1. (Exercise 12) Find the maximum and minimum of

\[f(x, y, z) = x^4 + y^4 + z^4 \]

subject to the constraint

\[x^2 + y^2 + z^2 = 1. \]

Solution: We have

\[\nabla f(x, y, z) = (4x^3, 4y^3, 4z^3) = (2\lambda x, 2\lambda y, 2\lambda z) = \lambda \nabla g(x, y, z). \]

Case 1: If all of \(x, y, z \neq 0 \), we can divide \(4x^3 = 2\lambda x \), \(4y^3 = 2\lambda y \), \(4z^3 = 2\lambda z \) by \(4x, 4y, \) and \(4z \) to get \(x^2 = y^2 = z^2 = \frac{\lambda}{2} \). Since \(x^2 + y^2 + z^2 = \frac{3}{2}\lambda = 1 \), we get \(\lambda = \frac{2}{3} \) and thus each of \(x, y, z \) is \(\pm \frac{1}{\sqrt{3}} \).

For all possible signs the value of \(f(x, y, z) = \frac{1}{3} \).

Case 2: If exactly one of \(x, y, z \) is 0, say \(x \), then by the same argument we get \(y^2 = z^2 = \frac{1}{2} \). Then \(y^2 + z^2 = \lambda = 1 \), so each of \(y, z \) is \(\pm \frac{1}{\sqrt{2}} \) and \(f(x, y, z) = \frac{1}{2} \).

Case 3: If exactly two of \(x, y, z \) is 0, say \(x \) and \(y \), then using \(x^2 + y^2 + z^2 = z^2 = 1 \) we have \(z = \pm 1 \), so \(f(x, y, z) = 1 \).

So the maximum is 1 and minimum is \(\frac{1}{3} \).

2. (Exercise 17) Find the minimum/maximum of \(f(x, y, z) = x + y + z \) subject to \(x^2 + z^2 = 2 \), \(x + y = 1 \).

Solution using Lagrange multipliers: The gradient equation gives

\[1 = 2\lambda x + \mu, 1 = \mu, 1 = 2\lambda z. \]

The third equation forces \(\lambda \neq 0 \). Plugging \(\mu = 1 \) into the first equation, we get \(1 = 2\lambda x + 1 \) or \(0 = 2x \) and deduce that since \(\lambda \neq 0 \), we must have \(x = 0 \). Then the constraint \(x + y = 1 \) gives \(y = 1 \) and the constraint \(x^2 + z^2 = 2 \) gives \(z = \pm \sqrt{2} \). The values of \(f(x, y, z) \) on these two points are \(1 \pm \sqrt{2} \).

Alternative solution: Parametrize the intersection by \(\vec{r}(t) = (\sqrt{2}\cos t, 1 - \sqrt{2}\cos t, \sqrt{2}\sin t) \). Then \(f(\vec{r}(t)) = \sqrt{2}\cos t + (1 - \sqrt{2}\cos t) + \sqrt{2}\sin t = 1 + \sqrt{2}\sin t \). It follows that the maximum is \(1 + \sqrt{2} \) and the minimum is \(1 - \sqrt{2} \).

3. (Exercise 20) Find the minimum/maximum of \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to \(x - y = 1 \) and \(y^2 - z^2 = 1 \).

Solution: The gradient equation gives

\[2x = \lambda, 2y = -\lambda + 2\mu y, 2z = -2\mu z. \]

Case 1: If \(z = 0, y^2 - z^2 = 1 \) implies \(y = \pm 1 \) and from \(x - y = 1 \) we get the points \((2, 1, 0) \) and \((0, -1, 0) \) with values \(f(x, y, z) = 5 \) and 1.

Case 2: If \(z \neq 0 \), the third equation gives \(\mu = -1 \). Then the second equation gives \(2y = -\lambda - 2y \) or \(y = -\frac{\lambda}{4} \). Then plugging \(x = \frac{\lambda}{2} \) into \(x - y = 1 \) gives \(\frac{\lambda}{2} + \frac{\lambda}{4} = 1 \) or \(\lambda = \frac{4}{3} \). This gives \(x = \frac{2}{3}, y = -\frac{1}{3} \) But this value of \(y \) is inconsistent with \(y^2 - z^2 = 1 \), so we have no additional points to consider.

So the maximum is 5 and minimum is 1.
4. (Exercise 22) Find the minimum/maximum of \(f(x, y) = 2x^2 + 3y^2 - 4x - 5 \) when \(x^2 + y^2 \leq 16 \).

We can look for extrema separately when \(x^2 + y^2 < 16 \) and \(x^2 + y^2 = 16 \). For the former, we have \(f_x(x, y) = 4x - 4 \) and \(f_y(x, y) = 6y \), so the only critical point is \((1, 0)\) with value \(f(1, 0) = -7 \). For the latter we use Lagrange multipliers with the constraint \(x^2 + y^2 = 16 \). We get the equations

\[
4x - 4 = 2\lambda x, 6y = 2\lambda y.
\]

Case 1: If \(y = 0 \), then \(x = \pm 4 \), which gives values \(f(4, 0) = 11 \) and \(f(-4, 0) = 43 \).

Case 2: If \(y \neq 0 \), it follows from \(6y = 2\lambda y \) that \(\lambda = 3 \). Then \(4x - 4 = 6x \), so \(x = -2 \) and \(y = \pm \sqrt{12} \).

We have \(f(-2, \pm \sqrt{12}) = 47 \).

So the minimum is \(-7\) and the maximum is \(47\).

5. Find the minimum possible distance from the point \((4, 0, 0)\) to a point on the surface \(x^2 + y^2 - z^2 = 1 \).

Solution: We can just minimize the squared distance \(f(x, y, z) = (x - 4)^2 + y^2 + z^2 \) subject to the constraint \(g(x, y, z) = x^2 + y^2 - z^2 = 1 \) and then take the square root.

We have

\[
\nabla f(x, y, z) = (2(x - 4), 2y, 2z) = (2\lambda x, 2\lambda y, -2\lambda z) = \lambda \nabla g(x, y, z).
\]

Notice that the second component gives \(2y = 2\lambda y \). So it is natural to break into cases based on whether \(\lambda = 1 \) or not.

Case 1: If \(\lambda = 1 \), then the first component gives \(2(x - 4) = 2x \), which leads to \(-8 = 0\), a contradiction, so this case is not possible.

Case 2: If \(\lambda \neq 1 \), the equation \(2y = 2\lambda y \) forces \(y = 0 \). Now consider the third component, \(2z = -2\lambda z \). This equation makes it natural to consider cases based on whether \(\lambda = -1 \) or not.

Subcase 2a: If \(\lambda = -1 \), then the first component gives \(2(x - 4) = -2x \) or \(x = 2 \). The constraint \(g(x, y, z) = 2^2 + 0^2 - z^2 = 1 \), so \(z = \pm \sqrt{3} \). This yields the points \((2, 0, \pm 3)\), which have a distance of \(\sqrt{7} \) from \((4, 0, 0)\).

Subcase 2b: If \(\lambda \neq -1 \), then the equation \(2z = -2\lambda z \) forces \(z = 0 \). So \(g(x, y, z) = x^2 + 0^2 - 0^2 = 1 \), so \(x = \pm 1 \). The distances of \((1, 0, 0)\) and \((-1, 0, 0)\) from \((4, 0, 0)\) are respectively 3 and 5, which are larger than \(\sqrt{7} \).

So the distance is \(\sqrt{7} \).