n )m — 4(n_ ) — (—&a)§,
= 4( =& &+ &k, — nany, + 1)
For the remaining formulas see and . O]

NEW
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Lemma 3.1.4. We have
Bases + Bicas + Bears = —2Wtrx €y — 2@ty €1 €
Bubes + Bheas + Beas = —2Pitry € n, — 2 (@) trX €lea &y
Babed + Bocad + Beava = 0.
Proof. Note that both B3 and B,,.4 can be written in the form
Cave = (UacWy — UpeWo) + (VaeWy — Vi Wa)
with U symmetric and V' antisymmetric. Thus
Cave + Cpea + Ceay = UpaeWy) + VieeWry) = 2V[oc Wy
We deduce

B[abc]S = Bupes + Bicas + Bears = —2 (a)trx G[ca ] — 2 (a)trX e[ca §b}
B[abc]4 = Buapea + Bicas + Beaps = —2 (a)trX G[ca ﬂb} —2 (a)trX G[ca Sb]

Also, since the only non-vanishing components of Bgpeq is Biaio,
Bii2112 = Bi212 + Boii2 + Biig2 = 0.

as stated. ]

3.1.5 Null structure equations

We state below the null structure equation in the general setting discussed above. We
assume given a vacuum spacetime endowed with a general null frame (es, e4, €1, €2) relative
to which we define our connection and curvature coefficients.

Proposition 3.1.5 (Null structure equations). The connection coefficients verify the fol-
lowing equations:

2 1 :
Vstry = —|xI* - §(t'rf— (a)tr)_<2) + 2div § — 2witrx + 2 - (n+1n — 2¢),
Vg(a)t’l’)_( = —trx(“)tm_(—i— 20url§—2g(“)tm_(+2§/\(—n+g+ 2¢),

ViX = —trxX-+ V®§—2c_u2+§®(77+g— 2¢) — a,
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1 | ,
Vstrx = —X-X—§trxt7‘x+5(“)tm_((“)trx—i-2dw7]—i-2gtrx+2(§~§+|77|2)+2,0,
1
Vs @ty = —XNAX— 5((“)t79_<trx+ trx(“)tm() + 2curln+2c_u(“)trx+2§/\§— 2 *p,
o 1 o o 1 *=> (a *=> (a o~ %
Vsx = —§(tr)@+trxx)—§(— X()trx—i- X()trj_g)+V®n+2gX
+ ERE+ @,
~ o~ 1 4
Viytry = —X-X-— itrxterL — @y (“)t@jt 2divn + 2wirx +2(£ - £+ nf*) + 2p,
o 1
Vﬂ‘”t@ = —XAx—5((“)1579(757"&—1—trx(“)trx)—|—20urlﬂ+2w(“)tm_<+2§/\§+2*p,
. 1 . . 1 *> (a *> (a 35 =
ViX = —§(trxx+trxx)—§(— @try + *x @iry) + V& + 2wx
+ §®_+_®g,
~ 1 .
Vatrxy = —|X|2—§(trx2— (a)trXQ)+2dw§—2wt7“x+2§~(ﬂ—i—T]—i—QC),
Vi Dy = —trx(a)tm(qLchrlg—2w(“)tm(+2§/\(—Q+n—2(’),
Vix = —trxf(\+v<§>§—2w§<\+f®(ﬂ+n+2§)—a.
Also,
~ 1 1((1) * *
VaQ +2Vw = =X (C+n) = 5trx(C+n) — 5 trx( "¢+ ") + 2w(C —n)

~ 1 1
+x~§+§tr><§+§(“)m< "¢+ 2w — B,

1 1
Vi —2Vw = X-(=C+n)+strx(=C+n)+ 5 @try(—*C+ ) +2w(C +n)

2 L
R 1 L,
—x-é—itrﬁ—g trx "€ — 2wl — B,
- 1 1(1 * *
Van = Vag = —X-(—n) = 5trx(n—n)+ 5 trx("'n— "n) —dwg+ 5,
= 1 1(1 * *
Vi — Vs = —X'(U—Q)—§t7"x(77—ﬁ)+§()“"X( n— *n) —4wé — B,

and

Vew+Viw —dww —§-E—(n—n)-C+n-n = p.
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Also,
divy+¢-X = %Vtrer%trxc—%*V(a)trx—%(a)trx *C— Wiry T — Oty "€ - B,
divX—(-X = %Vtrz—%trxg—%*v(a)trva; tTX (- trx n— @) gy €+,
and]

curl( = —%)?/\X—l—;l(trx(a)trx—trx(“)trx) +w@try —w@try + *p.

Proof. Except for the fact that the order of indices in x, x is important, since they are no
longer symmetric, the derivation is exactly as in [Ch-KI]. O

3.1.6 Null Bianchi identities

We state below the equations verified by the null curvature components of an Einstein
vacuum space-time.

Proposition 3.1.6 (Null Bianchi identities). The curvature components verify the fol-
lowing equations:

Via — VB = —%(trxa—l—(“)trx “a) +dwa + (C+4n)®B = 3(pX + 0 *X),
Vi —diva = =2(trxB— Diry *B) — 2w +a- (20 +n)+3(Ep+ ¢ ),
VsB+dive = (trXBJr trx B)+2wB+28-X+3pen+ pn)+a-§,
Vap—divh = ~3(rxo+ @i )+ @n+Q) B-2% - %

Vi p+curlf = —g(trx 0= @irxp) = (2n+¢) - "B -2 *é+%2- “a,
Vip+ding = —2(trxp— Wty p) — (29— Q) f+2% B 3% a

Vs p+eurlf = —g(t@ o+ Wirxp) = 2n—¢) - -2 ﬂ—% “a,
Vi —divg = —(trxﬁ+(“)trx*ﬁ)+2wé+2ﬁ X=3(m— "p'n) —a-¢,
VsB+diva = =2(trx— Wty ﬁ)—2g§—_-(—2<‘+n)—3(§p— € ),
Via + VB = —%(WXQ+(G)757“X ") +dwa + (¢ —4n)@B - 3(px — P X).

' Note that this equation follows from expanding Rz4qp-
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Here,

dive = —(Vp+ *V ), divo=—(Vp— *V ). (3.1.12)

Proof. The proof follows line by line from the derivation in |[Ch-KI| except, once more,
for keeping track of the lack of symmetry for x,x. Note also that g,, = s, and that
(d“} Q)b = VCLQab' [

Remark 3.1.7. Note that both the null structure and null Bianchi equations are invariant
with respect to the pairing transformations of section |3.1.5.

3.1.7 Null Bianchi Equations using Hodge Operators

The special structure of the null structure equations is more apparent if we make use of
the Hodge operators Dy, T, I, Ps" In doing this it is important to remember that 7
takes 51 to s9 and that these latter are pairs of. scalars. It is for this reason that

Proposition 3.1.8 (Null structure equations using Hodge operators).

Via +2P58 = —%(tvxa + Wiry *a) + dwa + (¢ + 4088 = 3(pX + p *X),
ViB— Ta = —=2(trxB— “itry *B) —2wB+a- (20 +n) +3(Ep+ € p),
Vs = Pil=p, 'p) = —(trxf+ Dtrx *B) +2wB+28-X+3(m+ pin)+a-§
Va(=p, )+ DB = —gtr X(=p, p)— ;(“)mc(— ', =p) = (20 +C) - (B, *B)
(8, )+ 5% (o, “a),
Vilo, D)+ P8 = —otrx(o, )~ 5 Dk~ pp)— (21— Q) (8, *B)
P (8- ) — 3% (@ *a),
ViB— Prilp, p) = —(trxB+ Dtry "B)+2wB+28-X—3(pn— "p*n) —a-E
VsB+ Tha = —2(trxf— “trx "B) —2wB —a- (=2C+n) = 3(Ep— "¢ ),
Via =278 = —%(tr xa+ @try *a) + dwa + (¢ — 4n)&B — 3(pX — p *X).

Remark 3.1.9. As we shall see later further simplification can be obtained by introducing
complex horizontal tensors.
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3.1.8 Main equations using conformally invariant derivatives

Counsider frame transformations of the form
ey = \les, ey = Aey, el = e,

Note that under the above mentioned frame transformation we have

try’ = Altry, (a)trx' =\ (“)trx, try’ = Mry, @ty = A @try,
¢ = N¢ n=n n=n €&=X7%
o = Na, f=N3, p=p p="p [F=X'B o=

and
!/ —1 1 / 1 !
w = AN |lw+ Eeg(log AN, v=Aw-— 564(10g A, (=C—V(og)).

Definition 3.1.10 (s-conformally invariants). We say that a horizontal tensor f is s-
conformally invariant if, under the conformal frame transformation above, it changes as

=N

Remark 3.1.11. Note that in the case when f is a Ricci or curvature coefficient s cor-
responds precisely to the signature, as define in Chapter 5 of [Ch-KI|.

Remark 3.1.12. If f s-conformal invariant, then Vsf, V4f,V.f are not conformal in-
variant.

We correct the lacking of being conformal invariant by making the following definition.

Lemma 3.1.13. If f is s-conformal invariant, then

1. ©OVsf = Vsf — 2swf is (s — 1)-conformally invariant.
2. OV, f = Vuf +2swf is (s + 1)-conformally invariant.

3. OVAf :=Vaf +sCaf is s-conformally invariant.

Proof. Immediate verification. O

Remark 3.1.14. Note that s is precisely what in [Ch-KI] is called the signature of the
tensor. In GHP formalism [GHPJ, the signature is related to the spin and the boost weights
of the complex scalars.
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Using these definitions we rewrite the main equations as follows.

Proposition 3.1.15. We have

- 1 a e)
(C)VgtT’X = —\K]Q—i(trf—()t@2)+2()dzv§+2§‘(n+g),
€V, (“)tr)_( = —trx(“)tr)_(—i- 2(c)curl§—|— 26 N (=1 +n),
OV, = —tryX+ OVEE+EB(n+1n) —a,
1 1 .
OVstry = —X-X—§trxtrx+5(a)trx(“)trx-l—Q(c)dwn—l—Z(f-§+|77|2)+2p,
O, (@ saoo L (a) © "
Vs Witry = _X/\X_i( trxtr x + trx “trx) + 29 curln + 26 NE—2 7p,
> 1 = e 1 *> (a * (a c oy = =
©OV:x = —§(trxx—|—trxx)—§(— K()WX+ X()tr)_()+()V®n+§®§+n®n,
1 1 ‘
©OVutry = —X X—§trxtrx+5(“)tm((“)tr)_(+2(c)dwg+2(f-§+|Q|2)+2p,
Oy, (@ sao_ i (a) © :
Vi Wiry = _X/\X_Q( trxtrx 4 trx “Ytrx) + 29 curln + 2§ NE+2 p,
% 1 = e 1 *= (a * (a c o = =
OViX = (XX rxX) = 5 (= X Wi+ X i) + ©OVER + 8¢+ @,
- 1 " o) -
OF,try = —|X\2—§(t7")(2—()tw2)+2()dwf+2§-(g+77),
OV, @Dtry = —trX(“)trx—i-Q(C)curlf—i-Zf/\(—Q—i—n),
OV = —trxX+ OVRE+EB(n+n) — a,
(e) (e) > 1 L@y, e
Ve = OVag = =X~ —n) = gtrx(n—n)+ 5 trx(n - "n) + 5,
1 1 ..
Vi = IV = =X —n) = gorxm—n) + 5 (= ") = B
Also,
(© giny 1o Ly og(@ (@) gy oy (@) g *
divy = 5OV(trx) =5 " OVx) = Wiy Ty = Wty 6= B,
e 1 c 1 * (c a a * a *
©divy = 5()V(tr’x)—§ OF(@try) — @try *n— @ty € + 3
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Proposition 3.1.16. We have

1

Vs = V&S = —(trxa+ iy o) + mBB = 3(pX+ X,
OV8— Odiva = —2(trxB— Dtry *B) + a-n+3Ep+ € p),
OF8+ ©Odive = —(trxB+ Dtry *B)+28-X+3(om+ p ) +a-§
OVip— Ddivp = —gwym+””Wx7ﬁ+2gwf—%*é—%2-m
OV o+ Ceurl g = —;(trx p— Wiryp) —2np- B2 B+ %X “a,
OVsp+ Odivg = —;Uhyr—”“q;%)—2n4§+2§w3—%£-@
Vs o+ Qewrl = —;WX%+“%WM—QU-?—2§*5—%%*%
VB - Ddive = —(trxf+“ tmf®+ﬂﬂ —3(en— pn) —a-¢
OV + Ddiva = —2(try— @try @—1yn—3@p—*§%%

OV, + (C)VQA@Q = —%(tr Yo+ @iry ‘o) — 4@@@— 3(pX — P *X)-

3.1.9 Spacetimes of Petrov type D

Consider an Einstein vacuum spacetime (M,g). A spacetime is said to be of type D
if there exists an horizontal structure for which «a, 3, 3, a vanish identically. The main
example is provided by the Kerr family. Using the first and last equations in proposition
we deduce, for any spacetlme of type D that 3(px + " *X) and 3(pX — " *X)
from which we easily deduce that ¥ = ¥ = 0. must vanlsh Slmllarly, using the second
and second to last equations of the same proposition, we deduce that = (5 p+ *¢ p)=0
and (£p — *¢ *p) = 0 from which we also infer that { = { = 0. We obtain the well
known Penrose-Saks theorem according to which, if a spacetime is of type D we must
have, relative to the correspondinh horizontal structure,

—=¢=0 (3.1.13)

[<)

X =

3.1.10 Commutation formulas

Lemma 3.1.17. Let Uy = U,,. 4, be a general k-horizontal tensorfield.
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1. We have

Vs, Vi]Us = —x, VeUa + (i — G)VsUa + §,VaUs + Ryl © o, (3.1.14)

2. We have

[V4, Vb]UA = Xbcv U + ( + Cb)V4U + SbV;»,U + Ralc4bUa1 ag (3.1.15)

3. We have

[V, Vs]Ua = 2(1, — 1) VoUn + 2wVsUa — 2wV4Us + RaeasUa, © o (3.1.16)

where, recall Proposition and that Rabm, = Rapw + Babw,,
Rach = — Eq, ﬁb + EtTX(écanb - 501777(1) + 5 tTX( €ca h— Ecb 77a)
~ 1. 1
= (= Rean, + 5Xa1, = 5X,, & + X, 60)

. 1 1 3.1.17
Rac4b :Eac *Bb + étr X(écaﬂb - 5cbﬂa) + 5 (@) tTX( eca Eb_ Ecb ﬁa) ( )
- ( o Sc\caﬂb + X\Cbﬂa - Xca&) + chfa);

Ropis = =2 € 0 —2(—nan, + 1, — .6 + &a,)-

Proof. See the proof of Lemma 2.2.7 in [GKS-2022]. As a corollary we derive O

Lemma 3.1.18. The following commutation formulas hold true:

1. Given f € 59, we have

[V, Valf = —5 (trXVaf + 11X “Vaf) + (0 — GV — 5, 95f
+§av4f7
[v4a va]f = _% (tT Xvaf + (a)tTX *Vaf) + (ﬂa + Ca)v4f - X\abvbf

+ gav?)f?
[Va, Valf =2 —n) - VI +2wVsf — 2wV, f.

(3.1.18)
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2. Given u € s1, we have
1
[Vg, Va]ub = _EtTX(VaU/b + e — 5ab77 ' U)
1 * *
- 5 (a)tr)_(( Vaup + Mo Ug— Cab 1" U)
(3.1.19)
+ (1 — Q) Vauy + Errsap[ul,
Errsalu] = — "B "up + § Vauy — & Xactle + Xav § - u — X, Veup — mX, Ue
+ Xabn " u,
1
V4, Valup = —§tr X (Vaup + n,Ua — a1 - u)
1 * *
—3 (a)trx( Vaup + 1, "Ua— €ap 1 - u) + (14 ¢)aVauy
(3.1.20)
+ Errygp|ul,
E""'r4ab[u] = *60, *Ub + fav3ub - éb&acuc + Xabé. U — X\acvcub - be\acuc
+ X\abﬁ " u,

V4, Vs]u, = 20wVsu, — 2wV u, + Q(Qb — M) Vitia + 2(1 - u)na — 2(n - u)Qa

— 2 7p "ug + Errygg|ul, (3.1.21)
Errysa|u] = 2(§a§b — fagb)ub.

3. Given u € so, we have

DO | —

[Vg, va]ubc - ——tTX (Vaubc + NyUac + NeUap — 5ab(7] : u)c - 6ac(77 ' u)b)

—

]' * * *

5 @) tT’)_(( Vaubc + Ny Ugqe + Ne Ugh— eab (77 : u)c_ Eac (77 : u)b)
(3.1.22)

(na - Ca)v?)ubc + ET’Tgabc[U],

[u] = =278 “upe + € Vaupe — & Xaattae — § XadUbd + Xab€ Ude

+ Xac€ jubd — X, ; Ve — MX, Ude — MeX,,Ubd + X, MdUde + X, NdUbd,

_l_

1
[V47 Va]ubc = —§t’f’ X (vaubc + ﬂbuac + ﬂcuab - 5ab(ﬂ . u)c - 5ac(ﬂ : U)b)

= 5 it ("Vatine + 1, “tae + 11, U= Eap (- u)e— Eac (7 1))

3.1.23
+ (1, + Ca) Vatine + Erragpelul, ( )
Erryape [U] =2 "By "upe + EaVaupe — fbxadUdc - @:Xadubd + Xabgdudc + Xacgdubd

— XadVdUbe = 1, XadUde = 1 XadUbd T XabT] Ude + Xac] Ubd;
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Vi, V] = 20V 3t — 20V atlay +2(0, — 1) Vetap
— 20 Nelive — 21, Nelac + 2101 Upe + 2061 Uac — 4 "0 “tap + Errazas|u]
= 20V 3Ua, — 20V attgs + 2(n — 1) Vetlay + 0@ (7 - ) (3.1.24)
- 4ﬂ®(’7 w) — 47 Mg + Erryzep|ul,
Brrysaplu] = 2(€ &e — &a€ Jus +2(&,6c — & Jua .

We deduce the following corollary.

Corollary 3.1.19. The following commutation formulas hold true:

1. Given u € s1, we have

1 1
V3, div|u = —étrx (divu—mn-u)+ = (“)tm_( (div *u—n- *u) + (n—() - Vsu

2
+ Erry g, [ul,
Err,g [ul=—="F-"u+&- Vau—&-X-u—Xx-Vu—n-X-u,
3 4] 1@ £ Vi §1X X X (3.1.25)
[V4,d2'v]u=—étrx(dz‘vu—g-u)+§(“)trX (div *u—n- *u) + (n+¢) - Vau
+ Erry g, [ul,

Erryg,lul= "B "u+&-Vau—-§-X-u—x-Vu—

I3
=)
IS

Also,

Vs, V8Ju = —irx (VEu + n&u) — 3 @try * (V8u+ndu) + (1~ BViu
+ Errgg[ul,
Errgglu) = — *ﬁ@ “u —|—§<§>V4u — §(§)(X cu) + X (€-u)— X Vu— n@(z w)
+X(1 - u),
(3.1.26)
V4, V&|u = —%trx (V&u + n@u) — % @ry * (VU + n®u) + (n+ )@Vau
+ Erryglul,
Brryglu] = *B® "u+ E8Vsu — E&(x - u) + X (§ ) = X - Vu — n&(X - u)
+X(n - u).
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2. Gien u € sy, we have

1 1
V3, div|u = —étrx(divu—Qn'u) +§(“)tm_((dw fu—2n- *u)
+(n =) - Vsu+ Erry g, [u],
Erryg, [ul=—-2"6- "u+&§ - Vau—&§-x-u—(x-uwi+&§u-x—X-Vu

; | (3.1.27)
[V, div|u = —itrx(dwu —2n-u) + 3 (“)trx(div “u—2n- u)
+n+C) - Vau+ Erry g, [u],
Err g lul =278 "u+&-Vau—&-x-u—(x-u)f+&-u-x—XxX-Vu
- Ru—(R-wn+n-u- X
Proof. Straightforward. See also section 2.2.7 in [GKS-2022]. O

3.1.11 Commutation formulas for conformal derivatives

Lemma 3.1.20. Let Uy = U,, 4, be a general k-horizontal tensorfield of signature s..

1. We have

C

k
[V, OV Us = —x, OVUa+ 0, OV3Us+ & ViU + D RueslUa, ($11.28)
— 1.

—s(x n=x-£+8)Ua

2. We have

k .
(994, OVUs = =00 IVl + 1, OVala + & V300 + 3 Ruseanlan “ g
— (81.29)
—s(x-n—x-£—pB)Ua
3. We have
k .
[V, OVs]Us = 2(n, — ) OVUs + > RapasUa, * o, (3.1.30)

=1

—2s(p—n-n+&-EU
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with the terms in R giwen by formula 5.1.17

Proof. We first deduce, usingiﬂ the definition of conformal derivative, since sign(U) = s,
sign(©OV3U) = s — 1,

[V, OV UA = [V3, Vo]Us + 5(Valy +2Viw)Ua + G OV3Us  (3.1.31)

Hence,
[OVs, OVJUs = —x, VeUa+ (= ) VaUs + €, VaUs + RaesUs, © o,
G OV3UA + 5(V3G + 2Viw)Ua
= —x,, (VU = 5CUA) + (1 — G) (“9V3UA + 250U )
+&, (V4 = 250)Ua + $(V3G + 2Viw) U + Raesnla, © o,
= —x,, “IVeUa+0OV3UA + €, VUL + RaenlUa, © o,
+5Cex, Ua + 2sw(n — Q)plUa — 25w, Ua + s(V3G + 2Vyw)Ua.
Therefore,

[(OVs, OVUs = =X, IVUa+10 V504 + €, IVUs + RuseslUa, © o
+5(VsG + 2Viw + 2w(n — () — 2w€, ) Ua

In view of the null structure equation, see Proposition [3.1.5]
VsC+2Vw = —x-((+n)+2w(C—n)+x - {+2wE—p
we deduce

[V, OVUs = —x,. “IVUa+ 0 9V5Us + & VUL + RaeslUa, © o,
+s(—x-(C+n)+x-&—B)Ua

as stated. The second formula can be deduced in the same manner.

12 Tndeed on the commutator on the left

= OV(IVU) - OV(IV3U) = V3(1IVU) = 250(IVU) = (V + (s = 1)) (I V30)
= V3(VU+sCU) = 25w(VU + sCU) — (V + (s = 1)¢) (V3U — 2swU)

[Vs3, VU 4+ sV35(CU) — 2wVU — s¢V3U 4 2sV(wU) + 2s¢wU

[Vs, VU + s(V3¢ +2Vw)U + ((V3U — 2swU)
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To derive the last formula we first obtain from the definitions of ©Vj, (IV,,

[OVy, OV)U = [V4, V3U — 20 OV3U + 2w VU — 25(Vaw + Vaw)U.

Using the last commutator formula in Lemma we deduce
[(OVy, VUL = 2(n, —m)VsUa + 20V3Us — 20VaUs + RaessUs, ©
—2w OV3U4 + 20OV, U, — 25(Vaw + Vaw)Us
- 2@1) = 1) ( OV, — sG)Ua — 2s (ng + Vyw — 400&) Ua
= 2(n, — m) IVUa — 25(Vaw + Vsw — dww + (n — 1) - () Ua
Making us of the null structure equation, see Proposition [3.1.5]
Vaw+Viw —dww —(n—n)-¢ = p—n-n+&-&
Therefore
[V, OVsUs = 2(n, —m) IV Us—25(p—n 1+ & Ua+ RaesUa,

as stated.

3.1.12 Commutation formulas with horizontal Lie derivatives

Recall that the Lie derivative of a k-covariant tensor U relative to a vectorfield X is given
by

Lx(Yy,....Yy)=XUY1,...,Ys) —U(LxY1,...,Ys) —UY1,...,LxYs),
where LxY = [X,Y]. In components relative to an arbitrary frame
LxUsy.op: = DxUay.ap + Day XUsayar, + Doy X Us, 5.
Recall also the general commutation Lemma, see chapter 7 in [Ch-KI].

Lemma 3.1.21. The following formuld™| for a vectorfield X and a k-covariant tensor-
field U holds true:

k
Ds(LxUa,..cr) = Lx(DpUayc) = Y FTai5Uns 7 o (3.1.32)

Jj=1

13This holds true for an arbitrary pseudo-riemannian space (M, g).
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where

1
DOlpy = 5(Da D rg, +Dg O — D, Fmg). (3.1.33)

Proof. We check the result for for a 1-tensor U,.

LxU, = X*D,U, + (D XMU,
Ds(LxV,) = X DgD\U, + (D XMDyU, + (DsDo XUy + (D XD 3U,
Lx(DslU,) = X*Dy\DlU, + (D X)D3Uy + (DsX*)D,U,.

Hence, in view of Lemma stated and proved below,

Ds(LxV,) — Lx(DgU,) = X*(DgDy —Dy\Dg)U, + (DgD,X*)U,
= X RopsrU’ + (DD XMU, = FIT,,5,U0°

[]

The proof of the Lemma was given in [Ch-KI|, see Lemma 7.1.3, based on the following

Lemma 3.1.22. Given an arbitrary vectorfield X we have the identity

D, D, X5 = Ry, X7+ KT,,5.

Proof.

29T a0 = D mar 4+ Do Mgy — Dy Mg
= Dy(Do Xy +DyX,) + Dy(DsXy + Dy X3) — DA(D X5 + DsX,)
= D,DsX, +DgD, Xy + (D,Dy — D\D,) X5 + (DD, — DyDj) X,
= 2D3D, X, + (D,Ds — DD, )Xy + (D,Dy — DD, ) X5 + (DsD, — D\Ds) X,
= 2D3D, Xy + Riyvas X7 + Rgrar X7 + Ryopr X
= 2DsD.X) — (Rorag + Ropar + Roapr) X7
= 2D3D, X, — (Roras — Rogar + Roapr) X7 — 2Ropan X
= 2DsD.X) — (Roxag + Ropara + Roasr) X7 — 2Ropan X7
= 2D3D,X) — 2R, pan X"

Therefore,

DsD. Xy = Rypan X+ DT80 = Ranos X7+ OTusn = Range X7 + FTusn
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as stated.

As an alternative proof one could consider the tensor A,,5 = D,D, Xz — Rgu, X7 —
(¥)T,,5 and observe that it verifies the symmetries

Awﬁ = Al/uﬁ = _Auﬁzw
The proof of Lemma follows by observing that any such tensor must vanish identi-
cally{] O
Proof. We check the result for for a 1-tensor U,.

LxU, = X*D,U,+ (D XMV,
Ds(LxV,) = X*DgDyU, + (DgX)D\U, + (DD XUy + (D, X)DsU,
Lx(DslU,) = X *DyDsU, + (Do X*)DsUy + (DX DyU,.

Hence, in view of Lemma

Ds(LxVa) — Lx(DgU,) = X*(DgDy —Dy\Dg)U, + (DgDX*)U,
= X RopsrU’ + (DD XMUy = KT ,,5,U°

We are now ready to define the horizontal Lie derivative operator £ as follows.

Definition 3.1.23 (Horizontal Lie derivatives). Given vectorfields X, Y, the horizontal
Lie derivative [ xY is given by

1 1
¢XY =LxY + §g(£XY, 63)64 + ég(LiXY, 64)63.

Given a horizontal covariant k-tensor U, the horizontal Lie derivative £ xU is defined to be
the projection of LxU to the horizontal space. Thus, for horizontal indices A = ay ... ag,

(LxU)a: = VxUs+Dy XUy o + -+ Dy, XUy, ». (3.1.34)

MIndeed Apwp = —Aupy = —Appw = Apup = Avpp = —Avup = —Apwp-
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Lemma 3.1.24. The following commutation formulas hold true for a horizontal covariant
k-tensor U and a vectorfield X

k
VoL xUa) = £x(VolUa) = D> T, U €
j=1
k
ValfxUa) = £x(VaUn) + Ve eUa = T, W Usy € e (3.1.35)
j=1
k
V(£ xUa) = £x(VsUn) + Ve Ua = > T, 0 U € ar
j=1
with]
(X)Fabc = %(va (X)ﬂ-bc + vb (X)ﬂ-ac - Vc (X)ﬂ'ab)v
1
COF iy = 5(Va Omay + V4 Oy = 9, Frg), (3.1.36)

1
(X)ragb = §(va (X)st + V3 Nt — Vs (X)Wa:s)-

Proof. Follows easily by projecting formula (3.1.32)) in Lemma|3.1.21] see also Lemma 9.1
in [Chr-BH]|. Below we also give a more direct proof based on the following analogue of

Lemma L

We now extend the definition of horizontal Lie derivative to any U € Ty(M) ® Oy(M).

Definition 3.1.25. We define the general horizontal derivatives as follows.
1. Given X € T(M) and a general, horizontal tensor-field U € Ox(M), we define
ﬁxU = ¢XU
2. Gwen a tensor in U € Tp(M) ® Oi(M) and X € T(M) we define, for Z =

21y s Zp € OM) and Y =Y3,... Y, € O1(M)

LxU(Z2,Y)=XU(2,Y) -U(LxZ, - Z,Y)—...=U(Z1, - LxZ,Y)
~U(Z,LxY1,...,Y)) —...=U(Z11,.... LxY}).

15Here, (X, is treated as a horizontal symmetric 2-tensor, and (X) 7,4, .3, as horizontal 1-forms.
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3. We have
Lx(UaV)=LxUV +U® LxV.
4. The definition can be extended by duality to any mized tensors tensors in T’,ﬁ; (M)®
O} (M).

Lemma 3.1.26. The following commutation formulas hold truﬂ for U € Ox(M) and
X € T(M),

k
Dp(ACXUal...ak)_EX(DuUal.--ak) = Z(X)rajchal ‘ ag*

7j=1
The following commutation formula holds true for U € T(M)® Ox(M) and X € T(M),

DM(L'XU'yal...ak) - 'CX(Dqua1...ak) = (X)FvupUpal ...... ag + Z (X)y‘aj,ucU'yal.f ..ag”

Proof. Follows easily by projecting formula (3.1.32]) in Lemma|3.1.21] see also Lemma 9.1
in [Chr-BH]. O

Below we also give a more direct proof based on the following analogue of Lemma[A.T.4]
Lemma 3.1.27. Given an arbitrary vectorfield X the following identities hold true

e We have
DDy X, = R, X7+ T 5. (3.1.37)
DMDVXB = Rpgu, X7 + (X)F;w/@"
where
. 1 . . .
BT = 5(Da Witg. +Dp Mg, — D, Firag)
and

(X)7'Ta5 = DaXﬁ—i-DgXa.

