Suppose that Alice uses RSA to encrypt and send the same message \(m \) to Bob, Carl, and Dan. Their RSA public keys are, respectively, \((n_B, e_B), (n_C, e_C)\), and \((n_D, e_D)\), where \(n_B, n_C, \) and \(n_D \) are relatively prime, but \(e_B = e_C = e_D = 3 \).

Question 1: Why is \(m^3 < n_B n_C n_D \)?

Question 2: How can Eve compute \(m \) exactly using the Chinese Remainder Theorem, and *without* factoring \(n_B, n_C, \) or \(n_D \)?

Question 3: Let \(n_B = 26, n_C = 33, n_D = 35 \). Eve sees the encrypted messages 25 sent to Bob, 29 sent to Chuck, and 13 sent to Dan. Use the algorithm you found in Question 2 to find \(m \).