The problem of determining whether a graph has a 3-coloring is NP-complete, whereas the problem of factoring numbers is not known or believed to be NP-complete. (If this terminology is unfamiliar, that is fine – it is not needed to solve this homework problem.) This motivates the following problem.

A graph G is a finite set V of vertices v together with a set E of edges e, each of which connects two distinct vertices, say v_1 and v_2, in V. Two vertices can only have one edge between them. A 3-coloring of a graph is an assignment of the color “red”, “white”, or “blue” to each vertex in V in such a way that for each edge e in V, the two vertices v_1 and v_2 connected by e have distinct colors.

Peggy has a graph G and wants to convince Victor that she knows a 3-coloring of G without giving away any information whatsoever about the coloring. Here is an incomplete description of a zero-knowledge proof that Peggy can use.

1. Peggy draws the graph G on a chalkboard in a classroom. She 3-colors the graph using the 3-coloring she knows and covers each vertex with a Post-it note.
2. Victor comes into the room. He is allowed to remove two Post-it notes, subject to the restriction that __________, and checks that __________.
3. They repeat the protocol many times, but in between each round, Peggy changes the coloring by __________.

Question 1: Fill in the blanks, and explain why the protocol will be successful if Peggy has a 3-coloring.

Question 2: If this is repeated many times, why should Victor be convinced that Peggy has a 3-coloring? How many times should the protocol be repeated to assure at least a 50% confidence that Peggy can 3-color the graph?

Question 3: Explain informally why an observer Eve could simulate the entire protocol without any information from Alice or Victor, which shows that this protocol is indeed zero-knowledge.