16With ¥y defined in (3.1.36).
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Proof.

= D3(DoX)\ + DyX,) + Dy(DsXy 4+ Dy X3) — DA(D X5 + DsX,)
= 2D3D. X, 4 (DyDs — DD, ) X + (D,Dy — DyD,) X5 + (DsDy — DyDj) X,

To calculate X )fabc we make use of the commutation formulas
(Dan - DbDa)Xc - RC)\abXA

(DaDc - DcDa>Xb Rb)\acXA
(Dch - DcDb)Xa = Ra)\chA

Hence

200, = 2D,D, X, + (DD, — D,D,)X. + (D,D. - D.D,) X, + (DD, — D.D,) X,

= 2DyD, X, + (Reaas + Rinae + Ra)\bc>
= 2DyD X, — (R,\cab + Ropoe + R,\abc>
= 2D,D, X, — (R)\cab Ropae + R)\abc) — 2Rypac X
= 2DyD. X, — (Rycas + Rovea + RAabc) — 2Rypec X
= 2DyD. X, — (Bcas + Bapea + B)\abc> — 2Rypee X

In view of Lemma B.1.4] we deduce
280 = 2DyD,X, — (Bicab + Bavea + B)\abc> X* = 2Rypee X
— 20,00 X, — (Bsews + Baea + Baae ) X* = (Bicas + Biea + Buane ) X
—2R e X
= 2DyD,X. + (Bapes + Beass + BbcaS) X? 4 (Bapes + Beava + Bbca4> X*
—2Rppac X — 2 X Err gy

with

(X)Errabc = <(“)trx €lea M) + (a)tI’X €lea éb]>X3 + <(a)trx €lca Qb] + (“)trx €lca &,})X
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Therefore

DbDaXc = X Fabc + R)\bacX)\ + ) Errabc

D,D, X3 = (X)F/WB + R, X7

Babc?; + BbcaS + Bcab3 = —2 (a)trX E[Ca o] — 2 (a)trX E[Ca éb]
Babc4 + Bbca4 + Bcab4 = -2 (a)trX E[Ca ﬂb] —2 (a)trX E[Ca fb]
Babcd + Bbcad + Bcabd = 0.
O
Proposition 3.1.28. For a tensor ¥ € O1(M), we have the curvature formulﬂ
(DMDV - DVD/L)\I’]CL = Rab;w\pb (3138)
where, with connection coefficients (Ay)py = g(Daes, €5),
. 1
Ra v o= Ra v _BCL v
o o T 5 Baby (3.1.39)
Babuu = (Au)Sa(Au)bll + (Au)4a(Ay)b3 - (AV)ZSa(A,u)M - (Au)4a(Au)b3-
The above can also be written as
Bach - _trK(écanb - 501)770,) - (a)trX( Cea h— Eeb 77(1)
+2 _55 nb+5<\ na_Xcag _'_chf 3
(ZXm*X, =b <) (3.1.40)

Bapes = —tr X(écaﬂb - 5cbﬂa) - (a)trX( €ca ﬂb_ Ceb ﬂa)
- 2( o X\caﬂb - X\Cbﬂa o Xcaé'b + ché.G‘) ’

The only non vanishing component of B4 is given by

1 1 ~ ~
Bi212 = —Bi221 = Bojg = —§t7‘ xtrx — 2 (a)trx (G)UX+ XX

Calculate
Babes + Bieaz + Bears
= —try ((%m — dcta) + (Oabe — dactlp) + (Obetla — 6banc))
—~ ‘“)trg(( €ca M= €t Ma) + ( €ab Te— €ae M) + ( Epe Na— Epa M)
+2( =X+ X0 — Xeal, + Xar,)

17 With an immediate generalization to tensors ¥ € O;(M).
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3.1.13 Frame transformations
3.1.14 General null frame transformations

Lemma 3.1.29. Given a null frame (e, eq, €1, €3), a general null transformation from the
null frame (es, ey, €1, €2) to another null frame (ef, €y, €|, €y) can be written in the form,

1
= (64 + fbe, + Z|f’263) ,

€)

) 1 1 1 1,

€y = 5ab + Eiafb €y + §ia€4 + §fa + §|f‘ ia €3, a = 1, 2, (3.1.41)
ey = A (1 f =PI ) es+ ( £+ SIPRF ) e+ I f e

’ 27 = 167" = S b 4= ’

where X is a scalar, f and [ are horizontal 1-forms. The dot product and magnitude
| - | are taken with respect to the standard euclidian norm of R*. We call (f, f,\) the
transition coefficients of the change of frame.

Remark 3.1.30. Note that we have in particular the following identities
1 _ 1
6; = e, + §ia)\ 1621 + éfaeg,
1
6;) = )\71 (63 +iaeiz — Zl‘ilQ)\leﬁl) .
Proof. Clearly €] is null. Also, we have
—1 I b 1 2 c 1 c 1 1 1 2
Aglel,ea) = gleat flen+ 1’f| es, | 0g + §iaf €+ §ia€4+ §fa+ gm I, )es
1 1 1 1
b c c 2 2
= 0C 4+ — Ope =2 | =fu+ = - =
Lo Lo Lo
= a 5 — Ja — - =0.
fot 5U1RE, = fu = UIPL, = ZUPS,

Similarly,

gl c}) = (5; T %Lf) (5{5 4 %[bfd) bt — £ (%fb T élfl%,)

1 1
- (§fa + §|f|2[a) Jy = Oab
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and

o) = (24100 ) fo=2 (14 36 £+ SoIFPISR) — Sl = -2

Also, we have

i) = (£+7100) (53%@#) G — (14 3 £+ 1elIPISP ) £,

——m?( o f)

1
= e (52 Jur) 4,
! 1,1
- (1 +of L+ 1—6|f|2|i|2) f.- §Iil2 (éf“ + §|f|21a) =0

Finally
V(e h) = ‘f s Liges] - (1457 £+ gglrmise)
’ L L 2! LT el Ik
P+ 3T £+ U = 1 (1 30 £+ SolPIER) =0
= 2= = 16 = 2° = 16 =
This concludes the proof of the lemma. n

3.1.15 Transformation formulas for Ricci and Curvature coeffi-
cients

While we only need the transformation formulas for y, x, ¢ and p for this paper, we
nevertheless derive below the transformation formulas for all connection coefficients and
curvature components for completeness.

Proposition 3.1.31. Under a general transformation of type (3.1.41)), the Ricci coeffi-
cients transform as follows:

o The transformation formula for £ is given by
A =+ AV 1(tr X = @t f) +wf + Bl €),
Brr(e €)= 57 %+ g1 Pn+ 5(F- O F — 1Py (3.1.42)
w2 (G0 L4507 D€) + Lo
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e The transformation formula for § is given by

1 1 1
N =+ AV +wf+—trx f— = Dirx *f + Bri(€,€),
R - -4 4 - o 3.1.43
Bri(E €)= 51 %~ 5(f - Qf + 7liPn — JiPn + Lo e
Mes oL AT QM S I ¢
o The transformation formulas for x are given by
AN trx =trx+div'f+f-n+f-C+ Err(trx, try)
1 * r (a
Err(tr x, tr x') =i§+zi (ftTX— /! )”X) +w(f-f) —wlf? (3.1.44)
1 1
= P = S (F- DA + (fAf) A Ot + Lot
AL @y = @y 4 curl "FHfAn+ fACH Err(Dtry, @Dtry),
Err(“Wtry, @Wtry') = f ANE+ = (f/\ftTX+(f £)@try) +wfAf (3.1.45)

—1|f|2(“)t7’>_< (f AT @ty +4A YEAPtrx' + Lot

A =X+ VRf + f@n+ f&C+ Erm(X, X)),

Erm(R,%) = f@¢ + 1z® (ftrx —*f <“>trx) +wfBf —wfOf — 1|f|2 (@)

t178.1.46)
+Z<f®i) ey + - ( FRHNT Wiy + f®(f A + Lot
e The transformation formulas for x are given by
Atry' = trx+ div'f + f-n—f-C+ Err(trx, trx’),
) ) 1 . (3.1.47)
Err(try, try') = (f Dirx+f-E=1fPo+ (- Pu—ZIfPA X + Lot

A @Dty = (a)tfx +eurl' f+ fAn—CAf+ Err( @try, (“)tm(’),

(3.1.48)
Err((“)tm_(,(“) X) = (f f) trx+f/\f+(f/\f)w_ |f|)\

@try' + lo.t.,

n-
- ~ _ 1 e 1 (3.1.49)
(f&f)trx + ®§—(f®f) +(FBNw = JIfPATR + Lot
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e The transformation formula for ¢ is given by

('=(— (log)\)—itrxf%—%l(“)tm_(*f+wi—gf+}litrx
éll i trx—i-Err(C ¢,
Bri(,¢) = 3R f 5 (F-Of = 5(f - 0)f + }Lf(f-n)Jrlf(f'C)
L1 X (3.1.50)
DA A+ g hdiv'f 4 feurl' f+ A R

|m>

L DI (A A Ot - L i@y

+E INHEA S X+ Lot

—_

e The transformation formula for n is given by

1 1 1
W =0+ AVsf 4+ < ftrx — < f @trx - wf+E7“7"(77 ),
. A 14‘ (3.1.51)
Brr(n,1) = 5(f- [In+ 5L - X+ 5 /(- Q) = (- + f(f )+ Lot
o The transformation formula for n is given by
I 1 —1y/ 1 . l(a) * g ’
n=n+5A V4f+ Lt trx “f —wf+ Err(n,m'),
3.1.52)
1. 1 (
Brotn o) = 3f R+ 5w — 3(F-Of = U+ Lot
e The transformation formula for w is given by
1 1
AN = w— ST (log A) + = f - (¢ — ) + Brr(w, ),
. X a0 (3.1.53)
Err(w,w') = —Z\f|2u_1 — gtrﬁf\z + 5)\72i &'+ Lot
e The transformation formula for w is given by
1
A =w+ 5 es(log A) — §f ¢ — —f n+ Err(w, W)
1 1
Err{w,of) = f - fw - Zlﬁ% + §f £+ <f Hirx+3 (f AF) @ty (3.154)
1
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where, for the transformation formulas of the Ricci coefficients above, [.0.t. denote ex-
pressions of the type

Lo.t. = O((f, /)T +O((f, )T
containing no deriwvatives of f, f, ' and r.

Also, the curvature components transform as follows

e The transformation formula for a, a are given by
A2 = a+ Err(a,d),

~ ~ ~ ~ ~ 3.1.55
Era,of) = (185 — *f® *B) + (f®f N *f) o+ 202 0) e 160

Mo =a+ Err(a,d),
~ ~ ~ - N 3.1.56
Err(a, o) = —(fOB - [ B+ (fOf - % o fp+ g(ﬁ; f) o+ Z.(o.t. )

o The transformation formula for 8,8 are given by

XAg = 2 (fot 1 W)+ B3, ).

1 (3.1.57)
Err(8,8") = §a~z+ lLo.t.,
3
N =B S (fp+ °f %)+ BB
1 (3.1.58)
Err(B,58") = —§Q.f + Lo.t.
o The transformation formula for p and *p are given by
p'=p+ Err(p, p'),
) 3 3, (3.1.59)
Brr(p,p) =f-B—=f-B+5p(f-f) =5 p(fAL+ Lot
*p/: *,0+ETT( *p, *10/>,
(3.1.60)

Bri( o, W) =—f B Ba o D+ oplfAD+ Lot
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where, for the transformation formulas of the curvature components above, [.o.t. denote
expressions of the type

Lo.t. = O((f, [)°)(p. "p) + O((f, f)*)(ev, B,, B)

containing no derivatives of f, f, o, B, (p, *p), B, and .

Proof. See Appendix Al in [K-S:GCMI] ]

3.2 Wave operators

Consider a spacetime (M, g) with a horizontal structure induced by a null pair (es, e4).

Definition 3.2.1. We define the wave operator for tensor-fields 1 € O (M) to be
Ot := gD, D,1. (3.2.1)

3.2.1 Commutation with ﬁX and DX

Recalling the definition of (T, OF in section [3.1.12 we have:

Proposition 3.2.2. The following commutation formuld™| holds true for ¢ € s, and
X e T(M),

Lx, Do)ty = — 70D, Dhey, — T, DPypyy, — 27
_DV((X)FGVC)¢Cb N DV((X)FbVC)¢aC-

Duwcb - Q(X) rb,ucD'uwac

apc

Proof. See proof of Proposition 2.3.2 in [GKS-2022]. O
Lemma 3.2.3. We have in a vacuum spacetime
O(X°Dgl,) — X’Ds0U, = «*D,D,U, + (D*r,” — %D’Btm)DﬁUa
—2XPR 05, DMU,. + DP X R 4o, U°
~XBep, DU, + %foXMBacﬁMUC + %XBD“BMWUC.

Proof. Straightforward computation using Lemma and Proposition [3.1.28] See
Lemma 2.3.3 in [GKS=2022]. O

18Recall that £ has been introduced in Definition [3.1.25




110CHAPTER 3. THE GEOMETRIC FORMALISM OF NULL HORIZONTAL STRUCTURES

3.2.2 Killing tensor and commutation with second order oper-
ators

Recall that the deformation tensor of a vectorfield )7 is defined as
N7 =DX,y=D,X, +D,X,.

The vectorfield is said to be Killing if )7 = 0. The Kerr spacetime has, in addition to
the symmetries generated by its two linearly independent Killing vectorfields T and Z, a
higher order symmetry defined by a Killing tensor.

Definition 3.2.4. A symmetric 2-tensor K, is said to be a Killing tensor if its defor-
mation 3-tensor 11, defined below, vanishes identically.

I, =DuK,,)=D,K,,+D,K,, +D,K,,. (3.2.2)
Remark 3.2.5. Observe that if X, Y are Killing vectorfields then the symmetric 2-tensor
K=3(X®Y +Y ®X) is a Killing tensor.
We define the second order differential operator associated to a tensor-field ¢ € sy.

Definition 3.2.6. Given a symmetric tensor K its associated second order differential
operator IC applied to a tensor 1 € sy, is defined as

K(1)) = D, (K"D,(1)). (3.2.3)

We now compute the commutators of K with [y in terms of the symmetric tensor II.

Proposition 3.2.7. In a vacuum spacetime, the commutator between the differential op-
erator K and the Ug operator applied to a scalar function ¢ is given by

K, Ogle = ErrlI](¢)

where Err{ll](¢) denotes terms involving 11 given by

1 1 . .
Err{ll)(¢) := D* ((Danw — 5 Dull%, + EDVH"‘W)D”gb - QHWVD‘“D%)
—2(D°M,,,) D*D"¢.

Proof. See the proof of Proposition 2.3.7 in [GKS-2022]. H
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3.2.3 A class of spin-k wave operators with potential

The following class of spin-k wave operators play a very important role in our analysis.
Okt — Vip = N, (3.2.4)
where 1 € s, and V is a real potential. The equation is variational with Lagrangian

L] = gDy D+ Vi -y
where the dot product here denotes full contraction with respect to the horizontal indices.

The corresponding energy-momentum tensor associated to is given by

Qv =Dyt Dt — g (Dat - D0 4 V- 0) = Dy Doy — gLl (3.2

Lemma 3.2.8. Given a solution i) € sy of equation (3.2.4]) we have
. . . . 1
DVQ;W = D/ﬂb ' (Dkw - V¢) + DVwARABVu¢B - §D#V”¢|2

Proof. We have, making us of Proposition
D'Qu = DD,y Dy + Dy (DD, ~ DD, ) ¥~ VD, v - —D Vi)
= Dy¢-D'Dyp + D" Rt — VDb - p — —D WV -y
= D¢ Ok = Vib) + D" Raput” — §DHV|¢\2-

]

Proposition 3.2.9. [Standard calculation for generalized currents] Let ¢ € sy be a solu-
tion of (3.2.4) and X be a vectorfield. Then,

1. The 1-form P, = Q,, X" verifies
1 . 1 . .
D'P, = Q- r+ X(¥) - (Os = Vi) = SX (V)Y + X'D"9 Rt

2. Let X as above, w a scalar and M a one form. Define

1 : 1 1
PuX,w, M] = QX"+ §W D,y — Z|1/)|2(9Mw + Z|¢|2Mu.



112CHAPTER 3. THE GEOMETRIC FORMALISM OF NULL HORIZONTAL STRUCTURES
Then,
1o | , 1 1, 1
D'P, X, w, M| = EQ' — §X(V)|1/J| + §w£[w] — Z|w| Ogw + ZDWOM M)

. . 1 .
+ X”D”w“Rabwwb + (X(Q/J) + §ww) . (Dkw — Vz/;) .
Proof. Immediate verification. See also the proof of Proposition 4.7.2 in [GKS-2022]. O

3.2.4 Decomposition of [J; in null frames

Lemma 3.2.10. The wave operator for 1 € s, is given by

Oty = —%(V3V4¢ + V4Vs1p) + (g - %ﬁ”x) Vap + (W - lt?” X) Vs

2 (3.2.6)
+ A+ (n+n) - Vo,

where A = VNV, denotes the horizontal Laplacian for k-tensors. Moreover If 1 is also
0-conformal invariant we also have

: 1 1 1
Optp = _5((C)v3 @OV, + ©v, (C)V?)ZD) _ §trx(c)v4z/1 _ §trx(C)V3w

+ AW+ (n+1n) - DV,

(3.2.7)

Proof. See the proof of Lemma 4.7.4 in [GKS-2022] for the first part. The second part
follows then easily from first and the definition of the conformal derivatives. O]

Corollary 3.2.11. The wave operator for 0-conformally invariant 1 € s;(C) is given by
the formula (with A =ay ...ay.)

. 1 1
Optpa = — OV, OV504 — girx OV sha — 5 X OVstha + D Dogtha +2n- Vs

ko (3.2.8)
+ Z Raic4377/}a1 ¢ ag
i=1

Proof. Tt follows easily from the commutator formula for [V, (V] of [3.1.20] applied
to signature s = 0. O
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3.3 Integrable S-foliations

We consider the case of a given foliation of our spacetime by compact two dimensional
surfaces S. At every point p of a given S surface we take es, e4 to be orthogonal to S. We
are thus in a situation when our horizontal structure is integrable, i.e. @try = @try = 0.
Thus, in this case the second fundamental forms Y, x are symmetric. The null structure
and Bianchi equations simplify considerably. B

Proposition 3.3.1. We have

OVstry = —|XI> —tr}® +29divg +2¢ - (n+ 1),
0 = 2(c)curl§+2§/\(—77+ﬂ),
OV,x = —trxX+ OVRE+EB(n+1) — a
~ 1 ,
OVstry = —X ¥ — §trxtrx+2(c)dw77—l—2(£-§+|77|2) + 2p,
0 = Q(C)curln—XA>?+2§Af—2*p,
o~ 1 ~ P c ~ ~ ~
©OV,y = —5(157“ XX + trxx) + OVen + ERE + n&m,
o 1 ,
(C)V4t7’z = XX~ §trxtrz+2(c)dwﬁ+2(£-§+ \ﬂ|2) + 2p,
0 = Q(C)curlﬂ—i/\z+2f/\§—l—2*p,
. 1 ~ ~ 5 5 =
(C)V4X = —5(751"&)( + trxX) + (C)V®Q+ ERE + n&m,
. 1 :
OVatrx = =[P = 5trx® +29divg+ 26 (n+n),
0 = 2(C)curl§—trx(“)trx+2§/\(—ﬂ+77),
OV = —trxx+ OVRE+ER(+n) —a,
. 1
OV — OV = —x-(p—n) — Strx(n—m) + 8,
C C = 1
OV = Vs = =X —n) = 5rx(n—n) = .
(©) g0 < Lo
divy = 3 V(trx) — B,
- 1
©divy = §(C)V(trx) + 8
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Proposition 3.3.2. The Bianchi equations take the form

~ 1 ~ ~ o
V30— OVERE = —5trxa +4n®B =3(pX+ P X);
OV, - Odiva = —2trxB+a-n+3(Ep+ ¢ p),
OVs8+ ©Ddive = —tryB+28-X+3(m+ p*n)+a-§
. 3 1
OVap— Qdivg = —trxp+2-B-2-f- X o
(¢) * (¢) 3 * % « 1/\ "
Vi p+ Yeurlp = —itrx p—2n- "B —2- @+§X- a,
© ©) gi 3 1o
Vip+ “Ydivp = —itrxp—Qn-g—l—Zgﬁ—i)(g,
3 1.
OV o+ Qeurl B = —5irx p—2n- *B—2¢- *ﬂ—§X' ‘o,
OV.B— Ddivg = —trxB+28-X—3(m— "p'n)—a-§
(C)V3ﬁ+ ©Odiva = —2trxf—a-n—3Ep— "¢ ),
~ 1 = o * kS
OV, + VRS = —gtrxa —4n@f = 3(px — "»"X).

3.3.1 Diez operators

Definition 3.3.3. Define the rank of an horizontal tensor v to be the negative of its scale.
Thus curvature components «, 3, ... have scale —2 and rank k = 2 while Ricci coefficients
have scale —1 and rank k = 1. Note that the scale of the metric is 0 and its derivative of
it lowers the scale by 1.

Definition 3.3.4. If f is a horizontal tensor of signature s and scale k we define

1
Vi = OV + §<1 — s+ k)tryy )
3.3.1

1
VHy = OV + 5(1 + 5+ k)tr i
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Remark 3.3.5. According to this definition

Via = (C)V3CX—|—%(1 — 24 2)trxa = (C)Vgozjt%trxa

Via = (C)V4a+%(1+2+2)tr’xo¢ = OV, 0+ trxa

Vi = ©OVi8+ %(1 — 1+ 2)trx8 = IV38+ tryf

Vig = ©OV.8+ %(1 +1+2)tryB = OV.B+2tr B

Vip = (C)Vgp+%(1 —0+2)trxp = (C)Vgp—l—gtrxp

Vip = (C)V4p+%(1+0+2)trxp: (C)V4p+gtrxp
vi p = v, *p+%(1—0+2)t7’x =V, *p—i-gtrz n
v = Oy, *p+%(1+0+2)trx »= v, *p—l—gtrx *p

Also, since V?a has signature s =1 and rank k = 3

1 3
Vivia = OVy(Via)+ 5(1 — 1+ 3)tryVia = OVy(Via) + Etr’XVfoz

1 5)
Vivia = ©Ov(Via)+ SA+1+ 3tryVia= “V,(Via)+ §t@v§*a

and similarly for all other second and higher derivatives.
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Thus Proposition takes the form

Via
Vi
Vi

vi

p

Vi p

vi

p

Vi
(C)V4é
viB

vi

o

= —(C)Curl§—2n~ 82

= OVRB+4RB —3(pX+ V),
= Odiva+a-n+3E+ ¢ ),
= —Odivo+28-X+3(m+ N +a-§

L.
1
= —(C)curlﬁ—Qﬂ- B—2¢- *§+§K- “a,

: 1
= —(C)dwé—Qn-ﬁ—i—%-ﬁ—éx-g,

* 1/\ *
5—§x- Q,

= divg+26-X~3(m— "»'n)—a-§
= —diva—a-n-3(E— "¢ ),
= —IVRB—4®B —3(pX — P *X)-

Using the definition of the Hodge operators, see Lemma [3.0.33| and recalling the formulas
—divo = (Vp+ "V "p) = Pi(—p, p) and —divg = (Vp — *V p) = —Di(p, "p), see

(13.1.12), we deduce

Proposition 3.3.6. The Bianchi equations take the form

Via
Vi

Vi
Vf(_p’ *P)

Vip. )
©v, B
Vi

Via

258 + @B — 3(pX + *p *X),
Da+a-n+3Ep+ € 7p),

D(—p, p) —trxB+28-X+3(n+ o) +a-,
~PB 20 (8, °B) + 2 (6.~ *B) + 1%

1

~PiB—2- (8, "B)+ 2% (B,—"B) — 5%

Pilp, p)+28-X—=3(m— "pn)—a-§,

—Dha—a-n—-3Ep— " p),

1 ~ ~
258 — 5157" X —4n®B — 3(pX —

* *A)

pX

Remark 3.3.7. The division in Bianchi pairs is important as we shall see later.
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3.3.2 Commutator formulas for the diez operators

Lemma 3.3.8 (Commutator Formulas). Given U of signature s and rank k we have

1. We have
k: .
OV, OVUs = =%, OVUs+n0OV3Us+§ ViU + D> RaeslUa, © o,
i=1 (3.3.2)
1
—s(x-n—xé—i—ﬁ)UA—5(1—s+k)Vtr>_<UA

2. We have
k .
[(C)Vf7 (C)Vb] UA - _S(\bc (C)VcUa + ﬂb (C)V4Ua + fb (C)V3Ua + Z Raic4bUa1 ‘ ak

P (3.3.3)
—s(x-n—xf—ﬁ)UA—%(l—s—l—l{:)VterA

3. We have

k
: 1
[(Ov# OVHU, = 2(n, —m) OO, U, + Z Ro3Ua; o — s(4p — étrxtr X —2n-1)

i=1
o(R T €U (3.3.4)

+ ((1 —s+k)(Ddivn+n*) — 1 +s+k)(Ddivy+ |77]2)>U
Proof. Since U has rank k£ and signature s, VU has signature s and rank k + 1, (C)V?fU

has signature s — 1 and rank k£ + 1 and (C)VfU has signature s + 1 and rank k& + 1.
Therefore

[(C)V?ﬁfﬁ7 (C)Vb]U _ (C)vf((C)va) _ (C)vb (C)V;fE

1
= ((C)v3 + 5(1 stk 1)trX) (C)VbU _ (C)Vb((C)V3U + ter)
1 1
= [V, OV, U + 5(1 —s+k+ 1)trX(C)VbU - 5(1 — s+ k)try CAvA

1
—5(1 — s+ k)ViryU

1 1
= [Ov;, OV, U - §trX(C)VbU - 5(1 — 5+ k)VtryU
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Hence, in view of Lemma |3.1.20{ and (“)trx =0,

k
[(OVE, OVJU = =R, OVl +1 V30U + & OViUs+ Y Raeila, © o,

i=1

1
_S(X'”_X'§+Q)UA—5(1—s+k)Vter

as stated. The commutator formula for [(C)Vf, (©V,]U is derived in the same manner.

Using the definitions of (C)Vf, (C)Vf we deduce

1
[OVE OVE U = (99, OFIU = (14 5+ ROVt — (1= 5+ B OVaty) U
In view of the null structure equations, see Proposition [3.1.15] since “try = (a)trx =0,

1 ~ ~
OFVstry = 2p— §trxtrx +2(“divn + m*) —X-X+2-¢
1 ) ~ o~
(C)V4trz = 2p— §trXtrX + 2((C)dwﬂ+ |ﬂ|2) —X-X+2-¢
we deduce

1
Clvid <C>vﬂ U = [V, ©Ov,]U- s<2p - St = XX+ 2 §)U
+(1—s+ k:)((c)divﬂ—i— |Q|2) —(1+s+ k:)((c)dz'vn + |77|2)

k
= 2(n, —m) OV, U, + Z Ro,pisUs, o, — s(2p—2n- n+2¢- §)U
i=1

1 ~ ~
—s<2p—§trztrx—x-x—l—2§-§>

+(1—s+k)(“divy+[n*) — (L+s+k)(Ddivn+|n?)

k
= 2(n, = m) OViUa+ > RapssUs, * o,

i=1
1 ~ ~
—5(4,0—5trxtrx—2n-ﬂ—z~x+4£-§)(]
(1= s+ k) (Ddivn + |n?) = (1+ s+ k)(Ddivn + o) )U

as stated. O
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The commutation formulas with the diez operators become particularly simple in the case
of linear perturbations around Schwarzschild when X, X,7n,71,¢,§, 8,8, "p are all linear
quantities, i.e. they all vanish in Kerr.

Corollary 3.3.9. For linearized perturbations near Schwarzschild we have, for any linear,
horizontal, tensorfield U of signature s,

(OVE, OV)U =[OV, VU =0,
and

1
[Ov# OVAU = —3(4p—§trxtrx)U

Leibnitz rule for the diez operators

Lemma 3.3.10. We have

1
OVF (1 - 2) = OVEY by + 91 - OVF oy — Ztrxap - Py

2 (3.3.5)
OV (Y1 - 1ba) = OVT1 s +1hy - OV oy — 5” X1 -
Also
OVE (1 -y - hy) = OV g - g+ 01 - OV - o3 + 11 - 0y - OV
— trxr a1 (3.3.6)
OVF (1 b - 3) = OVF -y b3 +1p - OVF by - by + 4y -t - OV iy
— tr x1 - o - 13

Proof. Assume sign(v;) = s;, rank(¢;) = k;. Note that sign(v; - 19) = s; + s2 and
rank(y - ¥y) = ki + ko. Therefore,

OVE (1 - )
= OVs(¢1- o) + %(1 = (s24 82) + (h1 + ko) ) tr x¥Pn - 4o

= OVt -y + 1 - OVt + %(1 — (52 + 52) + (ky + k) ) tr xtbr -
= (OVy + %(1 — 51+ ky)tr ) o+ - OVt + %(1 — 52+ ka)tr Xv»)
—%HX% o

1
= OVEp g+ - OV, — §trX¢1 P2
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The second identity in (3.3.5) follows in the same manner. Similarly, sign(¢; - g - 13) =
s1 + S2 + s3 and rank (i - W9 - 13) = ky + ko + k3. Hence

1
OVE = Vst + (1= i+ ki) tr Xy

and

OVE W ahs) = OVa(ehr by 9) + 1—Zs+zk b X1 - o - s

from which the result easily follows.

3.3.3 Double null and geodesic foliations

Definition 3.3.11 (Double null). An optical function u is a reqular solution (i.e. du # 0),
of the Eikonal equation

g 0pudsu = 0.

In that case L = —g®Pd5ud,, is null and geodesic, i.e. DL = 0 and is called the null
geodesic generators of the null hypersurfaces generated by the level surfaces of u.

Definition 3.3.12. Consider a region D = D(u.,u,) of a vacuum spacetime (M, g)
spanned by a double null foliation generated by the optical functions (u,u) increasing to-
wards the future, 0 < u < u, and 0 < u < u,. We denote by H, the outgoing null
hypersurfaces generated by the level surfaces of uw and by H,, the incoming null hypersur-
faces generated level hypersurfaces of u. We write S, ., = H, ﬂH Let L, L be the geodesic
vectorfields associated to the two foliations and deﬁne{:gL

_QQ —g(L, L)} (3.3.7)

The normalized symmetric null pair is defined by,

€3 = QL7 €4 = QL? g<e37 64) =-2

Given a 2-surfaces S(u,u) and (e,)q—12 an arbitrary frame tangent to it we recall the
Ricci coefficients,

Ty = 9(ey, De ew)s  Ap,v=1,2,3,4 (3.3.8)

90bserve that the flat value of € is 1.
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These coefficients are completely determined by the following components,

Xab = g(Dae4, 6[,), Xop = g(Daeva 6b)7

1 1
N = —5 g(D36a, 64)7 Qa = _ég(D‘lea’ 63)
1 | (3.3.9)

w= —Zg(D4€3, ed), W= —Zg(D3€4, es),
1
Ca = §g(Da€4, 63)
where D, = De(a), D; =D.,,D,=D,,.

Lemma 3.3.13. For a double null foliation we have,

1 1
W= —§V4(10g Q), W= —§V3(10g Q),
Na = (a + Vaaog Q>’ ﬂa = _Ca + va(log Q)

(3.3.10)

Proof. Straightforward verification. Compare also with the proof of Lemma [3.3.15| below.
O

For a more detailed exposition of double null foliations sed®’| [KI-Nil] and in [Chr-BH]| in
the context of Christodolou’s famous resulﬂ on formation of trapped surfaces.

Definition 3.3.14 (Geodesic). A geodesic foliations are given by the level surfaces of
function (u, s) where u is an outgoing (or incoming) optical function u,

gf Opulpu = ¢, udyu = 0
and s verifies,

L(s) =1, L = —g™04ud,.

We denote S, s the 2-surfaces of intersection between the level surfaces of v and s. We
then choose e = L and ez the unique null vectorfield orthogonal to S, s and such that
g(es,eq) = —2. We also introduce

Q= e3(s). (3.3.11)

20 [KI-Nil] contains a proof of the stability of the Minkowski space in the exterior of the domain of
influence of a compact region. A modern version of the result can be found in [Shen:Mink-ext]
21 See also [KI-Rod2] and [An-Luk] for more recent versions of the result.
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Lemma 3.3.15. We have

W= 5 = 07 n= <7 Q = _Ca eg(Q) =S 64<Q) = _2(LJ (3312>

Proof. Since ey is geodesic, we have w = & = 0. Next, note that
eo(u) = eg(s) = eq(u) =0

and
es(u) = gles, —L) = —g(es,eq) =2, eq(s) =1.
Applying the vectorfield

[es, ea] = § 4+ (1 — Cats — X,
to u we deduce n = (. Applying then
e, eq) = §a€4 — X0
to s we deduce €,(22) = —¢ . Applying
[e4;€a] = (N + ()as — Xabes

to s, we deduce that
0= —es(ea(s)) = (n+ Qeals) =n+¢
and hence 1 + ¢ = 0. Finally applying

[647 63] — _4<a6a - 2&64

to s we infer eyq(es(s)) = —2w, i.e. e4(2) = —2w as desired. O

3.3.4 Teukolski and Regge-Wheeler equations in the integrable
case

3.4 Main equations in complex notations

In this section we introduce complex notations for the Ricci coefficients and the curvature
components with the objective of simplifying the main equations. From the real scalars, 1-
tensors and symmetric traceless 2-tensors already introduced, we define their complexified
version which results in anti-self dual tensors.
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3.4.1 Complex notations

Recall Definition of the set of real horizontal k-tensors s, = s,(M,R) on M. For
instance,

e (a,b) € s is a pair of real scalar function on M,

e f € s, is a real horizontal 1-tensor on M,

® U € 5, is a real horizontal symmetric traceless 2-tensor on M.

By Definition [3.0.9} the duals of real horizontal tensors are real horizontal tensors of the
same type, i.e. *f € s and *u € s,.

We define the complexified version of horizontal tensors on M.

Definition 3.4.1. We denote by s,(C) = s,(M,C) the set of complex anti-self dual k-
tensors on M. More precisely,

e a+ib € 50(C) is a complex scalar function on M if (a,b) € s,

o '=f+i*fes(C)isacomplex anti-self dual 1-tensor on M if f € s,

o U=u+i"*u € sy(C) is a complex anti-self dual symmetric traceless 2-tensor on M

Zf U < 59.
Observe that F' € 51(C) and U € s5(C) are indeed anti-self dual tensors, i.e.:
*F = —iF, U = —il.
More precisely
Uip = Uz =i "Upp = i €13 Upp = —ilUyy, U = ilha.

Recall that the derivatives V3, V4 and V, are real derivatives. We can use the dual

operators to define the complexified version of the V, derivative, which allows to simplify
the notations in the main equations.

Definition 3.4.2. We define the complexified version of the horizontal derivative as
D=V +i*V, D=V —i*V.

More precisely, we have
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e fora+41be ﬁo(C),

D(a+1ib) = (V+i*V)(a+1b), D(a+ib) := (V —i *V)(a +ib).

o For f+i*fes(C),

D-(f+i"f) = (V+i*'V)-(f+i"f) =0,
D-(f+i"f) = (V=i"V)-(f+i"f),
DR(f+i*f) = (V+i*V)S(f +i*f).

o Foru+i*u € s9(C),

(u+i*u) == (V+i*V)-(u+i*u)=0

D.
D-(uti*u) = (V—i*V)-(u+i*u).

Note that

*D = —iD.

For F = f+1i *f € s1(C) the operator —%D@ is formally adjoint to the operator D - U
applied to U € §5(C). For h = a + ib € 5¢(C) the operator —Dh is formally adjoint to
the operator D - F' applied to F € 5,(C). These notions makes sense literally only if the
horizontal structure is integrable.

Lemma 3.4.3. For F = f+i*f €5/(C) and U =u+1i *u € $5(C), we have

(DRF)-U = —2F-(D-U)- ((H+ H)®F) - U+2D-(F-U).  (3.4.1)

Proof. We look at the real parts. Then

(VRf) u = (Vafs+ Vifa — apdiv f)ua, = 2(Vafs)tas = 2V (uap fo) — 2(divu) - f
Using Lemma [3.0.41] applied to £ = u - f we obtain
(VEF) - u = 2V*(uafs) =2 +1) - (u- f) = 2(diva) - f
= =2(divu)- f—((n +Q)<§>f) -~ + 2div (u - f)
By complexifying, we obtain the stated identity. O]

Lemma 3.4.4. The following holds.
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o If&nes
gn+iten = s(€+i%e) @Fim),

((€+i"Bm+im).

NSRS NN

E&n+i *(E®n) =

[f?]éﬁl, U € 8§59

u-n+ifu-n = §(u+z w) - (n+1*n),

1 -
u-n+i*(u-n) = §(u+i*u)-(n+i*n).
o Ifu,v € sy
. 1 . —
u-v+ifu-v = é(u—l—z*u)-(v—i-z*v).
e If(a,b) € 59
Va— *Vb+i( *Va+Vb) = D(a+ib).
o [fE e s
. . 1= .
divé+icurlé = 517-(5—1-2*5)
~ ~ 1~
VEE+i"(VRE) = SDB(E+i"0).
o [fué€ s,
divu+1i *(divu) = §Z_D(u+z*u)
Proof. Straightforward verification. O

Lemma 3.4.5. Let E,F € 5,1(C) and U € s5(C). Then

E®F -U)+ FR(E-U) = 20E-F+E-F)U. (3.4.2)

Proof. See proof of Lemma 2.4.5 in [GKS-2022]. O
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Leibniz formulas

We collect here Leibniz formulas involving the derivative operators defined above.

Lemma 3.4.6. Let h be a scalar function, F' € $,(C), U € §9(C). Then

-(hF)=hD-F+D(h)-F,

-(hU) =D(h)-U + h(D - U), (3.4.3)
DR(F-U)=2(D-F)U +2(F -D)U,

Also,
F&(-U)=2(F-D)U = 4F - VU, (3.4.4)
(F-D)U+(F-D)U =4f - VU =2(F +F) - VU. o
Proof. Straightforward verifications, see section ?7. m

Lemma 3.4.7. As a corollary of (3.4.4]) we derive the following formula for U € s5(C)

DR(MD-U) = 20U —4AWKU —i( Dty Vs + @iry V) U (3.4.5)
where
1 1 1 1
MWK = ——trviry — — @ @y Zy.y—Zp
i xtrx = 3 i Wi+ 5X X = 7p
Proof. See proof of Lemma 2.4.7 in [GKS-2022]. O

3.4.2 Main equations in complex form

We now extend the definitions for the Ricci coefficients and curvature components given
in Sections |[3.1.1]and [3.1.2], to the complex case by using the anti-self dual tensors defined
above.

Definition 3.4.8. We define the following complex anti-self dual tensors:

A=a+i"a, B:=p+i "8, P:=p+i‘p, B:=+1"8, A=a+i’q
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and

In particular, note that

~ ~

trX =trx—iDtry, X=x+i"%, trX=trx—iDtry, X=x+i'%

Remark 3.4.9. The pairing relations described in section[3.1.5 imply the following trans-
formation rules with respect to the interchange of L = e4, L = e

A<~ A B+ —B, P& P trX < trX, )?Hz, H+ H Zo
Z —7Z, wew, D—D.

(53]

Note the anomaly P <> P rather than P « P. This is consistent however to setting
P=p—1i % and then P = P.

The complex notations allow us to rewrite the Ricci equations in a more compact form.

Proposition 3.4.10.

1 — - — 1~ =
VstrX + (0 X)* + 2wtrX = D-E+E-H+E-(H-22) - ;X X,
VaX + R X)X +2w X = SDRE+ JZ0(H + H —27) - A,
1 — — = 1~ =
VgtrX—i—étrXtrX—thrX = D-H+H -H+2P+=Z-=Z2—=-X"-X,
VX + -trX X —2wX = -DRH+ -HRH — -trXX + -Z®Z,
2 2 2 2 4
1 I I — = 1~ =<
V4t7"£+§trXtrX—2wt7X = D-ﬂ+ﬂ-ﬁ+2P—|—:-g—§ - X,
Vi X+=-trXX—-2wX = -DIH+-HRH — -tr XX + -=RZ,
2 2 2 2 4
1 9 = = = 1ls =
V4trX+§(trX) + 2wtrX = D.:+;~H+:.(H+22)—§X-X,
VX + R(trX)X + 20X = 5D@E + 5E@(ﬁ+ H+27)— A
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Also,
v32+%trg(Z+H)—2g(2—H) = —2Dg—%X-(?+F)
+§trX§+2wg—B+%E X,
V4Z+%trX(Z—ﬂ)—2w(Z+ H) = 2Dw+%)? (—Z + H)
—%trﬁ:—ZgE—B—%E-X,
ViH-ViE = — WX(H-H)~ X (H-H)-wE+B,
V,H — V32 = —%W’_X(H—ﬂ)—%)?'(ﬁ—ﬂ)—ZLQE—B,
and
Vaw+ Viw —dww = - = (m—n)-C+n-n = p.
Also,
l— 5 1o — 1 11— . —
§D - X+ §X AR §DtrX + §trXZ —iS(trX)H —iS(trX)= — B,
DX X7 = [DOX - 5XZ—iS(0X)H i S(trX)E + B,
and,
curl ¢ = —%)?/\X—l—}i(trx(“)trx—trX(a)trx)+w(“)trx—c_u(“)trx+ *p.

We rewrite the Gauss equation in Proposition for complex tensors.

Proposition 3.4.11. The following identity holds true for ¥ € s;(C) for k =1,2:

1
Vo, ViU = <§(<a>m<v3+ @ iy V) — ik (h)K\I/) s (3.4.6)
where
1 — 1 — 1= 1= & 1 1—
WK = — 4 XtrX —-trXtrX +-X-X+-X-X—-=-P—=P.
Str trX 8157“_157“ —1—4 _—1—4 A5 5

The complex notations allow us to rewrite the Bianchi identities as follows.
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Proposition 3.4.12. We have,

1 DN
V3A—§D®B = ——trXA+4wA+ (Z+4H)®B 3P
1— _
V4B—§D-A = —2trXB—2wB+—A-(QZ+ H)+3PE,
ViB-DP = —trXB+2wB-+B-X +3PH+ A =,
1 . — 3 1 = = 1~ —
1— 33— 1 — 1=
VsP+-D-B = ——ttXP—--(2H—-Z)-B+Z-B—-X A,
2 2 2 4
—_ s 1 —_—
V4B+DP = —trXB+2wB+B-X—3Pﬂ—§A~E,
1— .
V3§+§D-A = —QtTXB—QwB——A (-2Z + H)—-3PZ,
1 R -
V4A+§D®§ = ——trXA+4wA+ (Z 4H)®B —3PX.

Proof. Straightforward verifications by complexifying the Bianchi identities of Proposition
0.1.6l O

Remark 3.4.13. Note that both the complex null structure and null Bianchi equations
are both invariant with respect to the pairing relations of Remark[3.4.9.

Remark 3.4.14. Note that the complex Bianchi identities can be also derived directly
from the equations

D°Rass =0, R=R+i'R.

In view of (BID). a( *R) = “a(R), a( ‘R) = — “a(R), 4('R) = *A(R), B(‘R) —
— *B6(R), p( *R) = *p and therefore

Roavs = Aup,  Rasza = 2Ba,  Rauza = 4P, Ruzsa = 2B, Rz = A. (3.4.7)

The derivation is done in appendix

3.4.3 Main complex equations using conformal derivatives

Definition 3.4.15. We define the following conformal angular derivatives in the complex
notation:
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e For a+ib € 50(C) we define
©D(a+ib) = (OV+i*OV)(a+ib).
o For f+1i*f €5 (C) we define

OD(f+i*f) = (OV+i*©OV).(f+i*f),
ODE(f+i*f) = (OV+i *OV)B(f+i*f).

o Foru+i *u € 55(C) we define
©OD . (u+1i*u) = ((C)V +1 (C)V) (w41 fu).
e In all the above cases we set
Op = Oy _;0y,

These complex notations allow us to rewrite the null structure equations as follows.

Proposition 3.4.16. We have

1 — — 1~ =<
OVsrX + S(rX)? = YD-E+EZ-H+EZ-H- X X,
~ ~ 1 ~ 1_~
OV X +R(rX)X = 3 ©ODREZ + SE0(H + H) - A,
(©) 1 Op . T T - =_1%.%
VgtrX—i-EtrXtrX = D-H+H~H+2P+g-:—§X~X,
~ 1 ~ —~ ~ —~ 1_~
OV X +-trXX = -~9DRH+ —H®H — ~trXX + -ZQE,

2

N —
N

1 — — — — 1~ =
(C)V4t7ﬁ+§trXtrX = <C>Dﬂ+ﬂ-ﬂ+2p+5.g—§x.g,
OVX+-trXX = ~-O9DIH+-HRH — ~trXX + ~ZQ=
V4_+2r X 5 POH + 5 HOH — SirXX + - ,
(©) Ly Op. 5= . 4= s %
V4tTX—i—§(trX) = D':+:~H—0—:~H—§X~X,

~ ~ 1 ~
OV,X +R(trX)X = Z9DRE +
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OV H - UViE = o X(H-H)- ;X (H-H)+B,
1 la — —
OV,H - OV, = —5trX(H - H)— X - (H - H) - B.
Also,
§(C)D X = 5 IDirX —iS(trX)H — i$(trX)= — B,
l— o —
5@)1)-5 = §<C>Dt@—i3(mﬁ)ﬁ—z'%(trX)§+§.

The complex notations allow us to rewrite the Bianchi identities as follows.

Proposition 3.4.17. We have

1y~ 1 . N
(v, 4 — 5 ©DRB = —5trXA+2H8B - 3PX,
1—— 1
(C)V4B—§(C)D~A = —2rXB+A- H+3PE,
— JE— A~ — 1 —
©OV,B — ©ODP = ~triXB+B- X +3PH + ;A -E,
1 — 3 - 1~ —
(C)V4P—§(C)D~B = —;iXP+ H-B-E-B- X 4
1— . — 1=
(C)V3P+§(C)D-§ — —gtrgP—H-§+§-B—ZX-A,
—_— P 1 —
©OV,B+ ©pp = ~trXB+B-X-3PH- A%
1—— _ -
<C>v3§+§<c>z>-,4 = —2uXB-A-H-3PE,
1 ~ 1 A~ =
©OV,A+ 3 ©DRB = —5trXA—2H&@B - 3PX.

Remark 3.4.18. The complex Bianchi equations can also be derived directly from the
equation D*Rqgy5 = 0, see Remark[3.4.3,

3.4.4 Connection to the Newman-Penrose formalism

In the Newman-Penrose NP formalism, one chooses a specific orthonormal basis of hor-
izontal vectors (e, e2) and defines all connection coefficients relative to the complexified
frame (n,l, m,m) where n = %63, [ =e4, m = ey +iey, M = e —iey. Thus, all quantities
of interest are complex scalars instead of our horizontal tensors such as s;,8,. The NP
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formalism works well for deriving the basic equations, but has the disadvantage of sub-
stantially increasing the number of variables. Moreover, the calculations become far more
cumbersome when deriving equations involving higher derivatives of the main quantities,
in perturbations of Kerr. Another advantage of the formalism used here is that all im-
portant equations look similar to the ones in [Ch-KI|. We refer to [NP] for the original
form of the NP formalism.

The formalism used here is also related to the so-called Geroch-Held-Penrose formalism
GHP formalism, which also introduced derivatives with boost weights, which are the
scalar equivalent of the conformal derivatives used here, see Lemma [3.1.13] Nevertheless,
the GHP formalism still involves complex scalars instead of horizontal tensors. We refer
to [GHP] for the original form of the GHP formalism.

3.5 The wave operator using complex derivatives-See
section 4.7.3 in [?]

We now express the laplacian in terms of complex derivatives. We summarize the result
in the following.

Lemma 3.5.1. We have for i € 55(C),
DR(D-¢) = 40 —2i (Dt Vs + WiryVy) o —8 WKy (3.5.1)
where WK is defined in ([3.1.9). In particular, in perturbations of Kerr we have

DRD ) = 40otp —2i (DtrxVy + DiryVy) ¥
+2 (tr Xtrx + @) gy (“)tr)_< + 4,0) v+ (Ty-Ty) -9, (3.5.2)
DR(D-¢) = 4050 —2i (“DtryVs+ @DiryVy) ¢

1 — 1, —
+2 (itrXtrX—i- §trﬁtrX +2P + 2P) v+ (Ty-Ty) 1. (3.5.3)

Proof. See section 4.7.3 in [7]. O

We rewrite the above using the conformal derivatives introduced in Lemma [3.1.13]
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Lemma 3.5.2. We have for ¢ € s5(C) s-conformally invariant,

(C)D@)( D . V) =4 (C)A2¢ — 9 ((a) try (C)V3 + (@ trx (C)V4) 0

+ 2[ (tr Xtrx + @) ¢y (“)tr)_( + 4p)
1 (3.5.4)
— 1S (ﬁ(trx(“)tm_(— trx(“)tm() + 2 *p) }@D

+ (g -Ty) - ¢
where 9Ny := 4 OV, OV, is the conformal Laplacian operator for horizontal 2-tensors.
Proof. See section 4.7.3 in [?]. O
By putting together the canonical expression for the wave operator given in Lemma[3.2.10
and the expression for the Laplacian given in Lemma [3.5.1], we obtain the following.
Corollary 3.5.3. We have, for 1) € 55(C),

. | - 1 1
Loy = =V V3h + ZD@(D <) + <2w — §trX) Vi — itrﬁvzygb +2n - Vi
] ] (3.5.5)
+ (_§tTXtTX —3 @ try (a)tm_( - Zp) V+2i(p—nAn) v+ (Ty-Ty) -0,
which can be rewritten as
. 1 = 1 1
Uy = =V, V3 + ZD®(D ) + (Zw — étrX) Vi) — Etrng +2n-Vy

(3.5.6)
+ <—itrX@ - itvﬁﬁ — 2?) v =2i(nAn) v+ (T Ty) - ¢

To do from the Bianchi equations using the hodge operators
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Chapter 4

Derivation of the main equations

4.1 Teukolsky equation for A

It is known that the curvature components A and A satisfy wave equations which decouple
from all other components at the linear level, the celebrated Teukolsky equations. In this
section we derive, using our formalism, the corresponding Teukolsky equation for A while
keeping track of the error terms generated by the perturbation from Kerr expressed in
terms of (I'y, I'y).

4.1.1 The Teukolsky equation for A

Proposition 4.1.1. The complex tensor A € s5(C) satisfies the following equation.:
L(A) = Er[L(A)] (4.1.1)
where

P pp— 1
L(A) = -V, OV;4 + 1 DD - A) + (—ﬁtrX — 2trX) ©V5A
(4.1.2)

1 — - — PO
— X OViA+ (4H + H+ H) - OVA+ (—irXtrX +2P) A+ HS(H - A),
with error term expressed schematically
Er{L(A)] = r (T, B) + UV,E-B+Ty-T,- A (4.1.3)

Proof. See proof of proposition 5.1.1. m

135
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4.2 Generalized Regge-Wheeler equation for g

In this section we derive the generalized Regge-Wheeler-type equation.

4.2.1 The invariant quantities () and q

We start with the following lemma.
Lemma 4.2.1. Let C and Cy be scalar functions. The expression
Q(A) = V3OVA + L OV3A 4 CrA € 55(C) (4.2.1)
is 0-conformally invariant provided Cy is —1-conformally invariant and Cy is —2-conformally
mvariant.
Proof. Direct verification in view of the definition of the conformal derivative (V3. [

Definition 4.2.2. Given a fived null pair (es,es) and scalar functions r and 0 as in
Section 4.1 of [GKS-2022] we define our main quantity q € s2(C) as

0 = ¢7°Q(A) = q@’ (Vs IV3A+ CLIVzA + CLA) (4.2.2)

where ¢ = r +iacos B, and the scalar function Cy, Cy are given by

(@) gy, 2
Cy=2try —2 Xy @ gy,
= trx = ( )
- 4.2.3
1 9 (a) 9 3 (a) t7’X4 ] (a) (a) tTX3
Co = —trx* —4Ytry* + = 5+ | —2trxYiry +4 = ].
2 = = 2 Irx = = trx

Remark 4.2.3. Note that q is independent of the particular normalization. More precisely
if e = A tes, e} = Aeq and A = N*A then q' = q.

4.2.2 The derivation of the gRW equation for g

We now state the first main result of Part I concerning the wave equation satisfied by g.
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Theorem 4.2.4. The invariant symmetric traceless 2-tensor q € s9(C) in Deﬁm’tion
satisfies the equation

———Vrpq—Vq = LgA] + Err[0yq], (4.2.4)

where:

o T is the vectorfield given by Definition see also Remark 7?7 below.
e The potential V' is the real scalar function given by

4 r?—2 2a®  4a®cos® 0
V = WT m27"+ € a‘c|o68 (r* 4+ 6mr +a*cos® ),  (4.2.5)
q r q

which for a = 0 coincides with the potential of the Regge-Wheeler equation in
Schwarzschild, i.e. V = —tr xtrx + O('%'), see also Remark 7?7 below.

o Ly[A] is a linear second order operator in A, given in the outgoing frame by

8a’A SaA
3
LAl = qq < - WVTV?,A - WVZVBA

+Wy VAA+WsV3A+W - VA+ WOA) ,

where Wy, W3, Wy are complex functions of (r,0) and W is the product of a complex
function of (r,0) with *R(J), with the following fall-off in r

_ _ _ _ a
Wi = q@°Ws = q@?W =0 (a),  q@°Wo =0 (;) :

o Err{laq] is the nonlinear correction term, which under the additional condition
HeTl,
18 given schematically by the expression

Brritaq) = r®0=3 (T, - (A, B)) + Vs (r*0=*(T'y - (4, B)))

4.2.6
+ 051<Fg -q) + rio=? (Fb Ty - Fg)' ( )
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4.2.3 The real part of the gRW equation

Since q € §9(C) is a complex anti-self dual tensor, we can decompose it as

Q=1 +i (4.2.7)

for some ¢ = R(q) € s2(R). Taking the real part of (4.2.4)), since V is real, we then obtain
an equation for v, which is given by

4a cosf

Oty + g Ve Ve = R(Lq[A]) + R(Err[Dsq]).

We summarize in the following.

Proposition 4.2.5. The tensor ¢ € s55(R) satisfies

. 4a cost 4A
Oop —Vop = ————— * N Vo= ———7"7— 4.2.8
2 — Voo PE Vi + N, 0= T E g (4.2.8)
with the right hand side N being given by
N = (V = Vo) + R(Lg[A]) + R(Err{Taq)) (4.2.9)
= No+ N+ Npy, -
where:
- Ny denotes the zero-th order term in 1, i.e.
4A a
Mom (Ve B Yo (2 121
o= (V-G 00 () 210
- Ny, denotes the lower order terms in 1, i.e.
8a’A 8al
Ny =R 7| — S-S VoVsA — TV, VA
2] r?|ql
(4.2.11)

+ W4V4A + W3V3A +W . -VA+ WoA

)

where Wy, W3, Wy are complex functions of (r,0), and W is the product of a complex
function of (r,0) with *R(J), having the following fall-off in r

_ _ _ _ a
q@Wi = q@°Ws = q@’W =0 (a),  q@?Wo =0 (;) :
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- Np[Y] denotes the error terms, i.e.
Npplth] = R(ErrCaq)) (4.2.12)
which are schematically given by

Npgplt] = T20§2<Fg (o, ) + VS(T%SQ(Fb (o, 8)))
+0=H(Dyv) 4 r*0=* (T - Ty - Ty).

Also, recall that v and A are related by the differential relation:

b = %(QGB((C)VZ% (C)V3A + O (C)V3A + CgA)),

with
(@) 12
Oy = 20y — 2— 2 45 @iy
1 3 (@A (@) 53
Co==try> — 4@ 24+ = D;( +i | =2trxy Diry +4 i3 )
2 = = 2 Irx = = trx

4.3 Generalized Regge-Wheeler equation for g

In this section, we derive the generalized Regge-Wheeler equation for g.

4.3.1 The Teukolsky equation for A

Here we derive the Teukolsky equation for A. In order to capture correctly the non linear
terms in the equation, we express the Bianchi identity for A in terms of

1
Ay= VA4 S XA,

which has an improved decay rate as compared to (YV4A. In the derivation of the
Teukolsky equation below, we express explicitly the error terms which decay less than
2T, - Ty).
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Proposition 4.3.1. We have

— 1 1 ~ —
v +2tX+—tX>A ©OD+H+4H)® ‘A+H-A
( 3T AT oS 1 H)g(“D- A 4) (4.3.1)
+ 3PA + Errrg
where Errpg is given schematically by
Errrp = trXE8B+ (©D-B)X + (X - E)Q + (Tp - Tp) - (A, B) + 72051, - Ty).
Proof. See Proposition 5.3.1 in [GKS-2022]. O

4.3.2 The invariant quantities () and g

In this section we consider the analog g of q and derive its corresponding gRW equation.

Definition 4.3.2. Given a fized null pair (es,es) and scalar functions r and 0 as in
Section 77, we define our second main quantity q € 55(C) as

g9 = 7¢°Q(A4) =7¢* (YV,OVA+C IVA+C,A), (4.3.2)

with complex scalars

a) 2
Wty — 4 Dy,

C, =2try—2
Oy X By

(4.3.3)

1 3 (@)¢ (a) ¢
Cy=—trx* —4Wir?+ 2 T>2< i —2tr x @Dty 44— X )
2 2 try rx

4.3.3 The derivation of the gRW equation for g

We state below the gRW equation satisfied by q.

Theorem 4.3.3. The invariant symmetric traceless 2-tensor q € $(C) in Deﬁm’tz’on
satisfies the equation

. 4acosb
DQE + ’ ’2

————Vrq—Vq = LyA] + Errlhyq] (4.3.4)

where:
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o The potential V' is the real scalar function given by

4 7?2 -2 2a®>  4a’cos? 6
Vo= WT m27"+ € a‘c;s (r* 4+ 6mr +a*cos®0),  (4.3.5)
q r q

which for a = 0 coincides with the potential of the Regge-Wheeler equation in
Schwarzschild, i.e. V = —tr xtry + O('%l)

) LE[A] is a linear second order operator in A given in the ingoing frame by

8a?A 8aA
L] = 0 (Ve + eV + WA W Va4 I VAT Wod )

where W, W, W are complex functions of (r,0) and W is the product of a complex
function of (r,0) with *R(J), with the following fall-off in r

2

_ _ a _ _ a®
qq° W4, qg°W = O (—) : q@° Wy, q¢° Wy = O (—) :

r r2

o Err{Caq] is the nonlinear correction term, which under the additional conditz’on

:07 \E:07 f07’ T2T07

(1]

15 given schematically by the expression

ETT[DQQ] = TQDSQ(FZ, -(A,B)) + 033(Fg Ty).

4.4 Teukolsky-Starobinski identity

We state here, in the context of perturbations of Kerr, one of the Teukolsky-Starobinski
identities, which relate the complex curvature components A and A through fourth-order
differential operators.

Proposition 4.4.1. Assume that = = 0 in r < ro. The complex tensors A, A € 55(C)
satisfy the following relation in the region r < r

( OV, + 2trX)4A = r A+ (T, - Ty). (4.4.1)

Tn fact, it sufﬁces to assume that = € T_QFg and \ﬂ/ € r‘ll"g. These additional conditions make the
structure of Err[[Jzq] in (4.3.6]) possible. This structure is essential in the control of the nonlinear terms.
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Proof. See Proposition 5. 4.1 in[GKS-2022].. O
Remark 4.4.2. Proposition is stated without proof in Chapter 7 of [K-S:Kerr]. Both

the assumption = = 0 and the restriction to r < rg are unnecessary and assumed only for
convenience, as they hold when applying Pmposz'tion in Chapter 7 of |[K-S:Ker1l]. In
particular, the restriction to r < rg allows us to avoid having to track the precise powers
of r in the nonlinear terms.

Remark 4.4.3. Choosing a normalization such that w € I'y, and hence trX = %—i—l“g, we
infer from Proposition[{.4.1], for 2 =0 in the region r < ro,

1
EVZL (q2V4 (QQV4 (q2V4(qA)))) = 7"_40§4A + OSS (Fb . Fg).

4.5 The wave equation for P

Here we derive the wave equation satisfied by the curvature component P.
Lemma 4.5.1. The curvature component P satisfies the following scalar wave equation:

OgP = trXV3P +trXV,P—H-DP — H-DP

3r—— — (4.5.1)
+§[trgtrx+2p—2g-H]P+Err[DgP],
with error terms given by
_ 1 _ N 1—
Err[DgP]:—(C)Vg(E-ﬁ)—Z(C)Vg(X-A)nL—(C)D (5 X+34 g)
+ﬂ-(§-X+§A E)+§<—§ B+E-V,B-X-“DB-H X B>
| [ - 1o -\ 1 = 1 _
—5@UX +trX) (2 B+ X A)+ H (B X+ 4 E (4.5.2)
1 ls —  — _
+ <—§(C)D X —iS(trX)Z+ B+ “YV,E ~ 55 (ﬂ—H)+B) B
3 = 15 =
——(E E——X-X)P
2 2
Proof. See Appendix ?77. m

Remark 4.5.2. From the expression in (4.5.2)) and using the null structure equation for
(©OV3X, observe that the error terms Err[0gP] can be schematically written as

Er0gP] = 705 (T,-B)+ V3(E-B)+r 0% (I (A,B)) +r ([, -Iy) — A- A
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4.6 Derivation of the main equations in linear per-
turbations of Schwarzschild

We make use of the results of section to derive the Teukolsky and RW equations
in linear perturbations of Schwarzschild, i.e. we assume that @try = @try = 0,
X-X1,1,C, & & a,a, B, 5 are linear quantities and that we neglect all quadratic and higher
order expressions involving them.

4.7 Derivation of the Teukolsky equations

Proposition 4.7.1 (Bianchi-Schw#). In linear perturbations of Schwarzschild we havfﬂ

OVia = ©VEE -3y,
OVEE = ©diva+ 3¢p,
OVEs = —©divo+3pm,

Oy = ©divg,
©OVEp = —div g,

C * C 3 * a
OVE = el S(try - Dtrxp)

* c 3 * a
OvE p = —()curlé—ﬁ(trx p+()tm_<p)

(C)vfé = —Odivg— 3p1
(C)Vfé = —Odiva — 3Ep
OVia = —VEE - 3px.

Proof. We only need to check the equations for p, *p. Neglecting quadratic terms the

2Here divo = —(Vp+ *V %), divg=—(Vp— *V ).
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Bianchi equations for p, *p take the form

(0)V4p _ (C)divﬁ
OV, o+ ©curl 8
V30 + ©div B

V5 4 (C)Curlé

Remark 4.7.2. In view

of our definition for

DERIVATION OF THE MAIN EQUATIONS

3t
——tr
5 I XP

3 « _ (a
—5(trx p = @trxp)

—§tr
gt XP

3 £ (a
—§(trx p+ )trxp)

©OV# applied to Ricci coefficients

©OVEx = ©OVsx+ %(1 — 14+ 1)tryx = VX + ;trxx
V?trx = OV, y+ %trxtrx
©OVIy = ©OV,x+ %(1 +14+Dtryx = “OVix + gtr XX
Vftrx = OV,try+ gtrXQ
OVIy = (C>Vgg+%(1+1+1)t@g V3x+; trx X
Vitry = (C)VgtTX‘i‘ gtrf
(C)VfX = (C)V4X+ %(1 —1+1)trxx = (C)V3X+ %tr XX

(C)Vftrx = (C)V4tr5+ %tr Xtrx

Proposition [3.3.1] becomes

Proposition 4.7.3 (Ricci-Schwarzschild#).

(C)V# trx

OVIR

(C)V#trx
()V3 X

We have
trXQ + 2@ g §,

1 - ~
5157"&& + (C)V®§ - q,

2@ divn + 2p,
1 .
—§tr XX+ “van,
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(C)Vftrx = 2(C)divﬁ+2p,

(C)Vftr x = try2+29dive,
~ 1 ~ ~
OVIX = StrxX+ Ve —a,

Also,
© g0 < 0 L vog @
divy = 5 V(try)— 5 V(Wiry) — 5,
1 1
(©) div = 3 (C)V(trK) ~3 Oy (@ try) + B.

We will make use of the commutation formulas of Corollary |3.3.9|

For linearized perturbations near Schwarzschild we have, for any linear, horizontal, ten-
sorfield U of signature s,

[OVE VU = [OVF, ©OVU =0.
1
[OV# VAU = —s(4p—§trxtrx)U.

4.7.1 Useful calculations

Lemma 4.7.4. We have, ignoring quadratic and higher order terms,
1
(C)Vf(tr xtrx) = trx(§tr xtryx + Qp) + 2(157“ xdiv & + trxdivn)
N N N B N 4.7.1
ok 1 » . (4.7.1)
Vi(trxtrx) =tr X(§tr Xtrx + 2p) + 2(tr&d’w§ + tr xdivn)
Also,
OVE(ER) = p(VVEE -a).

Proof. Using the equations of Proposition [4.7.3 we calculate,
1
(C)Vﬁ(tr Xtryx) = (C)Vftr Xtrx +trx (c) V?tr& — Etr xtr xtr x
1
= (2divn + 2p)tr x + tr X(trx2 + 2div §) — itr xtr x*

1
= trX(§tr Xtr x + 2p) + 2(t7“ xdiv € + tr xdivn)
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Similarly
(o) 1 ‘ .
Vi(trxtrx) = tr X(ﬁtr Xtrx + 2p) + Q(tr xdiv & + tr xdivn).

Now, using the Leibnitz rule for ()V# operators and the equations )V¥p =0, )V# (%) =
%terqL ©V&®E — a of Proposition , we deduce

c % c < c <> 1 < c ' 1 ”
OVEPX) = OVIR +p VIR = Sotrax = p(VIX = St xX)
= p((C)V@){ — a)
as stated.
O
4.7.2 Teukolsky Equation for «
Proposition 4.7.5. We have
OVFOVEa = ©OVEOdiva+ 3pa. (4.7.2)
Also,
1
COV#OVia = Aa+ (50 + étr xtrx)a. (4.7.3)
Proof. We write the first Bianchi pair
OVEa = ©OVES - 3px,
©OVig = ©@diva+3¢p
in the form
OVta = OVEH+i
OVEg = ©Odiva+j
i = —=3pX
J = 3&
Lemma 4.7.6. Given
o= =3pX, Jj=3p

we have

©OVFi4 OV = 3pa (4.7.4)
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Taking (C)Vf and of the first equation, (?V® of the second equation and using Lemma
[B.3.8 we derive

OVFOvEa = ©OvgOvigy OvH
OVeOVis = ©OVRWdiva+ V&
Combining we deduce,
OVFOVia = ©OVEOdiva+ ©OVTi4 OVR;.

Now, making use of the formula ©V#(py) = p(YVRE — o) in Lemma m
OVTi+ VR = —3p(IVRE - a) +3IVE(p¢) = 3pa (4.7.5)
We deduce
v# (C)Vfa = OV 9diva+ 3pa.

as stated. To prove the second part of the proposition we make use of the Lemma

Lemma 4.7.7. We have
OVRdiv = A —-2K (4.7.6)

where K = —p — }ltr Xtrx is the Gauss curvature

Proof. The Lemma follows from the formula 5P, = —1A+ K, b, = div, Ps= —%V@.
[

Therefore,
1
COVFOVFa = Aa—2Ka+3pa=—2(—p— Ztr Xtr x)a + 3pa
1
= Aa+ (5p + étr Xtrx)a

as stated. O

Lemma 4.7.8. Teukolsky equation takes the form

) 1 1 ~
CAVACAVNEE 5”& SAVE 5257’& OV, + (—2p + Etr Xtrx)a = V& 9 diva.
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Proof.
5
(C)Vf (C)ijoz = (C)V4( (C)V?a) + §tr X( (C)Vg#a)
1 5 1
= OV, (9Vsa + §trxa) + §trx( ©Va + Qtrxa)
5 1 1 5

= OV, OV3a + §trx ©Vsa + §trx ©V,a + (5 (C)V4trz + Ztr X°) .

Recall that
(©) 1 ©
Vatry = —?crxtrx—i— 2¥9divn+2p

Hence

5 1 1
(C)Vf (C)V?a = ©Oy,0v,a+ §trx A v §trz(0>v4a + (p + étr XQ)oz

Therefore equation ()V# (C)V;ft = VR @div a + 3pa takes the form

5 1 1 ~
OV, ©OV,a + Qtrx(c)vga + étrx(c)véloz + (p + étrKQ)a = VR Odiv o + 3pa

or,

5 1 1 ~
€V, OV3a + §trX(C)V3a + étrX(C)sz + (—2p + itr Xtrx)a = Ve ©diva.

4.8 Derivation of the RW equation

4.8.1 The commuted First Bianchi system

We commute the first Bianchi system with OV and Q = (V¥ ©v#
OVEa — OVES - 3%
©OV#s = Odiva + 3p¢
Proposition 4.8.1. Ignoring quadratic terms we have
VY OVia= Ve IVEE -3V (pR),
(4.8.1)

1
COV#OVES = ©Odip OVTFa+ (—4p + thm) B+ 3©VH (pe).
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IVIQ(a) = UVEQ(S) - 3VT IVE ()
(4.8.2)

OVIQB) = QdivQ(a) + <C>vzf< (_4,, + %m_ctrx) ﬁ) +3OVE OV (pg)

Proof. We start with
©OVia = Vs - 3px.

Apply (C)Vf (note that (C)Vfoz has signature 1 and rank 3) and apply the commutator
lemma to obtain

(C)V3# (C)Vfoz = Oy (C)V?ﬂ —3 (C)Vg#(p)?)'
which is the first equation in (4.8.1)).
Starting with

OV#5 = ©diva + 3p¢

we apply (C)Vf to both sides

OVF OVTE = Odiv OVFa+3OVE(pe).
or,

OV OVES+1OVE, Ve = Ydiv OVEa+3OVE(pe).

Using the commutator identity of Lemma [3.3.8) where s = sign(¢)) = 1,
[V, OV = (4p - %trxtrx> B =
we deduce
OV#OvVEE = ©div OVFa - <4p - %trxtrx) B+ 3EOVE(pe).

Hence (C)Vf&, (C)Vfﬁ verify the system
IVE(IVTa) = OVE(IVER) -3V (pY)

c C c . c ]- c (483)
OVE(9E8) = Ouio(OVFa) - (49 - gerxtre) 5+ 30VE ().

as stated in (4.8.1)).



150 CHAPTER 4. DERIVATION OF THE MAIN EQUATIONS

Next we apply apply (C)Vf to the first equation in (4.8.1]), commute, and derive

IVIQa) = IVEIVIOVES - 3OVEOIVE(R)
IVEQ(B) ~ 3V OVE(pR).

which is the first equation in (4.8.2]).
Applying © V? to the second equation in (4.8.3]) and commuting as before we derive
OVE(IVTIVER) + [OVE, OV OVEB
= Odip (OVF OVFa) - OVF ((4p — %trxtrx) B) +3OVF OVE(pe).

Since (V¥ 3 has signature zero [V, OV#](©VF3 = 0. We deduce,

1
OVIQMB) = “divQ(B)+ V] (( —4p+ §trxtrx)ﬁ) +3OVE OVE (pg).
which is the second equation in (4.8.2]). O

4.8.2 Teuklosky equation for Q(«)

We rewrite the result of the second part of Proposition in the form

OVIQ(a) = IVRQ(B) + 1
Vi) = OvEQ() s
IVIQ(p) = divQ(a) + J
where
[ = -39V} OV (px)
1 4.8.5
J = v ( (—4p + §trxtrx) 5) + 3@V OVE(pe) (4.85)
Proposition 4.8.2. The following identity holds true
~ 1
OVE+ OVRJ = (—p+ §tr xtrx)Q(a). (4.8.6)

The proof is an immediate consequence of the following calculations.
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Lemma 4.8.3. The following identities hold true.
OV = 3pQ(a) — 3trxpIVia —39Ve V] OV ()
1
—30v# <(4p — itr Xtrx) (,055)) :

~ 1
OVRJ = (—4p+ 51579_(157“)()@(04) + 3ptrxp OVia

4.8.8)
1 R . (
+30@v# (( —4p + §tr)_(trx)px> +30OVF OVE(pVEE)

Proof. We start with checking (4.8.8). Making use of
OVRA = ©Via+3yp

we deduce

1 1
_ (C)V3# —4p + ?HXCTX) <C)V§£a + ( —4p + EU"XCTX)Q(O‘)

1 1 .
tr X( —4p + étrxcrx) (C)V?a +3 (C)V? (( —4p+ itIXU"X) px)

Hence
AV (C)Vf (( —4p+ %trxtrx) 5)
= (—4p+ %trxtrx)Q(a) +30v# (( —4p+ %trxtrx) pj{)
+ ( (C)Vf( —4p+ %trxtrx) — %tr X( —4p+ %trztrx)) (C)Vfa

In view of Lemma [4.7.4] we have, modulo linear terms,
OOV (tr tr X) = trx(3trxtrx +2p).

Thus, since also OV (p) = 0,

1 1 1
(C)V;T( —4p + §trxtrx) = §tr X(§tr Xtrx + 2p)
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and therefore,
() o# 1 1 1
Vi ( —4p + itrxtrx) — §trx( —4p + §trxtrx) = 3trxp.
Henceforth

~ 1 1
Cve v (( —4p + itrxtrx) B) = (—4p+ 5trztrx)@(a) + 3ptr xp Vi

1 ~
+3 (C)V? <( —4p + étrxtrx) px)

from which (4.8.8]) easily follows.

To check (£.8.7) we write, commuting V¥ with ©V¥ twice,

OV OV EOVE(px) = OV OV OVT (o) + [OVT, ©OVE]EOVE (oY)
= OVFOV]OVT(py) + <C>v;‘;*([<c>vzf, <C>v?1<p>z>)

+OVE, OVITOVE (px)
= L+ 1L+1;

Recall, see [4.7.4]
OVT(pR) = p(YVRE - a).
Thus,

L= OVEOVEOVE(R) = OVE OV (p(OVEE - a))
_ OV OV (ga) + OVF OTE (pOVEE)
— (C)V;fE (C)V#(,oa) + Oy (C)V??fE (ff)v;fE (,05)

Also, since (©) V?p =0,

1 1
OV (pa) = OVEpa+pOVia— §tr Xpa = p OVHa — §trxpa
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1
OVEOTI () = O (9T~ Ltrpo)
c (& C C 1 C 1 (&
= <( )pr( )V?a +p! )V#( )Vfa — §trxp( )Vfoz> — 5( )Vf (trzpa)
1 1
= pQ(a) — §tr Xp (C)Vfoz —3 (C)Vg# (tr&pa)

1
= pQ(a) — strxpWVia

2
1 1
—3 ( COVFa(tr Xp) + OOV (tr Xp) — itrx(tr Xpoz))
1 1
= pQ(a) —trxp ©OVFa - Za (C)VS#(trxp) + —tr x*pa

2 4

We deduce,
1
OVE OV (pa) = pQla) —trxp IVEa+ Strx®pa
1 ] |
—504( OVTtrxp +trx OVip - §trx2p)

1 1 1
= pQ(a) —trxp COvHa+ Ztrx%a - §a(trx2p - étrXQp)
= Q) —trxp Vi
and therefore,

I = —pQ(a)+tryp ©OVFa 4 OVR VT @OvF (p€). (4.8.9)

Note that the signature of YV (py) is zero and therefore, in view of the commutator

Lemma 3.3.§]
I = [OV], OVIOVE(pR) =0. (4.8.10)
It remains to calculate I5.
o= V([ OVEeR)
In view of the commutator Lemma [3.3.8 and
(OVE, OVER) = (49— 5trxirx) (o)

Thus

1 N
L = ©vf ((4p — 5trxtry) (px)>
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We deduce
OVFOVEOVE (pX) =5 + L + I3
~ 1 ~
= —pQa)+trxp OVEa+ VR COvE @Oy (p€) + ©v# ((4p - Etr xtr x) (px)>

from which (4.8.7)) follows.
[l

As a corollary of (4.8.4)) and Proposition we derive the Teukolski equation for Q(«).

Proposition 4.8.4. Q(«) verifies,

~ 1
OV OVEQ(a) = “VRdivQ(a)+ (—p+ 5157" xtrx)Q(a) (4.8.11)
Proof.
(C)ijé (C)V:?Q(a) = Oy (C)V4Q(ﬁ) + (C)Vf]
= OVE(divQ(a) + J) + VI
= OV&divQ(a) + OVRJ + OV
~ 1
= OVRdivQ(e) + (—p+ St xtrx)Q(a)
as stated.
O
Proposition 4.8.5. We have
OVFEOVEQ(a) = AQ(a)+ (p+ tr xtrx)Q(«) (4.8.12)
Proof. Note that
COVRdiv = A—2K (4.8.13)
where K = —%Lt'r Xtrx —p+ %)? X=—p— }ltr xtrx is the Gauss curvature This follows
from the formula ds'dy = —1A + K where ¢ = div, d5 = —1V®&. O

Remark 4.8.6. We have

5
OVF OVEQ(a) = (C)V4(C)V3Q(a)+§<trx(c)V3Q(a)+trX(C)V4Q(a)>+5(p+trxtrx).
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Proof. We have sign(Q(a)) = 0, rank(Q(«)) = 4 and sign( 9V3Q(a)) = —1, rank( 9V3(Q(a))

5,
OVEQa) = OV4Q(0) + JirxQ(a)
OVFOVEQ) = OVE(IViQ0) + k@)
= (C)V4( ©OV3Q(a) + gter(a)) + gtr x( ©OV3Q(a) + gtr x)Q(a)
= OV, 90v;Q(a) + gtrx V3Q(a) + gtr x“V4Q()

5 5
+§ ( ) V(tr X) + §t7’ xtr X) Q)

The result then follows by a simple computation using )V, (tr X) = —strxtrx+2p. O

4.8.3 Function r and normalizations
Outgoing frame for which ¢4 is gedoesic

In this case e, = Y710, + 0y, e3 =0, — Y0, E =w =0, w = o, trx = %, trX:—%T We
have

V()= Ltrx, V() = Sty

Lemma 4.8.7. For a tensor v of signature s and rank k we have

(C)V?&(w) _ 7"_1+8_k (c)vg(rl—s-i-kw)

(4.8.14)
(c)vf(w) _ T,flfsfk (C)V4(T1+S+k¢).

Ingoing frame for which e; is gedoesic

In this case e = Y710, + 0,, e3 = O, + Y10, § =w=0w=—-15 trx= %,trz = —%. In
this case also

Thus in both cases
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Lemma 4.8.8. For a tensor vof signature s and rank k we have

(c)vg)#(w) _ r71+sfk (c)vg(rlferkw)

(4.8.15)
(C)Vf(l/)) _ T‘_l_s_k (C)V4(T’1+S+kw).
Proof. Indeed
. . 1-s+k
VW) = Ova+ L5 Ry
. . 1+s+k
( )Vf(w) = Oy, + Ttr XU
Hence
prits ROy (rlmsthy) = OV + (1 — s+ k)r‘lﬂ_kr_“kgtryb
1— k
— OV + %tr Xt = OVEy
and similarly for the second equation in (4.8.15|).
O
4.8.4 Reggee-Wheeler equation
Lemma 4.8.9. We have
OVF OVIQ(a) = 2OV, OV, (r*Q(a)) (4.8.16)

Proof. To check (4.8.16)) we write (note that Q(«) has signature 0 and rank 4.) Thus,
since )V#Q(a) has signature —1 and rank 5.

(C)szE (C)V?Q(Oé) = D=5y, (7’1+(_1)+5 (C)V?Q(Oz)) =20y, (7“5 (C)V?Q(a))
7,—5 (e) V4 (TST_1+O_4 (c) V3 (Tl+0+4Q(O{))
7’_5 (C)V4 (C)Vg (7’5Q(Oé>)

(C)Vf (C)V?Q(a) =5y, (7"5 (C)VfQ(oz)) =r 50y, vy, (7’5Q(Oé>)



4.8. DERIVATION OF THE RW EQUATION 157

Theorem 4.8.10. The quantity q = r*Q(«a) verifies,
Oq + tr xtrxq = 0. (4.8.17)

Proof. Recall that the wave operator for ¥ € 5,(C) is given by

. 1 1
O = —V4V31/J - 5‘5er4¢ + (Qw — itr X) V3Q/1 + Aglp

Equation ([4.8.12)) takes the form, with q = r*Q(«)
OV, OVs(rq) = Arq+ (,0 + trxtr X)rq (4.8.18)

Now, using the equation V4trx = —%tr Xtrx + 2p + 2wtr x,

r
©OV4(rq) = Vs(rq) = étrxq +1rVsq

r r

OV, Vs(rq) = V4(§trxq +1Vsq) — Qw(itrxq +7V3q)
= %tr Xtr xq + gV4tr Xq+

—2w(gtrxq +rVsq)

r

StV + Ltr \V3q + rV4Vsq

2

1
= rV4Vsq+ T(itr)( —2w)V3q + gtrxvzlq

1 1
—|—§7’q (§tr Xtr x + Vatr x — 2wtr K)'

1
= rV,V3q+ T(étTX —2w)V3q + gtrxvm + rpq

Using
rV4Vsq + r(%trx —2w)Vsq + gtrxvzlq +rpqg = rAq+ (p +tr Xtrx)rq
Therefore
—V4V3q+ Aq— (%trx — 2w)V3q — %trxvz; + tr xtr xq = 0.
Therefore,
Dq + tr xtr xq = 0.
as stated.
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Chapter 5

The Kerr spacetime

5.1 Boyer-Lindquist coordinates

We consider the Kerr metric in standard Boyer-Lindquist coordinates (t,r, 6, ¢),

g = 2 e+ OO gy 2 ) e gy,
where
q=r+iacosb, (5.1.1)
and

A r2 — 2mr + a2,
lqI> = 1?4 a*(cosb)?,
52 = (1P +d?)|g)® + 2mra*(sin6)? = (1% + a?)? — a*(sin 6)?A.

Observe that
(2mr — |q|*)2? = —|q|*A + 4a*m*r?(sin §)%
The metric g = g, can also be written in the form

(A — a?sin? 9) o damr

lq|? |q|?

lgf? %2
sin? 0dtdg + ——dr? + |q|*d0* + —

A PE sin® @d¢?.

159
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Note that gugss — gt2¢ = —Asin?# and that the non-vanishing components of the inverse
metric are given by

O 2 g0¢ _ _Qamr g¢¢ _ A — a?sin? 0
lq|2A’ lq|2A” lq|2Asin?6
(5.1.2)
gl AL
lal*’ lal>
The volume element du of g is given by
dp = |q|*sinOdtdrdfde, V10g| = |q*sin6.
We also note that
T =0, Z = 0y, (5.1.3)

are both Killing. Also

A —a?sin®6  |q]* - 2mr

g(T,T) - - |q|2 - |q|2

Thus and T is only time-like in the complement of the ergoregion, i.e. the region
A > a?sin? .
The domain of outer communication of the Kerr metric is given by,
R ={(,r1t ¢) € (0,7) x (ry,00) x R x S},
where 7, :=m + v/m2 — a2, the larger root of A, corresponds to the event horizon.

Definition 5.1.1. We introduce the vectorfields f, R as follows:

R a ~ A
Teo= 0t g% =i (5.14)
Lemma 5.1.2.
) = —a BB =1 T R) =0
g(y)——m7 g(a)—m7 g(T,R) = 0.
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Figure 5.1: Penrose diagram of Kerr for 0 < |a| < m. The surface r = r,, the larger root of A = 0,
is the event horizon of the black hole, » > r, the domain of outer communication, ZT is the future null
infinity, corresponding to r = 4oc.

5.2 Principal null frames

The Kerr metric is a spacetime of Petrov Type D, i.e. its Weyl curvature can be di-
agonalized with two linearly independent eigenvectors, the so-called principal null (PN)
directions. There are two basic normalizations for these directions, the ingoing normal-
ization, defined for all r > 0,

; r? +a® A a
651n) = —2@ + —287- + —28¢,
[ 4l |4l (5.2.1)
T4 a? a
e = 0= O+ 100,

for which ez = e:(,f") is geodesic, i.e. D.,e3 = 0, and the outgoing one

ou 2 n T2 + a'2 a
eé(1 t):%eg ) = A 0t+8r+za¢,
(5.2.2)
éout) _ Aegin) _ r? + GQat _ Aar + iaqs
|q|? |q|? lq|? |q|?

for which ey = effom) is geodesic D, e, = 0. The horizontal structure H is spanned by the

orthonormal vectors

i&g, ey = asin @ 1
lq]

We refer to (5.2.3) as the canonical horizontal basis of Kerr.

(5.2.3)

€1 = - .
ldf " Jg|sing?
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Remark 5.2.1. Note that H(r) = 0 and, relative to the r,0 BL-coordinates,

m A m
™M (r) = e () =—1,  es(0) =0
5.2.4)
ou A ou (
ey (r) = — Pk () =1,  es(f) =0.

Lemma 5.2.2. In both cases we have, consistent with the definition of principal null
frames and the Penrose-Saks theorem,

X =

(11

<>

[83]

, A=B=A=B=0. (5.2.5)
Proof. Straightforward calculation. m

The null structure and null Bianchi equations, Propositions [3.4.16] and [3.4.17] take the
form (in both the incoming and outgoing frames)

Proposition 5.2.3. 1. We have

1

OV3trX + E(trﬁ)Q =
CODRH + HRH =
CODRH+ HRH =

1
OOV, trX + §(trX)2 =

11—
Vs H 4 étri(ﬂ— H) = 0,

o o o O

11—
(C)V4H+§trX(H—ﬂ) =0
©ODyX —iS(trX)H = 0

DX —iS(trX)H = 0.

Al Bl NCR e

2. The complex scalar P verifies:

—©pp = 3PH
©@pp = —3PH,
©Ov,p = —;trXP
3

©OV,P = —5@13.
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3. The components of B are given by, see Proposition|3.1.

Babc3 = _Bab3c = _t"ﬂx((seanb - 5cb7]a) — (@ tT’)_(( Cea M~ Ceb na);
Bapes = —Bapse = _tTX((Scaﬁb - 5cbﬁa) — @ t’f‘X( Cca ﬁb_ Ceb ﬂa)’

Busss = —Bapas = —4(7a7, — 1,70 (526)

1 1
Bis12 = —Big21 = Bojg1 = étr Xtrx + 5 @y (a)t@-

Definition 5.2.4. We define the following complex horizontal 1-tensor in Kerr, given in
components relative to ey, es by

- 7sin 6 - sin 6
J1 = —, J2 = -
lqi lqi
Note that J is regulmﬂ (even at the axis), and anti-selfadjoint, i.e. *J = —iJ and |J|* =
Qsin29
lal* ~

Remark 5.2.5. Note that § = j 4+ 1 *j can also be written as with j; = — *jo = 0 and
- * sin 6
2= = lal

Lemma 5.2.6. In addition to (5.2.5)) the remaining null Ricci and curvature coefficients
are given by the following:

2m

1. Relative to the ingoing PN frame w =0 and H = Z. Moreover P = -7 and

2Aq 2
px =20 px =2
q q

A a?cos® O(r —m) + mr?* — a®r
O\ Tm)="- 3 :
I 4]

N | —

2. Relative to the outgoing PN frame w =0, H = —Z. Moreover P = —%Z—g” and

2 2/ 1
X =2, x =1 gz—&(
q 4| 2

A ) _a’cos?O(r —m) +mr® — a’r
laf? lal* '

3. In both cases, in view of the definition of J,

a a
H=23="13
q

a aq
H = ——3= 95 >
lq]

o —T g
q |4l
In particular ¢ H = —GH and |H|* = | H|?.

"'While the basis (e1, e3) is not.
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4. The scalar q satisfies, for both the outgoing and incoming PN frames,
1 1— — —
Vag=5trXq, Vag=StrXq, Dq=qH, Dq=qH. (5.2.7)

5. Moreover, in both frames,

t'r*x(“)tm_(—l— trz(a)trx =0,
nl* —In*> =0,

div (n—mn) =0,

div ( *n+ *n) =0,

Proof. Straightforward verification. n

Lemma 5.2.7. The complex 1-form J verifies the following properties

1. We have
, ~  2(sinf)? , (sin@)?
= -, J:-J=—5—, [ROQ)|"= :
o PO ="
2. We have
— 4i(r? 2 0 ~
D.g— i(r +a4)cos ’ DS3 =0,
4]
3. We have
D(q) = —aJ,  D(q) =aJ
4. Relative to e = ey ', €4 =€y
-1 - ~ o1 ~
Vid + 5t X3 =0, VaJ+ X3 =0, (5.2.8)
5. We have
V4(q3) = V3(q3) = 0. (5.2.9)
Proof. Straightforward verification. m

Lemma 5.2.8. The vectorfields T, Z, T\, R can be expressed as follows



5.2. PRINCIPAL NULL FRAMES 165

e [f the normalization of (e, e4) is ingoing, we have

1 A
T = - —e3 — 2aR(J)°
5 <e4 + gEe 2 (J) eb) ;
1 ind)2A
Z = 5 <2(r2 +a®)R(J)%e, — a(sin )?ey — %@,) :
q
and
N O | S ST A SN (> A W~ O G /| W O N A SR (1
TZ§(7"2+6L264 +r2+a2€3 , R:§ r2+a2€4 —r2+a2€3 .
e [f the normalization of (es, e4) is outgoing, we have
1 A
T = - €3+—€4—2a%3b6b)7
2 < la? )
1 in0)2A
Z = 5 <2(r2 + a®)R(J) ey — a(sin §)?es — %64) :
q
and
7 1 A (out) | q | 2 (out) D 1 A (out) | q | 2 (out)
T:§<r2+a264 +T2—|—a263 ’ R:§ 2yt TRyt '

e We also have the following relations, valid in any frame:

4acosO(r? + a?) 4

@tryes + @ trxes =

lal* ’
(a) (a) . 4a cos
trxes + ‘Ytrxes +2(n+mn) - *V = WT, (5.2.10)
2 2 4 I
@trxes + Ditryes — 4u cot ey = —Li
= lq|3 |q|? sin® 0

5.2.1 Eddington-Finkelstein (EF) coordinates

Ingoing EF-coordinates

Let rg be a constant oy > r,. We introduce the adapted ingoing Eddington-Finkelstein

function u defined byf
r 02 2
u = t+ / U

- o Al)

2Note that the choice of v and u is such that we have . = u = ¢ on the timelike hypersurface r = rj.
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Note that
- 2(r? + a? in asin 6
P =28 ) —0, e =0,  exw)=

|q|? lq|

Remark 5.2.9. Note that the non-vanishing of ex(u) in Kerr is connected with the lack
of integrability of the null pair (egm), effn)).
Definition 5.2.10. The principal null pair (eém), eflin)) together with the BL function r,
such that egm) (r) =1, is called the canonical, ingoing, principal geodesic structure (PG)
of Kerr. The associated, ingoing, Eddington-Finkelstein coordinates (u,r,0,py) are given
by

r? + a?

wimt ), SO =T eimo+h), ()=

a
A )
such that,

) =1,  eiM(w) =™ (0) = e (py) = 0.

In particular

2 2 9
q

Outgoing EF coordinates

Let ry be a constant ry > r,. We introduce the adapted outgoing Eddington-Finkelstein

function u defined by
r 7,,/2 + CL2
u = t— / —dr’.
o A1)

Note that

and
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Definition 5.2.11. The principal null pair (egom),effm)) together with the BL function

r, such that effm)(r) =1, s called the canonical, outgoing, PG structure of Kerr. The

associated, outgoing, Eddington-Finkelstein coordinates (u,r,0,¢p_) are given by

such that,
=1, e u) =™ (0) = e (o) = 0.

Lemma 5.2.12. Relative to the outgoing Eddington-Finkelstein coordinates (u,r,0,p_)
we have:

1. The action of the outgoing PG frame on the coordinates (u,r,0,p_) is given by

eq(r) =1, eq(u) =0, e (0) =0, eq(p_) =0,
A 2(r? + a? 2a
alr) ==z eal) = X5 a0 =0, aaler) =
1 (5.2.11)
61(7“) =0, 61(u) =Y 61(9) = ma 61(90—) =0,
asin @ 1
=0 = 0 0 = )
€2 (T) ’ eQ(U) ‘C]| ’ 62( ) ) 62(Q0 ) |q‘ sin 6
2. In particular
1 0 0 0
€4 a’/‘
_ A 2(r%+d?) 2a_
es | _ e Y Ou
2 o Y o %
e1 0 0 ﬁ 0 Oy

3. In the outgoing EF coordinates, the metric takes the form

2
g = — (1 - %) (du)? — 2drdu + 2a(sin 0)*drdy
q
_4mra(sin6)? Y2 (sin 6)?

dudyp- + |q|*(df)* + (dp-)?.

|q|? |q|?

Proof. Straightforward verification. n
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5.2.2 Aymptotically null optical time function

Lemma 5.2.13. There exists a function 7, defined for r > ry — 0y which verifies the
following properties:

2

m 8
g(Ns, Ny) < g eq(1) > 0, es(T) > 0, |VT|2 < 564(7')63(7').

with Ny, the future unit normal to the level surfaces ¥ — 3(7) of 7. In addition, for r
large,

Proof. See Section D.3.1 in [K-S:Keri]. O

5.3 Inverse Kerr metric and Killing tensors

Lemma 5.3.1. The inverse Kerr metric can be written in the form

1
lq|*g®? = AO2OP + ZRaﬁ (5.3.1)
with
R = (12 4?2000 — 2a(r® + )00 — a?030] + AO™,
af a qf 1 a qf (anf) 2 12 naaqB (532>
O = 050, + m@% + 2a0;" 0, + a”sin” 00,0y .
Note that
RSB — —(7"2 + a?)zj—v\afﬁ + AOQ’B, 08 — ’q’2(e?€f + 6365), (5.3.3)
thus the inverse metric can also be written in the form
2 | 2)2
q[2g® = M( —T°T% + RORP) + 0, (5.3.4)

A
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Proof. From the expression of the Kerr metric, the inverse metric can be written in the
form

1
gPg™ = A9 + R

A
with
A —a’sin* 6
RO = 520000 — 2amrdf 0 — 2amrdldf + AL + Sjan—f;nagaj
which establishes (5.3.2). According to the definition (5.1.4) of T, we can write
R = (a2 (opaf + 200 + — 0ol ) + A0
= —\r—ra ¢t T 2y g2t ¢+(r2+a2)2¢¢+

_ —(r2+a2)2faf5+AOa6

which establishes the first expression in (5.3.3)). Finally the second expression ([5.3.3)
can be easily checked from the expressions of e, e in terms of the BL coordinates in
(5.2.2]). m

The relevance of the decomposition of the metric in ([5.3.1)) is in the fact that the operator
R can be written in terms of 6?8? , a@éa@f), a28§;8£ and O*? where 0, 0, are Killing
vectors and O is intimately related to the Carter operator as discussed in the next section.

Definition 5.3.2. We define the following symmetric spacetime 2-tensors

S = TT? =009y,

Ss? = aTeZ? = adf*0),
S?ﬂ = aQZO‘ZBZCLQag@g,

SyP = 0% = |q* (eSe] + eSes).

We denote the set of the above tensors as S,, fora =1,2,3,4.

With the above definition, from (5.3.2)) we write
R = —(r +a?)257 — 2(r* + a?)S5” — 557 + AS;”. (5.3.5)

More compactly, using the repetition in @ to signify summation over a = 1,2,3,4, we
denote

R = RSP, (5.3.6)
with R%, a = 1,2, 3,4, given by
R = —(r*+ad*? R*=-20"+d%), R*’=-1, R'=A. (5.3.7)
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5.4 Carter tensor and Carter operator

One of the fundamental properties of the Kerr metric is that it admits a Killing tensoif]
K which cannot be written in terms of the Killing vectorfields T and Z. This 2-tensor is
called the Carter tensor [Carter].

Definition 5.4.1 (Carter tensor). The Carter tensor is defined by
K* = —(a*cos®0)g®® + 0% (5.4.1)

where the tensor O is defined in (5.3.2)).

Note that the only non-vanishing components of K are:

Ky = 1204, Ky = 2a® cos? 6.
Proposition 5.4.2. The Carter tensor defined in (5.4.1)) is a Killing tensor of the Kerr
metric, 1.e. D, K, = 0.

Proof. See Proposition 3.7.2 in [GKS-2022]. O

Given K we associate to it the second order operator K
K(%) := Ds(K*’Dat)),

which has the fundamental property of commuting with the D’Alembertian operator for
scalars in a vacuum spacetime, see Proposition 2.3.7 in [GKS-2022]. Its explicit expression
in Kerr for K as in ((5.4.1) is given in the following.

Proposition 5.4.3. In Kerr spacetime, the Carter operator IC for ¢ € sy, is given by
K = —(a*cos’0)0, + O (5.4.2)
where O s the following second order angular operator:

O@W) = gl (Lxt+ (n+n)- V). (5.4.3)

Proof. See Section 77. O]

3A Killing 2-tensor K is a symmetric 2-tensor satisfying D Ka.p = 0.
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Lemma 5.4.4. In Kerr, the second order operator O defined in (5.4.3)) is equivalent to

2a”% cos O

OW) = I (Am— =

%(3)bvb¢) : (5.4.4)

Also, the operator O can be written in the following ways, all equivalent to (5.4.3)):

ol 2V(lal)
o) = lq (Akw 4 w),
O@W) =V - (lal*Vy), (5.4.5)
O(1)) = Dg(0*’ Do) — V(a® cos ) - Vi,
()

Proof. See Lemma 3.7.4 in [GKS-2022] O

Proposition 5.4.5. In Kerr, for scalars i € sq, the operator O commutes with |q|2D2.
This is no longer true for tensors 1 € so. We have however, for i € s,,

8a(r? + a*) cosd
|l

[0, |q|*Oa]t = |qf [V < > - VVz "+ O(ar )Vl |, (5.4.6)

where 0 = (V3,7Vy,rV) denotes weighted derivatives as in [K-S:Schu] and [K-S:Kerr].

Proof. See Proposition 4.5.3 in [GKS-2022]. This should be redone. O

5.5 Null geodesics in Kerr

5.5.1 The constants of motion for geodesics

Let () be a null geodesic in Kerr. Using the expression for the inverse of the metric
given by ‘ ) along 7<A)7 since g(’yaf)/) = 0 we have, with ’% = g;}/a7 ;Yt = ata;You
;ch = 8370:
2 af: - a 0B 1046-- .. 1aﬁ~-
0=lal8" s = | DO, + TRY | Jap = Adie + TR Has
with

R0 = —(r® + a®)* Wi — 2000 + &)y — a*3p9p + A0 Fa .
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Since 0; = T and J, = Z are Killing vectorfields, we deduce that 4, = g(¥,7") and
Y, = 8(7, Z) are constants of the motion, i.e. constants along v, and respectively called
the energy and the azimuthal angular momentum. We write,

e:=—g(¥,1), b, = —g(V,2).
We also defind?]
k> = K*5,9

for the Carter tensor K in Kerr. Since K is Killing, k? is also a constant of motion.
Indeed, we have

d N
S (V) = DaKas i3 =0.

Since from (5.4.1]), K = —(a? cos?#)g + O and ~ is null we deduce, with 4, = g(%, e,)

kK2 = 04,45 = |q|*(efe} + eSes)Fas = lal* () + [92]?).

We summarize the result in the following.

Proposition 5.5.1. The quantities
€= _g<’YaT)7 gz - _g(f}/a Z)7 k2 - KQIB;Y(X;Y,B7
are constant along null geodesics. Moreover, relative to the null frame

K = |Q|2(|71|2 + |72|2)-

With these constants we have

R0 = —(r® + )y — 2a(r® + @®) e — a®Vp3e + A0 A0
= —(r*+ad*)?%e* — 2a(r? + a?)el, — a*l,* + AK?

which is only a function of r along any fixed null geodesic. We introduce the notation
R(r;a,m, e, l,, k) == —(r* + a®)?e® — 2a(r? + a*)e l, — a*(,*> + Ak
Note that we have the identity

—R(r;a,m,e, l,, k) = ((7"2 +a*)e + aﬁz)z — AK2. (5.5.1)

40bserve that k2 is a positive constant of motion.
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In view of the above, we infer that

1 1
0 = A%, 5, + ZR‘M%% = Aj A, + ZR(T; a,m, e, l,, k).
Since
dr . Or A

& = e == g
we finally obtain

dr\2
’q|4<5> :—R(r;a,m,e,ﬁz,k)

which is the equation for a null geodesic with constants of motion e, /,, k.

5.5.2 Trapped null geodesics

There exist null geodesics along which R(r;a,m,e,¢,,q) = 0 i.e. r remains constant.
These are called orbital null geodesics.

Remark 5.5.2. Trapped null geodesics correspond to null geodesics that stay in a region
[r1,79] of r with ro < r < ry < +00 for all values of A\, and are thus a priori more
general than orbital null geodesics. As it turns out, see for example Proposition 2 in [?],
all trapped null geodesics in Kerr are in fact orbital null geodesics. Thus, from now on,
we do not distinguish between trapped and orbital null geodesics.

If r is constant we also have
—0R(rsame ) = 0, (1al")(55) +2lal* 50, (55) =0
The r values for which such solutions are possible must then verify the equations
R(r;a,m,e, l,, k) = 0, R(r;a,m,e, l,, k) =0.
Thus, introducing
II:= (r* + a*)e + al,

we write from (5.5.1)

—R(r;a,m,e, b, k) = II> — Ak*> =0,
—0,R(r;a,m,e b, k) = 2I1(0,I1) — (8,A)k*> = 0.
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From the second equation, we deduce

0,11

k* = maTA' (5.5.2)
Thus, substituting in the first equation,
A0, 11
IT* — 211 oA 0
or, if IT # 0,
I1(0,A) — 2(0,I1)A = 0. (5.5.3)
We make use of the following calculation.
Lemma 5.5.3. We have the identity
(0, A) = 2(0,I)A = —2T.y, (5.5.4)
where
Totn = (r®=3mr® +ra®+ ma®)e — (r — m)al,.

Proof. We have
(0, AL —2A(9,I1) = 2(r —m)((r* + a*)e + al,) — 4r(r* 4+ a® — 2rm)e
((r=m)((* + a?)e + aty) = 2r(r* + a® = 2rm)e)

= 2(( — 7%+ 3mr® —ra® —ma®)e + (r — m)a£z>

= —2Tcy

Lz

as stated. O
As a consequence of the Lemma we deduce that all orbital null geodesics are given by the
equation

Ter, = (7"3 —3mr? +ra® + maz)e — (r—m)al, = 0.
Remark 5.5.4. The following hold true.

1. There are no trapped null geodesics perpendicular to T = 0; in the exterior of a
non-extremal Kerr.
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2. The values of r for which trapped null geodesics exist depends on the ratio {,/e.
More precisely, at trapped null geodesics, we have

3 —3mr? +ra? +ma®  al,

r—m e
In particular, for £, =0, the trapped null geodesics are given by the equation
T =1 —3mr® + a®r + a*m = 0. (5.5.5)

Remark 5.5.5. Note that one may specify possible values of r for which trapped null
geodesics exists. Indeed, let

2
71 :=2m (1 + cos (§ arccos (—M))> )
m

(5.5.6)
. 2 |al
79 :=2m | 14 cos | = arccos | — .
3 m
Then, a trapped null geodesics satisfies r € [1,73], see for example [Teo].
Lemma 5.5.6. The trapped null geodesics are unstable, i.e.
O*R(r;a,m,e, l,, k) < 0.
Proof. We have
I = (rP+ade+al,, OI1=2re O =2e,
and using (5.5.2)) to write k? = 47’8%6, we have
I1
—OPR(r;a,m,e, b, k) = 2(0,11)% + 2I1(0?11) — 2k* = 8r’e” + 4lle — 87“8 A°
4
= A (2r*0,Ae* + (9,A)Ile — 2rlle)
4
— &_GA (47%(r — m)e — 2mlI) .
Using ((5.5.3) to write IT = ‘gr—AAe we deduce
4 4rA 32re?
—O*R(r;a,m, e, l,, k) = 8TQA (4r2(r —m)e —2m gTAe) = (8,,26)2 (7"(7“ —m)? — mA)
8
- meQ (r(r —m)? —m(r* +a* — 2mr)>
8
— (r——rm)262<(r —m)® +m(m? — aQ)),
which is positive since r > m and |a| < m. O

Remark 5.5.7. The trapped region is disjoint from the ergoregion if % < 0.7.
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Figure 5.2: Penrose diagram for the future of a spacelike hypersurface in the exterior of K(a, m) when
|a|/m is sufficiently small so that the trapped region is separated from the ergoregion. H™ is the future
event r = ry and A a spacelike hypersurface inside the black hole.
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.1  Direct proof of the complex Bianchi identities

We give a direct proof of Proposition using the complex for of the Bianchi identities
DR = 0.
and the relations,

Lemma .1.1. Let Ry = Ryvys +1 *Ryuvys. We have

.

Raass = Aap
R3azp = Aab
Rasza = 2B,
Razsa = 2B,
{ Rysag = 4P

Rasps = —Pday + *P €ap

Rapza =2 €ap *P

Rapes = —i € B, =€awp "B,
Rapes = —i €y Be = — €q *Be

\

Proof. Direct verification form the definition of R = R +1¢ *R. O

According to Proposition |3.4.17 we have to check the following:

V3A — %D@B = —%t@A +AwA + %(Z +4H)®B — 3PX,
V4B—%5-A = —2tr_XB—2wB+%A-(m)+3FE,
VsB—DP = —trgB+2gB+Ef(+3?H+%AE,
V4P—%D-§ = —gtrxp+%(2ﬁ+2)-§—§-§—}lX.Z,
V3P+%5-§ _ —gﬁp—%(m)-§+g-§—?-4,
V.B+DP = —trX§+2w§+§-X—3Pﬂ—%A-§,
ViB+ DA = 9iXB-2wB- A (7% H)-3PE

1~ 1 1 ~ -
V4A+§D®§ = —§trXA+4wA+§(Z—4H)®§—3Pg.
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Proof. We start with deriving the V4P equation, because the VP is needed in order to
do later Bianchi calculations in this proof.

Derivation of V4P Equation: We start with 0 = DaRa434 or %D4R3434 = DbRb434..
For the left-hand side, we compute

DyR3434 =e4(R(es, €4, €3,€4)) — R(Dyes, eq, €3, €4) — R(es, Dyey, e3, e4)
— R(es, eq, Dyes, e4) — Ries, €4, €3, Dyey)
=e4(R(es, e4q,€3,e4)) — 2R(Dyes, 4, €3,€4) — 2R (e3, Dyey, 3, €4)
=e4(4P) — 2R (2wes + 21 €a, €4, €3, eq) — 2R(e3, —2wey + 28,64, €3, €4)
=4V P — dwR(es, €4, €3, €4) — 4n R(eq, €4, €3, €4)
+ dwR(es, eq, e3,€4) — 4, R(e3, €4, €3, €4)
=AV4P — 4n R(eq, ea, €3, 1) — 46 R (€3, €q, €3, €4)
=4V, P — 41 (2B,) — 4¢.(—2B,)
=4V, P — 8QaB_a + 888,

1 — 1—
=4V,P — 8 (§ﬂ . B) +8 <§E . E) (by Lemma 2.4.4)

=4V,P—-4H -B+4Z-B

and for the right-hand side we compute

DaRb434
= €q (R(@b, €4, €3, 64)) - R(Daeb; €4, €3, 64) - R<€b7 Da647 €3, 64)
- R(eb, €4, Da€37 64) - R<€b7 €4, €3, Dae4)
1 1
- ea(R(eb’ €4, €3, 64)) - R(Vaeb + 5Xab€3 + §Xab64’ €4, €3, 64) - R(€b7 Xac€e — Ca€4, €3, 64)
- R(eba €4, Xacec + Cae37 64) - R(6b7 €4, €3, XacCe — Ca€4)

— 1
= Va(2By) = 5 XavRa134 = XacRuesa + GaRoasa — X, Roses = GaRoza — XacReaze + CaRoasa
— 1
=2V,By — QXab’R’3434 — XacRoesa + CaRoaza — X, Ruscs + XacRespa

= 2V,B, - %Xab(4p) — Xae(2 €pe “P) 4 Ca(2Bs) — X, Abe + Xac(—Pdap + *P €q)
= 2VuBy — 2XabP — 2Xae €bc P+ 20 By — X, Abe — XavP + P € Xae
=2V, By — 3XaP + 3 *P € Xac + 26 By — X, Abe

= 2VaBy = 3xa P = X, Abe +3 "PXap " + 20 By



.1.  DIRECT PROOF OF THE COMPLEX BIANCHI IDENTITIES 179

We deduce
DRyusq = 2div B — 3try P — X-Z -3 *P(a)trx +2(-B
= 2%D-§—3trXP— %X-Z+3ip(a)trx+2-§
=D-B —3(try — i @Dtry) P — %X-Z-I—Z-E
=D-B—3tuXP - %XZJFZ-E
Putting it all together gives
%(4V4P—4ﬂ-§+4§-§) :D-E—strXP—%X-A+Z-§
or
1 3

— 1 - = 1
P—-D-B=—tt XP+-2H+7)-B—-=-B— -
V4 5 21" +2( H+27) -7

[P
|

Derivation of V,B Equation: We start with D*R.g, = 0, ie. 0 = D'Rspas =
DbRb4a4 - %D4R34a4. For the left-hand side

DyR3404 264(R(€3, €4, €q, 64)) - R(D463, €4, €q, 64) - R(€3, Dyey, eq, 64)

R
264(R
- R

(e3,e4,Dyeq, €4) — Res, €4, €4, Dyey)

(€3, €4, €q; 1)) — R(2wez + 21, €1, €4, €q, €4) — R(€3, —2wes + 28p€p, €q, €4)
(€3, €4, Vaeq + n,€a+ &aes, es) — R(es, €4, €q, —2wey + 28pes)

=e4(R(es, €4, €q,€4)) — 2WR(e3, €45 €4, €4) — 27

+ 2wR(e3, €4, €q, €4) — 25 R (€3, €p, €4, €4)

— Res, eq, Vieq, 1) — ER(e3, €4, €3, €4) + 2WR (€3, €4, €4, €4) — 2§ R (€3, €4, €4, €p)
=e4(R(€3, €4, €a, 1)) — 21, R(€p, €4, €4, €4) — 2§R (€3, €1, €4, €4)

— Res, eq, Vieq,e4) — ER(e3, €4, €3, €4) + 2WR (€3, €4, €4, €4) — 2§ R (€3, €4, €4, €p)
=V4(2B,) — 21, Apa — 26(Pbpa — *P €pa) — Ea(4P) + 2w(2Ba) — 26,(2 €ap *P)
=2V4By — 21, Apy — 26, P — 276, "P — 46, P + 4wB, — 4 ¢, *P
=2V4Bo — 21, Apy — 6£,P — 6 "¢, P + 4wB,
=2V,B, — 21, Apy — 66, P — 6 "€,(—iP) + 4w B,
=2V By — 21, Apy — 6(8a — i "&) P + 4wB,
=2V,B, — QQbAba —6Z,P +4wB,

—9V, B, — H, Ay, — 65,P + 4B,

bR(ebu €4, €q, 64)
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while for the right-hand side

DcRb4a4
= e.(Rep, €4, €q,€4)) — R(Deey, €4, €4, €4) — R(ep, Doy, €4, €4)
- R(@b, €4, Dce(m 64) - R(elh €4, €q, Dce4>

1 1
= ec(R(eba €4, €q, 64)) - R(Vceb + §ch63 + 5&!}64’ €4, €q, 64) - R(eb7 Xcd€d — Cce47 €a, 64)

1 1
- R(eby €4, vcea + §Xca63 + §Xcae4’ 64) - R(eba €4,€q, XedCd — Cc€4)

1
= e.(R(ep, es,€q,64)) — R(Veep, €4, €q,€4) — §chR(e3a €4, €q, €4)
- XCdR<eb7 €d; €aq, 64) + CCR(elh €4, €q, 64)

1
- R(@b, €4, vceaa 64) - EXCGR(eba €4, €3, 64) - XcdR(€b7 €4, €q, ed) + CCR(eb; €4, €q, 64)

1 — o _ 1 _ — _
= Vcf4ba — §ch(2Ba) — Xcd(_Z Epd Ba) + CcAba — §Xca(23b) - Xcd(_ €ad Bb) + CcAba
- Vcha - XCbE(I + chd Cpd Ea + Cczba - XcaEb + Xecd Cad >|FEb + Cczba

- vcha - chEa - i(ch *)Ea + 2gczba - XcaEb - (Xca *) >kEb-

Taking the trace over b and ¢, and using Lemma 2.1.10, we obtain

D'Rysos = div A tryB +i @B +20- A= B-x~ "B-x~

= %D A —trxB 41 YtryB+2¢- A — tryB + Wtry *B
= %D A —tryB+ i @DtryB+2¢- A —tryB + i DtryB
— %D - A —2trxB + 2i WtryB +2¢ - A

= %D CA=2try —i Wty ) B+ Z - A

= %D~Z—2trX§+Z-Z

Putting it all together gives
1 — - = — | — — —
5(2v43— H-A—G6=EP +4wB) =5P-A-2uXB+7Z-A

or

1~ S—
V4B—§D-A:—2trXB—2wB+§A-(2Z+ H) +3P=
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Derivation of V3B Equation:

We start with DYR,g.5 = 0, i.e. %D3R43a4 = D*Ry304. On the left

D3R y30a =€3(R(ey4, €3, €4, €4)) — R(D3zey, €3, €4, €4) — R(eq, Dses, €4, €4)
_ R(
=e3(R(
— R(eq, €3, Vea + naes + £ €4, €1) — R(eq, €3, €q, 2weq + 2mpes)
=V3(—2B,) — 2wR(e4, €3, €q, €4) — 2R (ep, €3, €4, €4)
+ 2wR ey, €3, €4, €4) — 2§bR(e4, €b, €a, €4)

eq, 3, D3eq, e4) — Rey, €3, €4, D3ey)
4

€4,€3,€q, 64)) - R<2&e4 + 2nbeba €3, €q, 64) - R<€47 _2£€3 + 2§b€b7 €a, 64)

—naR(eq, €3, €3,e4) — 2WR (€4, €3, €4, €4) — 2R (€4, €3, €4, €p)
= — 2V3B4 — 20(— P + P €pa) — 26, (—Apa)
— Na(—4P) — 2w(—2B,) — 2my(—2 €4 *P)
= —2V3Ba + 21uP — 2(na *) *P + 2§, Apy + 40, P + 4wB, + 4( *na) *P
= —2V3B, + 6o P — 6( *14)iP + 2, Apy + 4w B,
=—2V3B, +6H,P + Z,Ap, + 4wB,

For the right-hand side

DcRb3a4
- BC(R(eba €3, €q, 64)) - R(Dceb7 €3, €q, 64) - R(@b, Dce37 €a; 64)
- R(ebu €3, Dcea7 64) - R(eb7 €3, €q, Dce4)

1 1
- GC(R(ebv €3, €q, 64)) - R(Vceb + §ch€3 + §che47 €3, €q, 64) - R(eb’ Xcded + gc637 €a, 64)

— Rep, €3, Veeqa + %xcaeg + %Xcae‘l’ eq) — Rew, €3, €q, Xeaa — (c€4)
= e.(R(ep, €3, €q,€4)) — R(V ey, €3,€4,€4) — %chR(e% €3, €a, €4)

- XCdR(Gb, €d; €a, €4) — CcR(ep, €3, €a, €4)

— R(ev, €3, Veea, €4) — %XcaR(em €3, €3, €1) — XcdR(€v; €3, € €a) + CR(€p, €3, €4, €4)
= V(=Pdpa + "P €pa) — 1&,)(—2?&) — Xy(—7 € B,) — %Xca(2§b> — Xed(€aa *By)

2
chBa + ixcd Ebd Ea - Xcaﬁb — Xed Cad *Eb
X
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Therefore, using Lemma 2.1.10 on the 2nd Kerr paper,

D’Riza1 = Vi(—Pbpa + *P €pa) + trxB, + i (a)tl"xga — ByXva + "ByXea ”
= Vy(=Pbha — "P €4) + trxBa + i trxBa — ByXoa + “ByXea *
= —(V.P+ "V, *P) + (try + i “trx) B, — 2B, X
— —(VuP =i "V,P) + X B, — ByXy,
= (Vo —i*V,)P+ttX By — B, X4
— —D,P + uX B, — B, X,

Putting it both sides together, and taking the conjugate, yields

— — A — 1 —
VgB—DP:—trKB+2gB+§-X+3PH+§A~§

Derivation of V3;A Equation:

According to the Bianchi identities, Dj3Raps = 0 and D3Rpsq4 = 0. Thus,

0 =06 (DisRaaps + DisRogjas)
= D3Raaps + DaRuzps + DaR3aps + D3Ripsas + DyRazas + DaRspas
= D3Raaps — DaRiazs — DaRazps + D3Raaps — DyRaazs — DiRizas
= 2D3Raaps — (DyRaazs + DaRpuza) — (DsRaszps + DyRpzaa)

thus

1 1
D3R oaps = §(DbRa434 + D, Rpazs) + §D4(Ra3b4 + Risaa)-
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For the left-hand side, we compute, as above,

D3R oups =€3(R(€q, €4, €p,€4)) — R(Dseq, 4, €, €4) — R(€q, D3ey, €, €4)
— R(eq, 4, D3ep, e4) — R(eq, €4, €y, D3ey)
=e3(R(eq, €4, €p,€4)) — R(V3eq, €4, €, €4)
—n4R(es, eq, €p, €4) — dwR (€4, €4, €p, €4) — 21 R(€q; Ec, €, €4)
— R(ea, €4, Vsep, e4) — mR(€q, €4, €3, €4) — 20 R(€q, €4, €p, €¢)
=VisAaw = 1a(2By) — 4w Aap — 21e(— €ac *Bs) — 2B — 21e(— €y “Ba) =
=V3Aw — 20.By — 2B, — 4wAg, — 2(n, *) "By — 2(my ) *B,
=V3Aa — 2 (1.By + mBa) — 4wAa — 2 ((na *) "By + (m *) *Ba)
=V3Au — 2 ((n®B)aw + u(n - B)) — 4wAu — 2 (7. )@ "B + 6un((n *) - ( *B)))
=V34a — 2 ((®B)ay + dap(n - B)) — 4wAay, — 2 (1. )& “B)ay — das(n - B))
=V3Au — 2(0@B) 4 — AwAy — 2((1. *)® *B)ay
=V3Au — 2(nRB) . — dwAy — 2(0@B)w
=V3Au — 4N B)ap — dwAy
(H

=V3Au — 2(HRB) 4 — 4wy,

-~

Moreover,

DoRbaza
= €a<R(eba €4, €3, 64)) - R(Daeb; €4, €3, 64) - R<€b7 Da647 €3, 64)

- R<€b7 €4, Dae37 64) - R<€b7 €4, €3, Dae4)

1 1

- ea(R(eb’ €4, €3, 64)) - R(Vaeb + 5Xab€3 + §Xabe4’ €4, €3, 64) - R<€b7 Xac€e — Ca€4, €3, 64)

- R(eba €4, Xacec + <a637 64) - R(6b7 €4, €3, XacCe — Ca€4)

— 1
= Va(2B,) - SXavRaa31 = XacRuess + CaRusz — X, Riact = CaRoazt = XacRoaze + CaRoaza
— 1

=2V,By — QXab’R’3434 — XacRoesa + CaRoaza — X, Ruscs + XacRespa

= 2V,B, - %Xab(4p) — Xae(2 €pe “P) 4 Ca(2Bs) — X, Abe + Xac(—Pdap + *P €q)
= 2VuBy — 2XabP — 2Xae €bc P+ 20 By — X, Abe — XavP + P € Xae
=2V, By — 3XaP + 3 *P € Xac + 26 By — X, Abe

= 2VaBy = 3XaP = X, Ave + 3 "PXap * + 2By,

VBAab -
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Therefore, using the equations beneath Lemma 2.1.9 in the 2nd Kerr paper.

1 1 S _ _
§(DbRa434 + D Ripza) 25 (2vbBa — 3Xva P — XbcAac +3 *Pxpa "+ 2B,

+ Qvan - 3Xabf) - Xaczbc + 3 *PXab * + 2Can>

o _ 1 1 _
:<V®B)ab + 5abdiv B — 3 (Xab + §5ath'X> P — §(XacAbc + XbcAac)

3 ~ % a SR n
+-"P (2Xab - 5ab( )trX) + (<®B>ab + 5ab<c ) B)

2

1 1 . 1 _

:E(D®B)ab + §5abD -B — 3XabP - §(XacAbc + XbCAaJ
- 1 —~— 1 —
+3 *PXab 4 §(Z®B)ab + 55,11,(2 B) — —OpptrX P

1 1 — 3,5 = 1 (X, + X~ X, +X
=—(DRB), 0D B — (X +X)P— - | ——"A,. < —

5 (POB)ab + 50a (X +X)P — 3 5 b 5

+ 5 P(X = X) + 5(Z8B)a + 50w(Z - B) = 50wttt X P

L han 1 — 3, 1(X, . +X X, + X, —
=5(D®B)a —6pD - B —3XP — — | =X =0 A, + = A,
2( ®B)a + 5 0ab 5 ( 5 b 5 )
1 — 1 -3
+5(Z8B)a + 50u(Z - B) = Soatr X P

Also,
7?’a3b4 + 7?/b3a4 - (_P(;ab + P eab) + (_P(gba + *P Eba,)
= —Poyp+ P €y —Pogyp — P €y
= —2Pby
and so

1 1
§D4(Ra3b4 + Rpzaa) = §D4<_2P5ab) = —Dy(Pbap) = —(D4P)dgp.

Recall that the equation for V4P is

1 — 3 1 _

(1|
Iss!
|
>
|

e~ =
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So,
1
§D4(Ra3b4 + Rizas) = —(DaP)dgp
—_(ip.3 3tXP+1(2H+Z) B-S.B-X.4)6
—\2 2t e =2 ab
1 — 3 1 _ 1o _
= —§D-B+§trXP—5(2&+Z)-B+:-§+ZX-A Oab
Substituting
1 1
D3Rasps = §(DbRa434 + D Rpsza) + §D4(Ra3b4 + R3a4)-
To finish
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Appendix A

Wave propagation in Minkowski
space

A.1 General Facts about scalar wave equations

A.1.1 Energy-Momentum Tensor

Consider the wave equation,

Ogd = f. (A.1.1)

in a time oriented| Lorentzian manifold (M, g). with D denoting the covariant derivative
Let

1
Qaﬁ = Qa6[¢] = Da¢Dﬂ¢ - §ga6 (gHVDu(bDV(b)’
be the energy momentum tensor associated to ¢.

Lemma A.1.1. The energy momentum tensor Q,, is symmetric, verifies the local con-
servation laws,

D/BQaB = fDa(b
and the positive energy condition, i.e. for all causal, future directed, vector fields X,Y,

Q(X.Y) =0,
!This means that there exists a globally defined timelike vectorfield T.

187
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A.1.2 Killing and conformal Killing vectorfields

Definition. A diffeomorphism ® : f C M — M is said to be a conformal isometry if,
at every point p, ®,g = A?g, that is,

(2°8)(X,Y)], = g(2.X, 0.7 )| = A’g(X,Y)],

with A # 0. If A =1, ® is called an isometry of M.

Definition. A vector field K which generates a one parameter group of isometries (re-
spectively, conformal isometries) is called a Killing (respectively, conformal Killing) vector

field.

Let K be such a vector field and ®; the corresponding one parameter group. Since the
(®;). are conformal isometries, we infer that £xg must be proportional to the metric g.
Moreover Lig = 0 if K is a Killing vector field.

Definition A.1.2. Given an arbitrary vector field X we denote X)r the deformation
tensor of X defined by the formula

Mg = (Lxg)ap = DX+ DsX, .

The tensor )7 measures, in a precise sense, how much the diffeomorphism generated by

X differs from an isometry or a conformal isometry. The following simple Proposition
holds true

Proposition A.1.3. The vector field X is Killing if and only if )m = 0. It is conformal
Killing if and only if X7 is proportional to g.

Lemma A.1.4. Given an arbitrary vectorfield X with deformation tensor ) we have
the identity

DD Xy = Raase X7 + KT
where

(X)[‘aﬁ/\ - (Dg (X)Wa,\ +D, (X)WB/\ - D, (X)Waﬁ) )

DN | —
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Proof.

29T o0 = D mar+ Do Mgy — Dy Mmag
= Dg(Do Xy +DyX,) +Do(DgXy + Dy Xg) — Dy(Do X +DgX,)
= D,DsX, +DgD,Xy + (D,Dy — D\D,) X5 + (DD, — DyDj) X,
= 2D3D, X, + (D,Ds — DsD,) X, + (D,Dy — D;3D,) X5 + (DsD, — D\Djs) X,
= 2DgD X + Riavas X + Rpoar X7 + Raopr X
= 2DsD.X) — (Roxag + Ropar + Roapr) X7
= 2D3D, X, — (Roras — Rogar + Roagr) X7 — 2Ropan X
= 2DsDoX) — (Roxas + Ropaa + Roasr) X7 — 2Ropan X7
= 2D3D,X) — 2R, pan X"

Therefore,

DsD. Xy = Ropan X+ DT80 = Ranos X7+ OTusn = Rango X7+ FTusn
as stated. O

Proposition A.1.5.  On any pseudo-riemannian spacetime M, of dimension n = p+gq,
there can be no more than 5(p+ q)(p + q + 1) linearly independent Killing vector fields.

Proof. If X is a Killing vector field equation
Dj(Do X)) = Riaaps X°.

and this implies, in view of the theorem of existence and uniqueness for ordinary differen-
tial equations, that any Killing vector field is completely determined by the %(p +q)(p+
g+ 1) values of X and DX at a given point. ]

The n-dimensional Riemannian manifold which possesses the maximum number of Killing
vector fields is the Euclidean space R™. Simmilarily the Minkowski spacetime R™"*! is the
Lorentzian manifold with the maximum numbers of Killing vectorfields.

Corollary A.1.6. If X is a conformal Killing vectorfield on a Ricci flat manifold of
dimension n + 1 and X)m = Ag then, for alln > 1 g®?D,DgA = 0 and, for alln > 1,
D,DgA = 0.

Proof. Indeed DgD,X) = R,\OJB(SX‘S + (X)Fa/g)\ from which,

—1
O Xy = <X>PM=—”2 DA
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Note that for Ricci flat spacetimes D*(0X)) = O(D*X,). Hence,

1—n

ODivX) = OA
On the other hand,

1 1
DX, = §tr(X)7T:§(n+1)A

Hence,
1—n
—(n+ 1HOA = 5 OA
from which we deduce,
LA = 0. (A.1.2)
To prove the second part it suffices to commute the equation X, = —”T_lD,\A with
covariant derivatives as follows,
n—1
0D, X\ = — 5 D,D)A
-1
0D, X, = —— ——DaD,A

Therefore,
—~(n—1)D,DyA = OWr,, =0(Agu) =0.
O

Corollary A.1.7. The total number of independent conformal Killing vectorfields on a

Ricci flat manifold M n > 2, cannot exceed ngﬂ

A.1.3 Commutation of L], with a vectorfield

Lemma A.1.8. Consider a vectorfield X, with deformation tensor X7 and Q. =
D,¢pDg¢ — %gDang)\gb the energy momentum tensor of the scalar wave operator Ug. We
have:

X(Ogo) = Dg(X9) = M7*DyDyo — (2D7 N5 — D (tr)7) ) D
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Proof. Direct computation. This is also an immediate consequence of the general com-
mutation formula of Lemma(3.2.3]). O

Corollary A.1.9. If X is a conformal Killing vectorfield on a Ricci flat manifold (M, g)
we have

[X,0g)¢ = —AOg¢ — (n — 1)D*AD, 6.

Moreover,

A.1.4 Generalized Integral currents

The integral current method is based on the following calculation (see the more general

formula of Proposition [3.2.9)):

Lemma A.1.10. Gwen a vectorfield X, a scalar w and a 1-form M, the generalized
current

1 1 1
P,:=P,JX,w,M] = QX"+ §’w¢3u¢ — Za"w¢2 + Z—lM,@?

verifies

1 1 1 1
D"P, = (X(¢) + §wq§)D¢ + §QW<X>7TW _ meqs? + éwD“ng“gb
1

1 (A.1.3)
+ 5 M 60,0 + ZDMM%Q
Proof. Direct computation. See also the more general Proposition |3.2.9] O

Corollary A.1.11. Assume that X is conformal Killing, i.e. )m = Qg for some scalar
Q, and

n — n—1

1
4 Q¢au¢ -

P, = QuX"+ 8MQ¢2.
Then

DB, = (X(6) + gué)Ts



192 APPENDIX A. WAVE PROPAGATION IN MINKOWSKI SPACE

Lemma A.1.12 (Divergence lemma). Consider a vectorfield X in domain D C M with
future space-like boundaries 07D and past boundary 0~D. We have

/(%Dg(X’N)—/aDg(XaN)Z—/DDiv(X),

where N denote the future normal to the boundary.

Proof. Application of Stokes Theorem. O]

A.2 Classical Vectorfield Method in Minkowski space

A.2.1 Symmetries of Minkowski space

Let x# be an inertial coordinate system of Minkowski space R"*!. The following are all
the isometries and conformal isometries of R**!.

1. Translations: For any given vector a = (a°,a', ....,a") € R"": ot — 2k + a*.
2. Lorentz rotations: For any A = A? € O(1,n): a# — Aka”.
3. Scalings: For any real number A # 0: x# — Ax*.

4. Inversion: Consider the transformation z* — I(x#), where I(z*) = % is defined for
all points x € R"*! such that (z,z) # 0.

The first two sets of transformations are isometries of R™™!, the group generated by
them is called the Poincare group. The last two type of transformations are conformal
isometries. the group generated by all the above transformations is called the Conformal
group. In fact the Liouville theorem, whose infinitesimal version will be proved later on,
states that it is the group of all the conformal isometries of R"*!.

We next list the Killing and conformal Killing vector fields which generate the above
transformations.

i. The generators of translations in the * directions, p = 0,1,...,n: T, = 32,

ii. The generators of the Lorentz rotations in the (u,v) plane:, L, = 2,0, — z,0,,.
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iii. The generators of the scaling transformations: S = z#9,,.

iv. The generators of the inverted translations: K, = 2,252 — (2°z,) 52

Denoting P(1,n) the Lie algebra generated by the vector fields T, Lg, and K(1,n) the
Lie algebra generated by all the vector fields T, Lg,, S, K5 we state the following version
of the Liouville theorem,

Theorem A.2.1. The following statements hold true.
1) P(1,n) is the Lie algebra of all Killing vector fields in R™ 1.
2) If n > 1, K(1,n) is the Lie algebra of all conformal Killing vector fields in R"™.

3) If n = 1, the set of all conformal Killing vector fields in R is given by the following
ETPTESSILON
f(@®+ 2" (00 + 1) + g(2” — 2") (9 — O1)

where f,qg are arbitrary smooth functions of one variable.

Proof: If X is Kiling Therefore, there exist constants a,,, b, such that X* = a,, 2" 4 b,,.
Since X is Killing D, X, = —D,X,, which implies a,, = —a,,. Consequently X can be
written as a linear combination, with real coefficients, of the vector fields T, Lg,.

Let now X be a conformal Killing vector field, i.e.

(X )7Tp0 =Am,,

In view of Corollary OA = 0 and moreover, for n # 1, D,D A = 0. This implies
that A must be a linear function of x#. We can therefore find a linear combination, with
constant coefficients, ¢S+d* K, such that the deformation tensor of X —(¢S+d*K,) must
be zero. This is the case because )7 = 2m and Hur = 42, m. Therefore X — (¢S +d°K,)
is Killing which, in view of the first part of the theorem, proves the result.

To establish Part 3 we set X = ady + bd; and obtain 2Dy Xy = —A, 2D X; = A and
Dy X, + D1 Xy = 0. Hence a, b verify the system

Oa 0b 0b Oa

Or®  Ox! T 920  Oxl

Hence the one form adx® + bda! is exact, adx® + bdx! = d¢, and % = %, that is
U¢ = 0. In conclusion

_1(0¢ . 06 1(0¢ 09
—5(@*%)@0*@”5(@‘@)@0‘31)
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which proves the result.
Remark. Expresse relative to the canonical null pair L = 0, + 0,, L = 0; — 0,,
To=2"YL+ L), S=2"ulL+ul), Ky=2'w?L+u*L). (A.2.1)

Both Ty = 0, and Ko = (¢2 + |2[*)0; + 2t2°0; are causal’] Observe that S is causal only
in J*(0) U J~(0). We note also that 97 = 2m, K07 = 4¢tm and therefore, in view of

Corollary [A.1.9]

[S,0] = —20,
Ko, O = —4t0+4(n—1)9,
Ko+ 2(n— D)t0] = —2t0

The general vectorfield method applied to the flat wave operator is based on commutation
and integral currents.

A.2.2 Wave equation in Minkowski space R""!

The canonical, inertial, coordinates in R"*! are denoted by 2#, u = 0,1,...,n relative to
which the Minkowski metric takes the diagonal form m,, = diag(—1,1,...,1). We have
2 =t and z = (z!,...,2") denote the spatial coordinates. We make use of the standard
summation convention over repeted indices and those concerning raising and lowering the
indices of vectors and tensors. In particular, if z, = m,,, 2", we have rog = —t and z; = 2,
1 =1,...,n. We denote by ¥;, the spacelike hyperplanes ¢t = t;,. The wave operator is
defined by O = m*?9,5 = —0? + >, 02, In polar coordinates ¢,r,60',...0" the metric

takes the form

—dt* + dr* + r*do’_,.
The functions u = 3(t —r), v = (¢ + ) are optical, i.e. they verify the eikonal equation
m®? Oaulpu = m*?9,v95v = 0. We sometimes use u to denote v.

In the u,v,0', ... 0" coordinates the Minkowski metric takes the form —4dudv+rdo?_,.
Thus, g,., = —2, g’ = —%. The wave operator takes the form,

—1
06 = g¥D.Dso = —0,0,0 + ”Tarqﬁ + Lrd.

2 This makes them important in deriving energy estimates.
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The standard null pair is given by
L=0,+0, =0,, L=0;—0, =0,

The corresponding horizontal structure is, of course, integrable with surfaces of integra-
bility given by the spheres S ,.

Recall that the Minkowski space-time R"*! is equipped with a family of Killing and
conformal Killing vector fields, the translations T, = d,,, Lorentz rotations L, = z,0, —
z,0,, scaling S = td; + 2'0; and the inverted translations K, = —22,S+ < z,2 > 0,,.

The Killing vector fields T, and L,, commute with [J while S preserves the space of
solutions in the sense that ¢ = 0 implies OS¢ = 0 as [[J,S5] = 200. One can split
the operators L, into the angular rotation operators @O = x;0; — ;0; and the boosts
OL = 2,0, + t0;, for i, j,k=1,... n.

A.2.3 Basic Conservation Laws in Minkowski space

The starting point is the pointwise conservation law
DM(Q;WXV) = fX<¢) (A'2'2)

To derive an energy type inequality we integrate ((A.2.2)) on a domain of dependence D,
as defined below.

Definition A.2.2. Given a domain ¥y C {t = to}, D = D(3) C R" is a domain of
dependence for ¥ if for every p € D, denoting by C~(p), the past line cone through p,
we have C~(p) N{t > ty} C D.

We consider below the following examples of bounded domains of dependence D with
boundary D = 0"D U Xy

S. The future boundary 9D is strictly space-like, i.e. the future unit normal N to it
is timelike.

C. The domain D (see Figure|A.1]) given, for 0 < ¢; < R,
D={lz—azo|<R—t}n{t>0}n{t <t}

whose future boundary is given by Dt = N N {¢t = ¢}, with null boundary N =
{lt —zo| =R—t}N{t >0} N{t <t}
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Figure A.1: Causal domain (domain of dependence) D with incoming null boundary A
and space-like boundaries g, ;.

Lemma A.2.3 (Divergence lemma in R'™"). Integrating the divergence equation (A.2.2)
on a domain D we derive

1. For a spacelike domain of type (S) we have

/P-N—/ P-T—/F
P b3} D

2. For a causal domain of type (T) we have, wit L = —0%uds, i.e. L’ =—0%u,

/ElP-T+/J\/P-L:/EOP-T—/DF
/N fe /0 ’ /| e (A.2.3)

Proof. In the spacelike case it follows directly from Lemma Otherwise it requires
a simple adaptation. O

where,

Corollary A.2.4. Given any solution of ¢ = 0 and X Killing we have the conservation
law.

e+ [ aee.n= [ aeen
P N Yo
In the particular caseﬁ when X =T we deduce the classical conservation of energy formula

EQ@ﬂ+L@ﬂQ= QT.T)

o

3Note that L is future null, i.e. g(L,L) =0, g(L,T) = —1.
4 Note that the only globally time-like Killing vectorfield in Minkowski space R'*" is X = §,.
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where Q(T, T) = L (100 + [Vo[?).

Thus, any continuous group of isometries of (M, g), generated by a Killing vectorfield X,
leads to a conservation law.

Remark A.2.5. The vectorfield X =T = 0, leads to the standard law of consrvation of
energy in Minkowski space: In the particular case when X = Ty = 0, we have X1 =0
and, integrating (??7) on the space-time slab [0, T] x R™ we derive the usual conservation

laws,
o> = 09|* A24

/ Dol + / 96) :/ 1062 (A.2.5)
ONT[0,1] SN+ SonN+

with 09> := |0:8]* + |Vo[* and [Do* = |Lo|> + [V = |Lo]> + 31 leads?. Here
(€a)a=1,..n—1 denote unit vectors at p € H tangent to H and the corresponding time slice
passing through p.

FEach coordinate vectorfield X = 0; leads to conservation of linear momentum and X =
0i; = 2,0; — x;0; leads to conservation of angular momentum.

A.2.4 Vectorfield method and pointwise decay in Minkowski
space

We denote by E[¢](t) the standard energy norm E[g](t) = [, [04]*. We introduce the
generalized energy norms:

Eil¢]= > E[X;,X,..X; 0] (A.2.6)

1190y j

with the sum taken over 0 < j < k and over all Killing vector fields T, L, as well as the
scaling vector field S. The crucial point of the commuting vectorfield method is that the
quantities Ey, k > 1 are conserved by solutions to (¢ = 0. Therefore, if,

S [l (19 @ + 9l o < €. < . (A.27)

0<k<s

then for all ¢, Es[¢]|(t) < Cs. The desired decay estimates can now be derived from the
following global version of the Sobolev inequalities ( see [?], [KLvect2]):
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Proposition A.2.6 (Global Sobolev). Let ¢ be an arbitrary function in R™' such that
E,[¢] is finite for some integer s > %. Then, fort >0,

06(t, )| S (1L+t+|a)) ™7 (1+ |t —|al))77 sup EL[g)(¢) (A.2.8)

0<t'<t

for all t > 0. Therefore if the data f, g satisfy with s > %, then for all t > 0,

1
0¢(t,2)| < = ; (A.2.9)
(I+t+z)z A+t —|zf])2
Moreover, relative to the null frame Ly = 0, + 0,, L_ =0y — 0,, (€a)a=1,.n-1
1
|(L+v ea)(a¢)(tv $)| 5 ntl 1
(L4 )0+t~ [o])? Ao
1 2.
|L-(09)(t, z)| < T

e

(Lt + )= (14 [t = [a])

and similarly for higher derivatives.

A.2.5 Global conformal energy identity

We now apply Corollary [A.1.11] to the case of Minkowski space and X = K, = (* +
|z|%)0; + 2t2'0; with = 4¢. Thus,

n—1

Py = Q(Ko, To) + (n — 1)tgdr — ¢*.

Proposition A.2.7. The following identity holds in any dimension n > 1.

[ ro= [ @erow v wPiwer +@iLor) (a2
DI 3t

where L =0;+0,, L=0;,—0,, ' =L+(n—-1u!, L'=L+(n—-1Dut,u=t—r and
u=t-+r. Moreover if n > 3 can prove the following lower bound,

[ Rze [ (@IoP 2+ 1PITOP | LoP + ) (A1)
P2 pM

for some ¢ > 0.
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Proof. We review the proof below for the sake of completeness. First obeserve that,
Qrr = Q(L,L) = L(¢)*, Qrr = Q(L, L) = |V¢|*, Qrr = Q(L, L) = L(¢)* and that
Ko=1(wL+u*L), To=08,=3(L+ L) and S = $(uL 4+ u L). For convenience we also
mtroduce the vectorfield § = %(QL —ul)=r0,+ to, Thus,

1

QKo T = 3(LOF + (2 + )P+ LY

and,

Py = n—1 ,

(2007 4 2+ 2T + 2(L02) + (0= 00

n—1 ,

= %((8¢)2+(§¢)2+2—1(u2 +Q2)|W¢|2> +(n_ 1)t(‘3t¢>

One then proceeds by a simple integration by parts procedure. Writing t0, = S — r0, we
derive:

[w0o0 = [ so-r00-0= [ so-0u5 [ a2y
p pM 3¢ p

Therefore,

L= [ (orser v aiet eiwort + - so-or "5 )
[ (S0 00-110)" + (897 + S + 2170

[ o+ 2 w(pof + o2l LoP)

which establishes .

To prove we use, in addition to , the following modification,

/ztta“ﬁ N / 720 /—9 (¢°) = / §¢+”;2 Etﬁ—i& (A.2.14)

Using positive constants A, B, A+ B =n — 1, we write,

/Et(n—n ”;1 - A/Ett¢8t¢+B/t¢8t¢ 5 ;1

— / <A5¢-¢+B—§¢-¢+( nol
Pt r

2 12

)6+

__¢2

)
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Therefore,

-
p»

_|_

I,

(59)
/Et ((§¢)2 +2A¢-S¢+ B(n - 2>f«_22¢2> + % /Et(u2 4 )|V

( 2+ 2A¢ - Sp+ (An— (n — 1>)¢2) +%/Et(u2 + )| Yol

N~ DN —
|

Now observe that, if 0 < A < (n — 1) and 0 < B < n — 2 we can find ¢, ¢o > 0 such that
(86)* +24¢ - S¢ + (An — (n = 1))¢* > &1 ((S9)" + ¢°)
t? t?
(89)° + 246 56 + B(n = 2)5¢" > 2((89)" + 56°)

If n > 3 one can find A, B verifying 0 < A < (n —1),0 < B < n — 2 such that
A+ B =n — 1. Therefore taking ¢ the minimum of ¢, co we derive,

(L org [tetiver) = [ (S@F+IS@F 500

1

:=§éﬁfwwﬁ+fwwW+&)

Hence, for some other ¢ > 0,
[ Rz [ @GR+ R LOP + 2 + TP + )
St P

as desired. n

Remark A.2.8. The second part of the Proposition is typical to the use of Hardy type
inequalities to estimate the lower order term in ¢.

As a corollary we have the following
Corollary A.2.9. IfO¢p =0, ¢(0) = f, 0,¢(0) =g
/ CIL (@) +w?| L(9)) + (* + 1) Vo +¢* < | |fP+ 2PV + [2|gf
Et E0

and n > 3 we have,

/E w’|L(@)]* + w?| L) + (£* +1%) Vo] + ¢* < /E 12+ 2PV P + |29
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A.2.6 Null Conformal energy

Proposition A.2.10. Consider the domain D to be the complement of the causal future
of Dr = {|z| < R} in RY™, for some R > 0. Denote by D(7) the intersection of D with
the time slab 0 <t < 7. Denote by HT[0, 7] the future boundary of D intersected with the
same time slab. Also denote by 3(7) the spacelike hypersurface t = 7.

The following estimate holds true.

A+ [ S(uLo-(n-1o)+ 5u Vol 5 [

[fI?+ [PV P+ |2]?]g]?
OH+[0,7] SonH+

[\

where C[|(7) is the conformal energy restricted to X7 (1) = X(7)ND
CLlol =g [ (RILOP + (a2 + VO + o2 L'OP).
S(r)HF
In particular

1 1
[ Sto— =)+ glVel S [ 1P VSR +Leflol
OHT[0,7]

Eoﬂ?‘["'

Proof. We first consider the case when H ™ is the complement . We apply formula (A.2.15))
to X = Ko.

OH*[0,7] S(r)NHt SoNH*

where L = 0, + 0, and

n—1

m(P, L) = QKoL)+ (n—1)topLe — ®?

Py=m(P, Ty) = Q(Ky, Ty) + (n—1)tpdo — n- 1¢2.

The integral on H is defined in the same way as in [A.2.3

We consider first the integral fz ~+ Fo which can be treated exactly as fEt Py in the
previous subsection. The only modification we need to make are in the integration by

parts formulas (A.2.13]) and (A.2.14) where now need to take into account the boundary
terms. Thus (A.2.13)) becomes,

1
/ tpo;p = / Sop-op+ E/ & + —/ r¢*do
S(r)nH+ S(r)H+ 2 Js)rmr 2Js n
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where S; g is the ball of radius R on (1) and do its volume form. Thus, proceeding as

in the derivation of (A.2.11]) we deduce,

1

[oomo= g R aIVoP | LoP) (2210
S(T)NHT 4 S(r)NH*

~1
+ Z / r¢*do
2 ST,R

We now consider the null boundary integral,

n—1
/ m(P,L) = / (Q(Ko, L) + (n — 1)t¢Le — ¢*)do
OMHt[0tr OHT[0,7]
1 n—1
= [ SEL@P ) + (- ioLo - "
OHT[0,7]
1
SR N )

oHH[0,] 2

Now, by a simple integration by partsﬂ we deduce,
n 1
[ wlers = 5[ ey [ e
OHF[0,7] IHT[0,7] Sr.Rr

On the other hand by a simple calculation, recalling that u =1t + r,

1 -1

Jo= [ LR (- btole — "
aH+[0,7] 2
1 2 n—1 9
= S(ule —(n—1)¢)" — ¢
oH+[o,r] 2 2 Js.n
Therefore,
1 2 1, s n—1 9
m(P.L) = S(wls — (= 1)0)" + S WP "= [ Jals
OHT[0,7] OHT[0,7] Sr.R

Recalling (A.2.16]) and (A.2.15)) we deduce,
1 1
[ omens [ Ro= [ (Lo (- 16) 4 eV
OH*(0,7] OH*

S NHT 0,7] 2

4

- / P
SoNHT

° fafi-ﬁ(o,r) ¢* = foT ds f|y|:1 ¢*(s, (R + 8)y)(R + s)" 'doy = % lyl=1 do fo T¢2%(R +5)"ds
= _% f|y|:1 dO'y IOT %¢2 (R+S)nd5+% f|y\:1(R+T)n¢2(tv (R+T)y)d0'y = _% IOT ds f|x\:s+R |1‘|¢L¢d0’x +
Lf g el a)do, = —2 [ o laloLe+ L [y | lelé®.

b L e T+ ol L)
SrNHT
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Therefore
1 2
[ g(wme— =09+ ivep - (0 - 1e?)
OH+[0,7]
1
w3 [ P e eP e Lof) = [ R
4 Js, et SonH+
from which the desire estimate easily follows. O

A.3 Other integral estimates

A.3.1 Morawetz Estimates

Besides the standard Killing and conformal Killing vectorfields of Minkowski space we
encounter other useful vectorfields which lead to bulk estimates. The primary example is
the so called Morawetz estimate.

Lemma A.3.1. Consider the vectorfields Y = 0, and X = f(r)0, in Minkowski space
R,

1. The deformation tensor of the vectorfield Y = 0, is given by:

) j .. 2 -1
- xj), i,j=1,...n, tr(Y)W:M'

O T O U N 0 P S A
00 05 ) g 7’( iJ ’.1" ‘l” r

or, relative to a null frame ey, es,e3 = L = 0,,e4 = L = 0, the only nonvanishing
components are,

Mg = géab, a,b=1,2,...n—1.
T

2. The only nonvanishing components of deformation tensor of the vectorfield X =
f(r)Y = f(r)0, are given by

n—1

(X)7Trr = 2f/(T)7 (X)ﬂ-ab = ab tT(X)ﬂ- = Q(f/(T) +

2110), )

Proof. )1 can be easily calculated either in cartesian coordinates, since 0, = %& or in

polar coordinates. To calculate X)7 note that given X = fY we have,

(X)Waﬁ = (fY)%/6 =f (Y)%ﬁ + Do fYs + DgfY,, tr X r = tr(UV7) = fr Vo 4 2Y(f)
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Note also that the deformation tensor of L is the same as that of Y = 0,. Hence,

Wrs=U0r5=f P15 +DofLs+DsfLa=f 705 +DofLs+ DsfLy

Hence,
(V)W33 = 4f/(7”), (V)W34 = _2f,<r)7 (V)W44 = (V)Wsa = (V)7T4a =0, (V)Wab = 27”_1f(7")5ab
as desired. O

We now specialize to n = 3 and calculate the term,
O () = 7 () = 4w () — 272 ()
We deduce the following,
Proposition A.3.2. Given X = f(r)0, and w = 2f(r), the 1-form in R'*?,
P,JX,w,0] = QX"+ %uxb(?#(b — ;langf
verifies the divergence identity:

DAB, = S ()00 + 5 (@0 + (7 = 31/ Vo

— S0V + F)(0:0+ )00

(A.3.1)

Proof. According to Lemma we have,
1 1 1 1
DB, = (X(6) + 5w6)06 + 5Qu ™ — 10uwd + Swel(do, do).

Using Lemma and Ow = 20(r~1f(r)) = 2r=1f"(r) — 87 f(r)do — 47— 2f" we then

derive
DB, = (@) + 57 (@00 + (r7 f = S P )T — (57" () — )7

2+ 11)(0,0+ )06

Proposition A.3.3. Let D = D(r) = {(t,z) e R™" : 2 € R}, 0 <t < 7} For every
0 <6 <1, (with a constant dependent of §), we have

/D (L4 r) (00 +2I62) < EL6(0) + / (14 7)o\ 0P

-
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Proof. Choose f(r) =1 %)5 to the identity (A.3.2)). Observe that

-5
5 01+8)  f)_ 0

f/(T’> = mv f”<7n) = _(1+T)2+57 r = (1—|—’T‘)1+5 = f/(T)
and,
PP S AE)T OIS )T ) S (L)
Finally
1., o 1 0(1+0) _ 4] 1 0(149)
O = T T A S 2w

Also, since f(0) =0 and O(r~'f(r)) = 2r=1f"(r),

DIB, = SFO) + 5 f ()00 + (7 f = 57 0) IV = o ()6
+ f(r) (8¢ + 1 o)00.
We deduce

5(1+0)

(1+ >2+6|¢|2

1 1 1

DBy > f(0:6+17'0)06 + o fIVOI* + 5 £ (10:0° + 10)) + 5
Using the divergence theorem and the positivity of f, f’ we deduce

[ ook +7210R) < [Blolir) = Ell0)] + [ (1)

The result then follows by making use of conservation of energy estimate, i.e.

Eldl(r) < El¢)0)+ /D OgP2

Remark A.3.4. Choosing f =1 in (A.3.2) we derive

DAP, = VP + %+ (06 + 90

Thus, after integration,

/D<T>T_1|W|2+8”/OT’¢’2 ) /EOPO /ztpo‘ / (0,6 +1'9)0

< 9 (0)+/D 18,6 +r6||09).
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A.3.2 rP Weighted Flux Estimates

In this section we consider domains D(71y, 72) as in the picture below.

=
1]
.
\
A
o|  4¥F
I e ()
- m«\ g
() a3
@Q- 2 T N
Dy(14,72) (t2) .
X (12)

Figure A.2: small Causal Domains D(7y,7) with past and future boundaries (1), ¥(72) consisting of
the two sides X1, spacelike and ¥ null.

Theorem A.3.5. The following weighted flux inequalities hold true, for 0 < p < 2:

/zm) rP(Lo)® + //DR(TW) " (p(Lo) + (2 — p)|Vo|?) +/ P

Z+(m1,72)

A (A.3.3)
< / 9+ REGI) ¢ halD6)(, )

where,
. 1 1
and,
L [06)(11, 72) == / rPHO* + Rp/ (1+7)°|0e|?
'DR(Tl,TQ) D(Tl772)

Remark A.3.6. In reality the proof gives the estimate,

P(Lp)? p=1(p([.b)2 B 9 » )
L e [ [ o tpder s eonivef) < [ i

< / P(L6) + RPEQ)(m) + Ty [06) (71, 72)
Yr(11)
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without making use of the Morawetz integrated decay estimate. We do not expect this to
be true in a black hole situation where the integrated decay estimate will have to be used.
This would lead to a loss of derivative.

Proof. We make use of the pointwise identities of proposition 7?7, which we recall below.

DivP = f(r)L¢0é+ (r'f — >W¢\2+ f< )(Lg)? (A.34)
where,
PJX,w,M] = QuX"+ %wqﬁﬁﬂgb — i@uwgbz + }lM“ng?
X = [0 +0)=f0)L  w=>f M=2770)L
Also,

Pl = f0)E6F — 50, (rf (1))
PoL = fIVOP + yr0u(rfe?)

Poo = S0 (B0 +IV6P] - 50,001
Start with the formula,

/ P-V—I—/ P-v = / P-V—/ DivP
3(72) I+ (m1,72) (1) D(71,72)

with v = 0, along X1 and v = L along X z. We have,

/E(T)P.V - /sz)P'aﬁ/zR(ﬂPL
-/ N 30 @+ iwo?] - [ Je)Eey

1 -2 9 1 L )
. 5/ZL( () - g/ER(T)r 0, (£ (r)6?)
- /EL(T) 2f( r) [( ¢) + ’W(MZ] - /ER(T) F(r)(Lo)* — ! lim r L (r) ¢

2 V—oc0o Suq— WV

On the other hand,

R /ﬁ(w Ry [ e
= [ e g [ e G [

uT2
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Hence,
/ P-v+ / P-v— / P-v
2(r2) I+ (r1,m2) 3(71)

r) (L) + [Vol]

- /zR(n) fr)(Ee)* - /zm) %f(r) [(ZW * WP]

I
m\
o)
g
—
—~
=
h
=
(Y]
+
o
=
S5
|
=

and we derive,

Lo)? 2 DivP = T.0)2
[ so@ors [ gervers [ owr = [ g
" /EL(Tl) 5f(r> |:(L¢>2 * |Y7¢|2i|
1 ~
- [, 0 (B < o]
On the other hand,
. . -1 _1 / 2 1 , =) —~
/D(ﬁ . DIVP—/D(TW)(T f =S PNVoI + 5 f (r) (L) +/D(T1’T2)f(r)L¢D¢
for f=1rP,

1 ~ ~
[ o= [ e [—(2 —pIVeP + 1—‘”’(L¢>2} ="
D(71,72) D(71,72) 2 2 D(71,72)

Hence,

- 01 =
L p 2 p—1 - 2_ 2 r L 2
/E (o / o IO /D L [2< PVl + L M
/ (L) + |Vo[ + Frr
YR T1)

where

b = [ g dereiwer] = [ g [dereiwer]+ [ wigng

Clearly,

]Err] < Rp(g[¢](rl)+5[¢](72)) —|—6/D( :

Tp_l\f¢\2+e_1/ rp+1]|j¢\2
D(T1 7'2)

< IRPE(n) + e /

D(71,72)

TP 4 ! / P OgP

D(71,72)
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We deduce, for € = £,

T _ 1 P~
D L 2 D 2 p—1 - . 2 r L 2
/E‘R(TZ) ' ( ¢> " /I+(T1,T2) ' |W¢’ " /1;(71,72) ' {2 (2 p)’W@ + (4>( ¢>

< ORVE[G](m) + ;f / =

D(71,72)

TO BE REVIEWED

A.3.3 Decay of the Energy Flux

Calculus Lemmas

We start with a few simple remarks.

Lemma A.3.7. Let f : R, — R be a C' non-negative function verifying, for all 0 <
i1 < to,

flta)+ A [ flepds < fio)
Then, for all 0 <t,
f&) < f0)e

Proof. Consider H(t) := f(t) + Af(;f f(s)ds. Clearly H(ty) < H(t) for all 0 < t; < t,.
Hence H'(t) < 0 and therefore,

AN T0) = (1) + AT < 0.
O

Lemma A.3.8. Consider a sequence of continuous functions fr : R, — R such that,

0< folt) <...< filt)

and, for all i <75 €[0,T] and all 1 <i <k,

fi(m2) + /72 fi—1(s)ds < fi(m) (A.3.5)
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Then,

fo(T) < (T/k)~* £ (0)

Proof. We divide [0,7] in k subintevals of length T'/k, i.e. to =0<t;... <ty =T. In
each inteval [; = [t;_1,t;] we make use of (A.3.5)) i.e.,

fi(t) + /tt fic1(s)ds < fi(tj—1), Vtel; = [tj1,t]
In particular,
/1- fic1(s)ds < fi(tj—1)
and therefore, by the mean value theorem. there exists 7 € I; such that,
falr) = gy | sty @7 ity

On the other hand, according to applied to f;_; we have, since 7 < ¢,
fiea(tj) < fima(T)
We deduce,
fiea(ty) < (T/k) 7 filtj-1) (A.3.6)
Consequently,
fo(T) = folte) < (T/R)" filti—r) < (T/R) 2 foltim) < -+ < (T/R) " filto) = (T/k) 7" £i(0)

as desired.

We now generalize the lemma a bit to allow for inhomogeneities.

Proposition A.3.9. Consider a sequence of continuous functions fr : Ry —> R such
that,

0< folt) <... < filt)
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and, for all7y <1 €1[0,T],1 <i <k,
mm+/“ﬁ4wusmm+/'ﬂ@w

where F; are given non-negative continuous functions in [0,T]. Then,

o) < 17

ﬁ@+28®/ﬁﬁm4

0<i<k 7€[0,T

In fact

“To

fi(r2) + /T2 fiz1(s)ds S fi(m1) + fo(m1) +/ Fi(s)ds

T1

211

(A.3.7)

(A.3.8)

(A.3.9)

Proof. We divide [0, 7] in k+ 1 subintevals of length T'/(k+ 1), i.e. to=0<t; <ty...<

tit1 = 1. In each inteval I; = [t;,¢;+1] we make use of (A.3.7) i.e.,

RO+ [ s S 1)+ [ Flds Ve = lit)

J

In particular,

fimi(s)ds S fi(t;) + | Fi(s)ds
J J

J

and therefore, by the mean value theorem there exists 7 € I; such that,

fia(r) = m/g fiea(s)ds S (T/(k + 1)) [fz(t3)+/I Fi( )d]

J

On the other hand,

ti+1 tit1
fic1(tj+1) +/ fica(s)ds S fioa(7) + / Fi_1(s)ds

i.e., since all f; are non-negative,

fica(tj) S fiaa(m) + / " Fi1(s)ds
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Hence,

! L fit i(s)ds th'ss
faltin) S 7 /iji1<s>dss<T/<k+1>> [fz(tg)+ / Fi(s)ds| + / Fi(s)d

J

+ /I Fi_i(s)ds

J J

< (T/(k+ 1) [ﬁ-(tj) " / Fi(s)ds

Note also that, since t; > j%,

tj+1 ‘ ti+1 ,
/ Fi(s)ds = / Fi(s)ds < t;k/ s*Ey(s)ds
I t t

J

k—i
< {E} falet)
3T
where,
. T .
Fi(k_l) = Sup/ s" F(s)ds (A.3.10)
T€[0,T] J T
Hence,
B 3 ]{:—’—1 k—1i i k+ 1 ]C—Z-f‘l »
fialtynn) S (/0 + D) () + @) ) SR (R
Hence, for all j > 1,i>1
fiiltin) < T Y(t) + TRt | ERD 4 gt A.3.11
J+ J i i—1

In particular,
W) = foltwe) S (D)7 fult) + T[R4 BV
In the same manner,
At S T falte) + T [F2(k72)+F1(k71)]
Therefore,

fO(T> 5 T—2f2(tk_1>+T—k: [FQ(k_Q)—i-Fl(k_l)—f‘Fék)]
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Continuing in the same manner we derive,

fo(T) S T ) +T7" Z F*Y

0<i<k—1

or, since,

fet) S fe(0) + / 1 Fr(s)ds < fr(0) +F]£0)

to

we derive the desired estimate,

fo(T) S THAO)+TF > B

0<i<k

First Decay Theorem

According to the main estimate of theorem [A.3.5] for all 0 < p < 2:

213

/ER(TQ) rp<L¢) i //D(n,-rz) " (p(L¢) " (2 _p)|y7¢| ) : /ER(Tl) Tp(Lgb) * Rp€[¢] (Tl)

+ L [D9](11,72)

where, L¢ := Lo + 2p = (0, + 9,)¢ + ¢ and,
I

Let,

fi(7) :=/ |8¢|2+/ rLel?,  i=1,2,
Zr(r) YR(T)

pe) = [ el [ [iEof < 1ver]

In view of the Hardy inequality,

Elol(r) < folr) S E[Pl(7).

o1 (O] (11, T) = / rPT 0| + Rp/ (1+7)'°|0e|?
Dr(11,72) D(71,72)

(A.3.12)
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where, recall,

Elpl(T) = 8¢2+ l,<;§2+ W¢2
[ ]( ) /ZL(T)‘ ’ /ZR(T)| ’ ‘ ‘
We also define,

Bir) = [ ool R [ 0en
R\T

5(7)

In view of (A.3.12), for all p =1, 2,

o)+ | Y hamdr < L))+ / " Fy(r)dr

T1

Hence, as a consequence of proposition we deduce, for all 7 € [0, 77,

fo(r) < 772 [f2<7—>+ Z sup/ s* ' Fy(s)ds

0<i<2 T€0,7]) Jr

Definition A.3.10. We introduce the following norms for Uo:

L0t = 3 sup / /D R oAt
Rr(T,t)

i—0 TE[TU t]

+ sup // (1—{—7’)73’1(1%—70)”5@@2
DRTt)

TE[70,t]

and, for a fived € > 0,

7, [O¢] (70, ) = sup //D » (14 7)1 4 )T 0¢)

-0 TE[Tot

oo / / (14771 + ) 0|02
Dr(T,t

TE[70,t]

These considerations prove the first part of the following theorem:

Theorem A.3.11. Assume R =~ 1 and initial data supported in X1 (0).

1. The energy-flux E[¢] verifies the decay estimate, for all 0 <t < T,
Elelt) < (1+6)72[E[¢)(0) + Lo, [Oel] (A.3.13)
where,

127,&[D¢] = 1 [D¢] (O, t)
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2. The incoming flux (through the null hypersurface NV (r, ) = {v = Viu, <u <

U, })
£ = [ ool + 7

verifies,

sup (1+7)°€"[9)(7,1) S E[6](0) + T5,,[C09) (A.3.14)

T€[0,]

3. By relaxing the decay assumptions on Llp we have the following slightly weaker decay
estimates for the fluz.

Elgl(t) < 1+~ [E[](0) + I, [Og]] (A.3.15)
where,

L40¢] == 1, [B9](0, 1)

Proof. The proof of (|A.3.14]) follows easily from the standard energy identity (applied to
the region DY (7,t) = D(r,t) N {v <V}, for any 7 € [0,1]),

E[8)(r 1)+ EB(H) < ElF)(r) + / (1+r)"+|0g)

DV (1,t)
combined with (A.3.13)).

It remains to prove (A.3.15). Taking p = 2 — € in the definition of f, and applying
proposition for the functions fi_, fo_. in the interval [0,¢], we derive,

LB S A £ 0507 [f0) + 200
Yr(t
We also have the estimate (see (A.3.12)) with p =2 —¢),

[oeior s [ edepaedo s [ Bl [ @entoioep
Zr(t) X r(0) Dr(0,t) D(0,,1))
< €[¢l(0) + I, [0¢)]
Interpolating we derive,
[ r(@ep <oy [€16)0) + 7,,100]
Zr()
We then proceed as in the proof of proposition to deduce that,

Elel(t) < folt) S (1 +1)77 [€[¢](0) + T, [0
as desired. O
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Appendix B

GCM spheres in [K-S:GCM1]

B.1 Stability of Schwarzschild in the polarized case

B.1.1 GCM admissible spacetimes in [K-S:Schw]

In [K-S:Schw], Klainerman and Szeftel proved the nonlinear stability of the Schwarzschild
space under axially symmetric polarized perturbations. The final spacetime in [K-S:Schw]
was constructed as the limit of a continuous family of finite GCM admissible spacetimes
as represented in Figure below, whose future boundaries consist of the union A U
C,UC, U, where A and X, are spacelike, C, is incoming null, and C, outgoing null.
The boundary A is chosen so that, in the limit when M converges to the final state, it
is included inside the black hole region of the limit spacetime. The spacetime M also
contains a timelike hypersurface 7~ which divides M into an exterior region we call (¢*Y) M
and an interior one ™ M. Both ®Y M and ") M are foliated by 2-surfaces as follows.

(i) The far region “*» M is foliated by a geodesic foliation S(u, s) induced by an out-
going optical function u initialized on X, with s the affine parameter along the null
geodesic generators of (“* M. We denote by r = r(u, s) the area radius of S(u, s).
On the boundary ¥, of ¢ M we also assume that r is sufficiently large.

(ii) The near region ™M is foliated by a geodesic foliation induced by an incoming
optical function w initialized at T such that its level sets on T coincide with those
of w.

To prove convergence to the final state one has to establish precise decay estimates for all

219
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Figure B.1: The GCM admissible space-time M of [K-S:Schw]

Ricci and curvature coefficients decomposed relative to the null geodesic frames associated
to the foliations in “® M and ") M. The decay properties of both Ricci and curvature
coefficients in (™ M depend heavily on the choice of the boundary ¥, as well as on the
choice of the cuts of the optical function u on it. As such, the central idea of [K-S:Schw]
was the introduction and construction of GCM hypersurfaces on which specific geometric
quantities take Schwarzschildian values.

Remark B.1.1. Schwarzschild metric in outgoing Eddington-Finkelstein coordinates has

the forn{|

2
g, = —2duds — Tdu?+r*do, T=1-2"" (B.1.1)
T

where u =t — 1y, ‘Z"r* = Y. For a given sphere S(u,s), the expanisons k = trx and

k£ = try, and the mass aspect function p = —div{ — p + %5{ - X are given by
2 27 2
K= -, E=——) ,u:—?. (B.1.2)
r r r

! Recall that in standard spherical coordinates, we have g,, = —Ydt?> + T~ 1dr2 + r2do?.
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B.1.2 The role played by GCM admissible spacetimes

As mentioned above the final spacetime was constructed as the limit of a continuous
family of finite GCM admissible spacetimes. At every stage one assumes that all Ricci
and curvature coefficients of a fixed GCM admissible spacetime M verify precise bootstrap
assumptions. One makes use of the GCM admissibility properties of ¥, and the smallness
of the initial conditions to show that all the bounds of the Ricci and curvature coefficients
of M depend only on the size of the initial data and thus, in particular, improve the
bootstrap assumptions. This allows to extend the spacetime to a larger one M’ in which
the bootstrap assumptions are still valid. To make sure that the extended spacetime is
admissible, one has to construct a new GCM hypersurface ¥, in M’ \ M and use it to

define a new extended GCM admissible spacetime M.

B.2 Review of the main results of [K-S:GCMI]

The main building block of our GCM hypersurface are the GCM spheres constructed in
[K-S:GCMI].

B.2.1 Background space

Given an extension M’ of a GCM admissible spacetime M we restrict our attension to
far regions of R ¢ M’ In [K-S:GCMI], one considers such spacetime regions R foliated
by a geodesic foliation S(u, s) induced by an outgoing optical function v with s a properly
normalized affine parameter along the null geodesic generators of L = —g®?dzud,, where
g is the spacetime metric. We denote by r = r(u, s) the area radius of S(u,s) and let
(es,e4,€1,€2) be an adapted null frame with e, proportional to L and e, es tangent to
spheres S = S(u, s). The main assumptions made in [K-S:GCMI] are that the Ricci and
curvature coefficients, relative to the adapted null frame, have the same asymptotics in
powers of r as in Schwarzschild space. The actual size of the perturbation from Kerr is
measured with respect to a small parameter € > 0.
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B.2.2 Null frame transformation

In general, two null frames (es, ey, €1, e2) and (€}, €}, €], €}) are related by a frame trans-
formation of the following formﬂ

1

€y =A (64 + fler + Z|f|263) :

, 1 1 1 1 .09

o= |0+ sf folentsf eat | SfatsIfIFf |es, (B.2.1)

2—a 2=a 2 8 a

= N (1 7 4 e TPUR ) e (£ SIEP) ot 2o

5 PR TR A C VL T
where the scalar A and the 1-forms f and f are called the transition coefficients from

(€3, €4,€1,€2) to (€}, €}, €], €h).

The formulas relating Ricci and curvature coefficients of the primed frame in terms of
the Ricci and curvature coefficients of the un-primed one are give in [3.1.15, Particulary
important for us here are the transformation formulas for try, @try, tr X (a)trx,C and

P °p-
ANry = trxy+div'f+f-n+f-C+Err(try, try)
Aty = @try +curl'f+ f A+ f ACH+ Err(@try, @try)),

Mry' = trx4+div'f+f-n—f-(+EBrr(trx, try),

Aty = @ty +curl’ f+ fAn— (A f+ Err(@try, @try)),
1 1 1 1
¢ = ¢(—V'(og\) — Ztrxf%— Z—l(“)trx frwf—wf+ ZitTX+ 1 *f @try
+Err(¢, ('),

p = p+Err(p,p)
v= p+Er(p, )

B.2.3 Non canonical basis of / = 1 modes

We introduce the following generalization of the ¢ = 1 spherical harmonics of the standard
sphereE|.

2See Lemma [3.1.29| for a precise statement.
3Recall that on the standard sphere S?, in spherical coordinates (6, ), these are JO0S) = cos 0,

JHS) = ginfcosp, J(—S) = sinOsin .
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Definition B.2.1. On a sphere S, an é-approzimated basis of ¢ = 1 modes is a triplet of
functions J®) on S verifying

(r?A +2)JP = 0(2), p=0,+,—,

(@ — = ¢ = —
‘S‘/ p) jla 35pq+0(e), p,q=0,+,—, (B.2.2)

Tl Jp :O(Z>a p:07+7_7
\S\/s

where € > 0 is a sufficiently small constant.

Remark B.2.2. J® is called a (non-canonical) basis of £ = 1 modes.

Assuming the existence of such a basis J®), p € {—, 0, +}, we define, for a scalar function

h,
(W, = {/hJ(”), p=—,0,+}. (B.2.3)
S

A scalar function A is said to be supported on ¢ < 1 modes, i.e. (f)fz2 = 0, if there exist
constants Ag, B_, By, By such that

h=Ay+B_J9 + ByJY + B, JW. (B.2.4)

B.2.4 Definition of GCM spheres

The null expansions « := tr x and x := tr x relative to the adapted null frame (e3, e4, €1, €2)
are defined by

trx =g"xa,  trx:=g"x,
where
Xab = 8 (De,ea,65),  x, =8 (De,€3,€).
The mass aspect function p is defined by

. I .
pi=—divg—p+ XX,

where the shears X, X, the torsion ¢ and the curvature components p are defined by

~ 1 ~ 1
Xab -~ Xab — §5ab/€7 Xy = Xop — §5abﬁ7
1 1

Ca i= 58 (De,e4,e€3), p = ZR(€3’64’ es, €4).
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In an outgoing geodesic foliation of Schwarzschild spacetime, we have:

2 27T 2m
- = = B.2.5
= K - h=g ( )
where T =1 — 22 and r, m denote the area radius and Hawking mass of S, i.e.
|S] 2m 1
=4/ — =14+ — . B.2.
" 4r’ r + 167 /m (B.2.6)

The idea to construct GCM spheres is to mimic the condition in the perturbed
spacetimes. More precisely, the GCM spheres are topological spheres S embedded in R
endowed with a null frame (€5, 3, ¥, €5) adapted to S (i.e. €3, ¢S tangent to S), relative
to which the null expansions x5 = tr x5, &% = tr XS and mass aspect function uS satisfy:

2 27S 2mS
IiS - s = 0, (ﬁs + _S> - 07 (:us - 7:} 3) = O? (B27>
r r >2 (T ) 0>2

where S and m® denote the area radius and Hawking mass of S.

B.2.5 Deformations of spheres and frame transformations

The constructlon of GCM spheres in [K-S:GCMI] was obtamed by deformmg a given

sphere S=5 (u s) of the background foliation of R. An 0(5) deformation of S is defined
byamap\P:S%SCRoftheform

o O

U(u,s,y' y*) = (?Ot U, Y%, s+ S v, v, y2> (B.2.8)

with (U, S) smooth functions on S, vanishing at a fixed point of .S, of size proportional to

the small constant ¢ and (y*, y?) are spherical coordinates on S. Given such a deformation
we identify, at any point on S, two important null frames.

1. The null frame (e3, ey, €1, €2) of the background foliation of R.

2. A null frame (e5, €3, €3, €5) obtained from (B.2.1)) adapted to S, (i.e. €5, 5 tangent
to S).

Remark B.2.3. We denote by (f, f,\) the transition coefficients from the background

frame (e3,eq, e1,e3) of R to the null frame (5,3, ¢S, €5) adapted to S.
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B.2.6 GCM spheres with ¢ =1 modes in [K-S:GCMI1]

Here is a short version of the main result in [?].

Theorem B.2.4 (Existence of GCM spheres in [?]). Let R be fized spacetime region,
endowed with an outgoing geodesic foliation S(u, s), verifying specific asymptotic assump-

tz’on expressed in terms of two parameters 0 < § < e. In particular we assume that the
GCM quantities of the background spheres in R, i.e.

2 27T 2
-2 (=) (B (B.2.9)
r T ) >2 ™/ >2

are small with respect to the parameter §. Let S = S(QOL, §) be a fized sphere of the foliation

with  and m denoting respectively its area radius and Hawking mass, with r sufficiently
large. Then, for any fived triplets A, A € R? verifying

(o}

Al A S 6, (B.2.10)

there exists a unique sphere S = S(A, A), together with a null frame (€3, €3, €3, e5), which

is GCM, i.e. S is a deformation of S, such tha

2 278 2mS
S o S _ S _
K- = 0, (ﬁ +—5 >£>2 =0, <,u — —(rs > =0, (B.2.11)

.
and
(divSf)emy = A, (div® et = A, (B.2.12)

where (f, f,\) denote the transition coefficients of the transformation (B.2.1) from the
background frame of R to the frame adapted to S.

Remark B.2.5. The conditions (B.2.9), (B.2.11) and depend on the definition
of £ = 1 modes respectively on g and S. In [K-S:GCMIJ, once a choice of £ = 1 modes
on g’ 18 made, it is then extended to S using the background foliation. As a consequence,
the GCM spheres of Theorem |B.2.J depend on the particular choice of £ =1 modes on g’

4Compatible with small perturbations of Kerr.
5Note that the GCM conditions (B.2.11]) require a choice of £ = 1 modes on S, see Remark
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B.3 Sketch of thew proof of Theorem

Given a sphere S=5 (1, 8) of this background foliation of R, we look for a O(S) defor-

mation of it, i.e a map ¥ : % — S of the form
U(u, s,y y?) = (5 + Uy, s+ S0,y y2> (B.3.1)

with (U,.S) smooth functions on S, vanishing at a fixed point of S, of size proportional
to the small constant §. The goal is then to show that there exist spheres S, described
by the functions (U, S), and adapted null pairs (e$, e) such thaf]

2 278 2mS
KS = = ps = m (B.3.2)

where S is the area radius of S, mS is the Hawing mass of S and TS = 1— 2;”—58 Note that,

given such a deformation, at any point on S we have two different null frames: the null

frame (es, e4, €1, ez) of the background foliation of R and the null frame (3,3, €3, e5).

In general, two null frames (es, eq, €1, €2) and (€5, €}, €], €5) are related by a frame trans-
formation of the form (B.2.1)).

The condition that the horizontal part of the frame (€, €5) is tangent to S also leads to a
relation between the gradients of U, .S, defined in (B.3.1)), and (f, f). We thus expect to
derive a coupled system of the form

81/“8: <(S(f7iar))j:>v a=1,2,
0,.U = ((u(f, /i r))f), a=1,2, (B.3.3)
DS(f,f,A) =G(0) + H(f, [, A, T),
where the terms S,U, H, G, DS have the following meaning.
1. The expressions S(f, f,T'), U(f, f,T) are 1-forms depending on f, f and I', with I’

denoting the Ricci coefficients of the background foliation of R and with # denoting
the pull back by the map ¥ defined in (B.3.1)).

2. The expression H refers to a system of scalar functions on S depending on (f, f,\)

and I', where S\ =A—1

6Tt needs recalling that in reality we only impose these conditions for the £ > 2 modes of k£ and .
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3. The expressions (U, S) and H satisfy, schematically, the following.

SUlS|EDI O M-S L] LM

4. The expression DS denotes a linear differential operator on S.

5. The term G(I') denotes a system of scalars involving the GCM quantities for the
R-foliation appearing in (?7).

The construction of a GCM sphere can thus be reduced to the problem of finding solutions

(U,S, f, f ,S)\) to the system (B.3.3) of size 3 There are however various difficulties in
solving (B.3.3]) which we emphasize below.

B.3.1 Integrability

Note that the transition coefficients have in fact five degrees of freedom while
provides us with only three scalar constraints. The additional degrees of freedom of the
triplet (f, f,\) have to be constrained by integrability conditions, that is integrability in
the sense of Frobenius. Indeed, since the vectorfields (e, e,) have to be tangent to the
sphere S, the distribution generated by them has to be integrabl(ﬂ Given an arbitrary
frame (e}, €3, €}, €}), related to the background frame (ey, ez, e3, €4) by the formula (B.2.1)),
the lack of of integrability of the distribution generated by (e}, €,) translates into lack of
symmetry for the null second fundamental forms,

/

X;b - g(v%eil?eg;)’ X b g(vegegueé)v

which can be measured by the scalar functiong?
(a)trX/ :eab X:ﬂ), (a)trxl :Eab X;b'

We note that in the axial polarized situation of [K-S:Schw|, we can always choose the
primed frame (e}, €}, €}, €5) such that €, is collinear to the axially symmetric Killing vec-
torfield Z and all other elements of the frame commute with Z. This automatically ensures
the integrability of the frame without any additional conditions.

To deal with the issue of integrability, in the general case, we are led to add two more
conditions to (B.3.2)

@tryS = (a)trxs =0, (B.3.4)

"Recall that a distribution generated by linearly independent vectorfields X,Y is integrable if the
commutator [X, Y] belongs to the distribution.
8See precise definitions in section ??.
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translating into two additional differential relations for f, f which can be incorporated in

the definition of DS above. This provides us with the correct number of equations in the
last row of (B.3.3), but, as we discuss below, it does not ensure that the kernel of DS is
trivial which would be a necessary condition for solvability.

subsectionNon-triviality of ker DS

Upon inspection, the linear operator DS, though elliptic, has a non-trivial kernel. To
circumvent this difficulty we need to modify the conditions by requiring instead
that only the £ > 2 modegd’|of tr XS—F?—SS and pS— 2;383 are set to vanish. As a consequence,
we have the freedom to fix the £ = 1 modes of f, f. These modifications allow us to assume
that DS is both elliptic and coercive.

B.3.2 Solvability

Note that the first two equations in (B.3.3)) require a compatibility condition i.e.
# #
op (S £D) =00 (S(7.1£.T))

In the axial polarized case, this can be avoided by a simple symmetry reduction argument,
but in the general case, this becomes an issue. We deal with it by modifying the first two

equations in , i.e. we consider instead the systemm
ASS = dz’vg((S(f,LF))#),
ASU = dw%((mf, LT)?), (B.3.5)
DS(f, f,0) = G(T) + H(f, f. A, ),
We also fix the values of U, S to be zero at a given point of g to ensure uniqueness.

subsectionNonlinear implicit nature of (B.3.5))

To disentangle the highly nonlinear and implicit nature of (B.3.5), we proceed by an

9We refer here to a generalization of the spherical harmonics of the standard sphere S2. This is itself
an additional difficulty one has to overcome, i.e. to define a suitable generalization of modes for deformed
spheres.

0Note that the equations for (U, S) in (B.3.5) do not imply the ones in (B.3.3). It is thus a priori not
clear that solving (B.3.5) will lead to a GCM sphere. The fact that it does is discussed in section
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iterative procedure which starts with the trivial quintet
Q) = (U™, 5O X O {0 O (0,0,0,0,0),

corresponding to the un-deformed sphere S, and, making us of the n-th iterate Q™
produces

Q(n—l—l) — (U(n+1)75 (n+1) 75\ n—l—l)7 f(n+1 f (n+1) )

as follows.

e The pair (U™, S™) defines the deformation sphere S(n) and the corresponding pull
back map #,, given by the map ¥ : S — S(n),

(u, 8,9, v?) — (u+ U™ (' 42,5 + Sy o2), vt o).

e We define the triplet (/™) f (n+D) X (+1)Y a5 the solution of the following linear
system

DSt (flnt) | plnt) (n—l—l)) = g(I) +H(f(n)7i(n)7§\(n)7l“).

Note that DS™ is defined with respect to the geometric structure of S(n).

e We use the new pair (f(”“),i("ﬂ)) to solve the equations on .S,

S50 g (g, o0 )
. . - (B.3.6)
ASs(n-{—l) = div S ((S(f(n+1),i(n+1), F))#n) :

with U D §(+1) vanishing at the same given point of S and where the pull back #,,

is defined with respect to the map W : S - S(n). The new pair (U1 §+1)
defines the new sphere S(n + 1) and we can proceed with the next step of the
iteration.

B.3.3 Have we produced a GCM sphere?

If € is sufficiently small one can show that the iterative procedure mentioned above leads
to a solution (U(‘”), G(o0) ) (), f(‘”),i(oo)) verifying the system
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AU = div (U(f), £, 1))*),
AS© — dip (( F.1) )#oo> (B.3.7)

D(fO), [0, 5) = 6(1) +H(f(°° [0, T),
where the elliptic operator D> is defined on the sphere S(o0), i.e. the deformation of

S induced by (U S(>)). TIs S(co) the desired solution to the problem, i.e. is it a
GCM sphere in the sense discussed above? This is a priori not clear as the equations for

(U), S(>)) in (B.3.7) do not imply those in (B.3.3). As a result, we have potentially
two different frames associated to S = S(o0).

e The frame (eg o) eg‘”), egoo), eé(fo)) induced by the transition functions (A ), f(oo),i(oo)),
with the quintet (U(OO), S(o0) )\ (o0), f(oo),i(oo)) verifying the limiting system (B.3.7)).
e The geometric framdM] (3, €S, e, %), adapted to S.

The main remaining hurdle is to show that these two null frames coincide.

B.3.4 Applications to the construction of intrinsic GCM spheres

In [K-S:GCM2]|, we derive a far reaching corollary of Theorem where we replace
the ¢ = 1 conditions 1’ on divS(f) and div S( f) by the vanishing of the canonical

¢ = 1 modes of divS3% and £ S xS. Tthe definition of canonical £ = 1 modes depends on
an effective version of the uniformization theorem which we also develop in [K-S:GCM2].
The horizontal 1-form 3% is a curvature component of the Riemann curvature tensor with
respect to the null frame adapted to S, constructed in Theorem [B.2.4] Here is a short
version of that result.

Theorem B.3.1 (Intrinsic GCM spheres with canonical £ = 1 modes [K-S:GCM2]). Un-
der slightly stronger assumptions on the background foliation of R, there exists a uniqu

GCM deformation of S wverifying, in addition to (?7),
(divSp%) =0, xSy =0, (B.3.8)

relative to the canonical £ =1 modes of S.

"'With a proper normalization for the null pair €3, e$, in fact the one corresponding to A\ = (),
2Up to a rotation of S2.



B.4. GCM HYPERSURFACES, FOLLOWING [?] 231

Remark B.3.2. In [K-S:GCM2] one also makes use of Theorem to define a quasi-

local notion of angular momentum.

Remark B.3.3. We note that a related notion of preferred spheres, of constant mean
curvature, in an asymptotically euclidean Riemannian 3-manifold has been introduced in
[Hu-Yau|. Note that the spheres in [Hu-Yau] have codimension 1, while the GCM spheres
have codimension 2 in a 4 dimensional Lorentzian manifold.

Remark B.3.4. The assumptions on the spacetime region R in Theorem are in
particular satisfied in Kerr for r sufficiency large. We can thus apply Theorem
in that context, and obtain the existence of intrinsic GCM spheres Sgeq in Kerr for r
sufficiency large, see Corollary 7.9 in [K-S:GCM2]. The intrinsic GCM spheres S of
Theorem thus correspond to the analog of Sker in perturbations of Kerr for r
sufficiency large.

B.4 GCM hypersurfaces, following [Shen]|

B.4.1 First version of the main theorem

In [Shen] one constructs hypersurfaces which are suitable concatenations of the spheres

of Theorem [B.2.4

Here is a simple version of the main theorem in [Shen].

Theorem B.4.1 (Existence of GCM hypersurfaces, first version). Let R be fized space-

time region, endowed with an outgoing geodesic foliation S(u, s), verifying same assump-
tions as Theorem . Assume in addition that e3(JP), (divn)e—y, (div€)e—r, r—s and

es(r) — es(s) are small with respect to the parameter §.

Let Sy be a fized sphere included in the region R, let a pair of triplets Ao, Ay € R® such
that

Aol [A] S,

and let JSoP) g basis of £ = 1 modes on Sy, such that we have on Sgy

2 2750 2mSo
S (o) ()
=0 0 ) >0 (rS°) >2
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and
(div® f)e—1 = Ao, (div Soi)ézl = A,

where (f, f) denote the transition coefficients of the transformation (B.2.1)) from the back-
ground frame of R to the frame adapted to Sy.

Then, there exists a unique, local, smooth, spacelike hypersurface ¥o passing through Sy,
a scalar function uS defined on Xy, whose level surfaces are topological spheres denoted
by S, a smooth collection of triplets of constants AS,AS and a triplet of functions JSP)
defined on ¥o verifying,

ASo — Ao, ASO = A,, J(SJJ)ISO — J(SO,JD)7

such that the following conditions are verified:

1. The surfaces S of constant uS, together with an adapted null frame (€5, €3, €3, ed),

verify

KS — % =0, (ﬁs + ﬁ) =0, (,us — 2”;S ) =0, (B.4.1)
r "/ =2 (r5)? /2
and
(divSfmr = S, (divSf)ey = AS, (B.4.2)
for the triplets of constants AS,AS and ¢ =1 modes JSP).
2. The following transversality conditions
5 =0, wS =0, n® = -5, (B.4.3)
and
5 (uS) =0, eS(rS) =1 (B.4.4)
are assumed on .
3. We have, for some constant cy,

uS+18 =¢y, along . (B.4.5)
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4. Let v be the unique vectorfield tangent to the hypersurface ¥y, normal to S, and

normalized by g(vS,e$) = —2. Let B85 be the unique scalar function on g such that

VS is given by

VS =ed + 1865, (B.4.6)
The following normalization condition holds true

—_— 2m(0)

bS = —1— 5 (B.4.7)
where bS is the average value of bS over S and myoy 18 a constant.
5. We have the following identities on Yy:
(divSn®)e—1 =0, (div S§S)z=1 = 0. (B.4.8)
6. The transition functions (f, f, ), area radius rS and Hawking mass mS verify ap-

propriate estimates.

Remark B.4.2. Theorem is the generalization of Theorem 9.52 in [K-S:Schuj] in
the absence of symmetry. It plays a central role in the proof of Theorem M6 and M7 in
[K-S:Kert] , see sections 8.4 and 8.5 in [K-S:Kerr]].

Remark B.4.3. We provide below more explanations for the statements 1-5 in Theorem

[B.4.1;

1. Since we concatenate a family of GCM spheres S(AS,AS) emanating from Sqy to
construct the GCM hypersurfaces Yo, by Theorem we have automatically

[BA1) and (BA2) on every S.

2. The transversality conditions and are consistent with a local exten-
sion by an outgoing geodesic foliation initialized on X, see item 1 in Remark[B.4.5
The role of these transversality conditions is to make sense of n° and €5 on X, see
item 5 below. -

3. uS should be chosen to be constant on the GCM spheres foliating ¥o. The choice
(B.4.5) is simple and fulfills this condition but other choices making ¥q spacelike are

possible.

4. The value BS is free and should be prescribed. Note that the choice (B.4.7) coincides
with the value for the hypersurface {u +r = ¢} in Schwarzschild spacetime.
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5. In (B.4.8), n8 and §S are defined intrinsically on X by

0= e (Dach.ed). &= g (Dacke) + 5.

These definitions are consistent with the standard ones provided Y satisfies the
transversality condition (B.4.3) which is equivalent to extending ¥g locally by an

outgoing geodesic foliation, see item 2 in Remark . The condition (B.4.8) will

be enforced thanks to a special choice of AS and A®.

Remark B.4.4. As in Section 9.8 of [K-S:Schujl, ¥ is chosen to be spacelike. One
may wonder whether Xy could be chosen to be nulH. The reason for choosing it to be
spacelike is that it allows more flexibility: all spheres foliating X in Theorem [B.4.1] are
GCM spheres, while only one could be a GCM sphere on a null hypersurface.

Remark B.4.5. We provide below justifications for introducing the transversality condi-

tions (B.4.3) and (B.4.4) :

1. (B.4.3) and (B.4.4) are consistent with a local extension by an outgoing geodesic
foliation initialized on . The use of transversality conditions instead of a local
extension is chosen here to have intrinsic definitions on 3.

2. The role of the transversality conditions (B.4.3) is to make sense of the Ricci coef-
ficients nS, §S and WS on ¥ through the formulae.

g(Dusefa 62) = 2775 + 25553 = 2775’
g(D,sef, ) = 265 + 265 = 265 — 285¢7, (B.4.9)

g(Dyses, e3) = 4w® — 45505 = 405,

3. The role of the transversality conditions (B.4.4) is to make sense of e5(rS) and
5 (uS) on 3 through the formulae:

$05) = 15(5) = 155 0%) = v3(5) - 5,

S(, S S(, S S S/, 8 S(, S (B.4.10)
es(u”) =v>(u”) — b%e} (u”) = v>(u®).

13In the context of the stability of Minkowski, the last slice in the original proof by Christodoulou and
Klainerman in [Ch-K]| is spacelike, while it is null in the proof by Klainerman and Nicolo in [KI-Nil] in
the case of the exterior of an outgoing null cone.

4Note that the L.H.S. of are well defined on ¥ since v/S is tangent to X.
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B.4.2 Sketch of the proof of the main theorem

The idea of the proof is to construct ¥y as a 1-parameter union of GCM spheres.

Step 1. For every given:

e Background sphere S(u,s) in R endowed with a basis of £ = 1 modes J®,
e Triplets (A, A)

e Triplet of functions J® satisfyin

Z |J® — J@)

p:07+7_

Bomas (S(w,5) = 70,

we associate, by Theorem , a unique GCM sphere Su, s, A, A, j(p)], as a deformation

of S(u,s) with £ = 1 modes in the definition of (B.2.11)) and (B.2.12) computed w.r.t.
J®)_In particular, (B.2.11)) and (B.2.12) are verified and we have Sy = S[u, 5, Ag, Ay, J®],

provided we choose J®) ‘So = J(Sop),

Step 2. Given (U(s), A(s),A(s)) such that

o o o

U(s) = u, A(8) = Ao, A(S) = A,,

We construct, relying on Step 1 and a Banach fixed-point argument, see Theorem 77,

a family of basis of £ = 1 modes J(s) and of GCM spheres S[¥(s), s, A(s), A(s), J(s)]
verifying

yS(J(s)) =0 on X, j(p)(g) _ J(sg,p)’

where the hypersurface X is given by
2= JS(s) = JS[W(s). 5, A(s), Als), J(s)],

and where 1% is the unique vectorfield tangent to ¥ with g(v5,ef) = —2 and normal to

S(s).

15, . (S(u, s)) denotes the Sobolev space on S(u,s) of order $,,qx
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Step 3. We then derive for (¥, A, A) an ODE system of the following type:

xpfl(s)A/@) =(div %) -1 - %T‘IA(S) - %r‘lA(s) + lot.,
\I,/l(s)A/(S) =(div S§S)Z:1 + lo.t., (B.4.11)

1 /(—= 2mS
U(s)=—1—=(0S+1+—F% )+ lLot.,
( ) 9 ( TS
where l.o.t. denote lower order terms, see Section 77 for the precise statement.

Step 4. We look for a special choice (¥(s), A(s), A(s)) such that the additional GCM
conditions and are verified. These conditions lead, in view of Step 3, to
an ODE system for (¥(s), A(s), A(s)), with prescribed initial conditions at § which allows
us to uniquely determine the desired hypersurface .

Remark B.4.6. The proof of Theorem is largely analogous to that of Theorem
9.52 in |K-S:Schujl. Below, we compare the proof in this paper and that in Section 9.8 of
[K-S:Schuj].

e /n Step 1 and Step 2, we show that, in general, one can choose the approrimate
basis of £ = 1 modes so that they are transported along the normal direction to the

GCM spheres S(s) on 3. This contrasts with [K-S:Schul] where the basis of { = 1
modes is fixed by the polarized symmetry.

e Once the choice of £ =1 modes is made, in Step 3, we derive the system of ODEs
(B.4.11). Note that the coefficients of linear terms of A(s) and A(s) on the R.H.S.
of (B.A11) are different from that of (9.8.74) in [K-S:Schuf], which is due to the
different choice of £ =1 modes.ﬂ

e Steps 1-3 are significantly more involved than the corresponding in [K-S:Schul] due
the absence of symmetry, while Step 4 is similar to that in [K-S:Schuj.

6 More precisely, the basis of £ = 1 modes in [K=S:Schw], fixed by polarized symmetry, is not transported
along the vectorfield /5.
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GCM spheres and hypersurfaces in
IK-S:GCM2]| and [Shen]

C.1 GCM spheres in [K-S:Schw]

C.2 Review of uniformization results for the sphere

C.2.1 Uniformization for metrics on S?

We start with the following well known calculation.

Lemma C.2.1. Let S a surface and let ¢° be a Riemannian metric on S. For a scalar
function u on S, the Gauss curvature of e2“g° is connected to that of g° by the formula

K(e*g%) = e 2 (K® — Agu) (C.2.1)

where K° denotes the Gauss curvature of S and Ag the Laplace-Beltrami on S.

According to the classical uniformization theorem, if S is a closed, oriented and connected
surface of genus 0 and ¢° is a Riemannian metric on S, then, there exists a smooth
diffeomorphism @ : S? — S and a smooth conformal factor v on S? such that

®7(g%) = €*p (C.2.2)

237
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where 7, is the canonical metric on the standard sphere S?. In view of Lemma
above, if we denote by g the metric on S%, g = ®#(g°) = e*y,, we derive

Agu+ K(g)e* =1 (C.2.3)
where we have used the notation

AO = A’YO'
We thus have the following corollary of Lemma [C.2.1]

Corollary C.2.2. If ®# g% = e?%y,, then u verifies the equation
Aogu+ (K% o ®)e?* = 1, (C.2.4)

where K° is the Gauss curvature of g° on S.

Proof. The proof follows from (C.2.3)) in view of the fact that K (®#¢%) = K(¢%)o®. O

Definition C.2.3. Let M denote the group of conformal transformations of S%, i.e. the
set of diffeomorphisms ® of S? such that ®%~y = e*%v, for some scalar function u on S2.

Remark C.2.4. Let ® € M so that ¥~y = e?“y,. Then, u satisfie]
1
u= §log | det d®|.

Also, in view of Corollary|[C.2.9, we have

Aou + e = 1. (C.2.5)

C.2.2 Conformal isometries of S? and the Mobius group

We represent the standard sphere S? as {:c € R3 |z]? = 1}. Let N = (0,0,1) denote

the north pole of S2. Through the stereographic projection from the North pole to the

equatorial plane plane (z', %) we consider the complex coordinate

! +ix?

IThis follows immediately from writing ®#~, = 2%~ in matrix form, by evaluating on an orthonormal
frame, and then taking the absolute value of the determinant on both sides. Also, recall that | det d®| is
an intrinsic scalar on S2, i.e. it does not depend on the particular choice of orthonormal frame.



C.2. REVIEW OF UNIFORMIZATION RESULTS FOR THE SPHERE 239

with the inverse transformation

2 2 |22 — 1
S T P T FTe D P (C2.7)
and pull-back of the standard metric 7, on S?
4(1+ 217 2 |d= . (C.2.8)

The conformal isometry group M of S? consists in fact of Mobius transforms and conju-
gation of Mobius transforms, see for example Theorem 18.10.4 and section 18.10.2.4 in
[?], and can thus be identified with SL(2,C),
az+0b R az+b

z
cz+d cZ+d
The particular case of Mébius transforms where d = a™! > 0 and b = ¢ = 0 will play an

important role. Given ¢ > 0 and a point p € S?, we can choose coordinates such that p is
at the north pole and obtain scale transformations defined by

Q2 =tz (C.2.10)

z —

ad —bc=1, a,b,c,decC. (C.2.9)

C.2.3 Effective uniformization

Definition C.2.5. We define the center of mass of e** to be
2u
OM[e?] = Lﬁ§¢ (C.2.11)
fs2 et

where x = (x*, 22, 2%) on the sphere S%. Also, we define the spaces of functiond]

S ::{u € H'(S?) such that CMle*"] = 0},

Sp = {u €S such that / et = 47?} )
82

Theorem C.2.6 (Effective uniformization). Let (S, ¢°) be a fized sphere with |S| = 4.
There exists, up to isometm’eﬂ of S%, a unique diffeomorphism ® : S* — S and a unique
centered conformal factor u, i.e. u € S, such that ®#(g°) = e**vy. Moreover, under the
almost round condition

(C.2.12)

| K5 — 1| < € (C.2.13)
where K = K(g°), the following properties are verified for sufficiently small € > 0.

2 To the best of our knowledge the condition fsz xe?* = 0 appears first in Aubin.
3i.e. all the solutions are of the form (® o O,u o O) for O € O(3).
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1. We have

luo ® | L) S e (C.2.14)

2. If in addition || K — 1]

He(s) < € for some s > 0, then

[wo @ g2tssy S e (C.2.15)

Proof. See section 3.3 in [K-S:GCM2]. O

C.2.4 Effective uniformization for nearly round spheres of arbi-
trary area

Let (S, g%) be a fixed sphere, and let ¥ denote its area radius, i.e. r® satisfies
|S| = 4m ()2

Given a positive integer s, we introduce the following norm on S

I/

h) 1 = >INV fllras). (C.2.16)
=0

The goal of the following corollary is to extend Theorem to the case ¥ # 1.

Corollary C.2.7. Let (S, g°) be a fized sphere. There exists, up to isometm’e{f] of S%, a
unique diffeomorphism ® : S? — S and a unique centered conformal factor u, i.e. u € S,
such that

7 (g%) = (r°)%e* .
Moreover, under the almost round condition

1 €

K® — < , (C.2.17)
H (r®)?{] oo s) (r%)?
the following properties are verified for sufficiently small € > 0.
1. We have
[uo @ e < e (C.2.18)

4i.e. all the solutions are of the form (® o O,u o O) for O € O(3).
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2. If in addition

1
(r%)?

HKS — — (C.2.19)

hs(S)
for some s > 0, then

|uod! er®. (C.2.20)

<
hs+2(S) ~

C.2.5 Canonical basis of / =1 modes on S

Let S be an almost round sphere, i.e. verifying ((C.2.17)). The goal of this section is to
define on S a canonical generalization of the ¢ = 1 spherical harmonics.

Recall that the ¢ = 1 spherical harmonics JS* = (J(*’SQ), J(©5%) J(+752)) are given by the
restriction of x!, 22, 23 to S2. More precisely, in polar coordinates,

JOS) — 23 — cos, JHS) = 21 —sinfcos p, JESY = 22 = sin fsin $C.2.21)
Lemma C.2.8. We have, for p,q € {—,0,+},

N JPS) = 9 @S

41
(»,S?) 7(a,5%) N
/52 ST dan, = —0pg, (C.2.22)
g J®S )da% =0.
Proof. Straightforward verification. n

Definition C.2.9 (Basis of canonical ¢/ = 1 modes on S). Let (S,g°) be an almost
round sphere, i.e. verifying m Let (®,u) the unique, up to isometries of S?,
uniformization pair given by C’orollary- i.e.,

d:S8* — S, d# (%) = (r%)2e® 0, uesS.
We define the basis of canonical £ =1 modes on S by
J5 = J¥ oo, (C.2.23)
where JS° denotes the ¢ = 1 spherical harmonics, see (C.2.21)).

Remark C.2.10. Note that the canonical basis is unique up to a rotation on S2.
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Lemma C.2.11. Consider (S, g°) a sphere of area radius r° verifying the almost round

condition (C.2.17)). Let (®,u) the unique, up to isometries of S*, uniformization pair
giwen by Corollary |C.2. Z] Let J° denote the basis of canonical ¢ = 1 modes on S of

Definition[C.2.9. Then, we have
2 2
AN AL R (V)
s (rs)? + (r)?
47T _2uod—1
/SJ(p’S)J(q’S)dag = g(rs)%pq—l—/SJ(p’S)J(q’S)(l—e 2102 N days, (C.2.24)

/ TP da, =0,
S

with A° the Laplace-Beltrami of the metric g°. Moreover we have,

2 €
7S _— 7S
25009 = (2 +0 () ) 7 (C.2.25)
.2.25
4
[ 71000y = S+ O,

where € > 0 s the smallness constant appearing in the almost round condition ((C.2.17)).

(1 _ 672uo<1>_1)J(p,S)7

Proof. See section 3.5 in [K-S:GCM2] O
Corollary C.2.12. Let (S, g%) verifying (C.2.17). Let (®,u) the unique, up to isometries

of S?, uniformization pair given by Corollary|C.2.7. Let J° denote the basis of canonical
¢ =1 modes on S of Definition [C.2.9. Then, for sufficiently small € > 0, the following
holdd]

1
/S (KS - (TS)2> J(p75) = 0(62)7 b= 07 +a R <0226)

where K° and r® denote respectively the Gauss curvature and the area radius of S.

C.3 Stability of uniformization for nearby spheres

Consider two almost round spheres spheres (S, g°*) and (SQ, 2), i.e. verifying (C.2.17)),
and their respective uniformization pairs (®1, u1), (Pg, us), i
d,:S2— 8, g =07 =

(TS )2 2u1
@2 : 82 — SQ, go = CI)#( SQ) ( )2 2u2

(C.3.1)

®Note that, a priori, one would expect the right-hand side of (C.2.26)) to be O(e). The fact that it is
actually O(€?) is an application of Corollary |C.2.7| and ((C.2.25)), see the proof below.
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and uy,uy defined on S? verifying the conclusions of Corollary [C.2.7 We assume in
addition given a smooth diffeomorphism ¥ : S; — S5 such that the metrics ¢! and
U#(g%2) are close to each other in S* with respect to the coordinate chart provided by
®q, i.e. for some 0 < § < e,

1
S #(.S S #( 45
g% — ¥ (g 2)HLOO(Sl) - (r51) g —¥*(g 2)||f;4(sl)
The goal of this section is to show the existence of a canonical diffeomorphism U:S? 82
which relates the two uniformization maps. More precisely we prove the following.

IN

(r1)?. (C.3.2)

Theorem C.3.1. Under the assumptions above, let U : S% — S? be the unique smooth
diffeomorphism such that W o ®; = &5 0 W. Then, the following holds true.

1. The diffeomorphism U is smooth and there exists O € O(3) such that

U = Ol pe(szy + |V = Ol S 0. (C.3.3)
2. The conformal factors uy,us verify
||U1 - \/I}#UQHLOO(S?) 5 0. (034)

Remark C.3.2. Let us note the following concerning assumption (C.3.2)).

e [t is clearly not sharp in terms of reqularity. Sharper results could be obtained by
working in Hélder spaces. On the other hand, in view of our applications, hs(S) are
the natural spaces.

e [t is coordinate dependent. Though it is sufficient for our applications, it would be
nice find a coordinate independent condition sufficient to recover the conclusions of

Theorem [C 3.1l
Proposition C.3.3. Assume, in addition to the assumptions of Theorem [C.3.1], that

lg% — W# @), ) < (P (C.35)

for some s > 0. Then, the following higher regularity analogs of (C.3.3)), (C.3.4) hold
true.

1. The diffeomorphism U is smooth and there exists O € O(3) such that

~Y

IO = Olgsresry S 6. (C.3.6)

2. The conformal factors uy,us verify

~

||U1 — \P#UQHH“‘FS(SQ) 5 0. (CS?)
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C.3.1 Calibration of uniformization maps between spheres

In order to eliminate the arbitrariness with respect to isometries of S? in Theorem
we calibrate the effective uniformization mapsﬁ b, : 82 = G, &y Sy — Sy, for given
diffeomorphism ¥ : S; — Ss, as follows.

Definition C.3.4. On S? we ﬁaﬂ a point N and a unit vector v in the tangent space
TnS?. Given U : S — Sy, we say that the effective uniformization maps Py : S? — S,
®, : S — Sy are calibrated relative to U if the map ¥ := (®y) Lo Wo d; : S — S? s
such that

1. The map U fizes the point N, i.e. \/I;(N) =N.
2. The tangent map \Tl# fizes the direction of v, i.e. \TJ#(U) = a1 9v where a; 5 > 0.

3. The tangent map \T/# preserves the orientation of TnS?.

Lemma C.3.5. Given ¥ : S; — Sy and a fized effective uniformization map ®; : S* — )
for S1. Then, there exists a unique, effective, uniformization for Sy calibrated with that
of Sy relative to U,

Corollary C.3.6. In addition to the assumptions of Pmposz'tio assume that the

maps P1, Py are calibrated relative to ¥ according to Definition - Then U verifies
O — I gsrssry S 0. (C.3.8)

The conformal factors uy, us verify

~

||u1 - \II#U2”H4+5(S2) § 0. (0.3.9)

Proof. In view of Proposition there exists O € O(3) such that U satisfies

1O = Ol poe(szy + ¥ = Ollgstory S 0

~

and (C.3.9) holds. It remains to check ((C.3.8]) which follows immediately from the bound
|O — I| < § established in the proof of Corollary ?7. O

Lemma C.3.7 (Transitivity of calibrations). Let ®; : $* — S;, ®y : S2 — S, and
5 : S2 — Sy three effective uniformization maps. Let Wiy 1 S; — Sy and Vi3 : S; — Ss
satisfying and assume that ®1, ®o are calibrated relative to Vio, while ®1, &3 are
calibrated relative to W15. Then, ®y, ®5 are calibrated relative to Wys := U150 W),

6Given by Corollary

"In particular, one can choose N = (0,0,1) and v = (1,0,0).
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Proof.A Since &, <I>2 are cahbrated relative to Wiy, and ®1, P53 are calibrated relative to
Ui, Uiy := (Py) Lo Wiy 0®; and \1113 (®3)71 o U3 0 Py satisfy the three properties of
Definition [C.3.4] Then, introducing

Wog = W30 ‘I’le, ‘1123 ((I):z) o Wy3 0 Py,

we have Wyy = U;5 0 \Tfl_; so that W also satisfy the three properties of Definition .
Hence, ®,, ®3 are calibrated relative to Wy3 as desired. O

C.3.2 Comparison of / =1 modes between two spheres

Consider, as in Theorem |C.3.1} two almost round spheres (S1,¢°') and (S, ¢°?) and a
smooth map W : S; — S, such that, as in (C.3.2), that the metrics g°' and U#(g%2)
are close to each other in S'. Assume that (®1,u;) , (P, us) are effective uniformization

maps of S; and Sy, calibrated as in definition [C.3.4 We define
Ji=J% = ¥ ed !, i=1,2

to be the £ = 1 canonical modes of S}, S, according to Definition We want to
compare J' with J? o U. We prove the following result.

Proposition C.3.8. Under the assumptions of Corollary 7?7, we have

sup |J' — J%o \I/‘ < 4 (C.3.10)
S1
Also, under the assumptions of Corollary[C-3.6, we have
]J%—ﬁom < S, (C.3.11)
h5+5(S1)

Proof. Indeed, using that ¥ o ®; = $5 0 {I\l,

J200 =J% 0d5 oW = J 0 T o &7,
Hence,

T = ol =J o b7 — J¥ o Uo oyl
This implies, together with (?7),

J'— J2O\If‘ —Agé

and, together with (C.3.8)),

”Jl—J2o\IJ < o1
bh5+5(S1)

as stated. O
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