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Part I

Review of Dynamic Hedging
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I Review of Dynamic Hedging of Path-Independent Derivatives

� Let St denote the dollar price at time t of an underlying stock.

� We focus attention on derivative securities which have a speci�ed �nal

dollar payout f(ST ) paid at a �xed time T , and which also have a speci�ed

intermediate dollar payout i(St; t) paid at every t 2 [0; T ].

� Consider the problem of dynamically hedging the sale of such a claim under

the following assumptions:

1. Frictionless markets

2. No arbitrage

3. Constant interest rate r

4. Underlying pays a constant proportional dividend continuously over

time:
$ amount of dividend over [t; t + dt]

dt
= �St;

where � is a non-negative constant.

5. Continuous spot price process:

dSt
St

= mtdt + �tdWt; t 2 [0; T ];

where the mean growth rate process mt is adapted and the volatility

process �t is a function of St and t only, i.e., there is a function � such

that:

�t = �(St; t):

� We also assume that mt and �(S; t) are chosen so as to prevent negative

prices and explosions.
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I-A Representing the Payo�s

� Itô's lemma applied to the function V (St; t)e
r(T�t) gives:

V (ST ; T ) = V (S0; 0)e
rT +

Z T

0
er(T�t)

@V

@S
(St; t)dSt

+
Z T

0
er(T�t)

2
64�

2(St; t)S
2
t

2

@2V

@S2
(St; t)� rV (St; t) +

@V

@t
(St; t)

3
75 dt:

� The 1st term is a constant, while the 2nd is a stochastic integral. Thus, the

1st term can be created by depositing V (S0; 0) in the bank and the 2nd

term accumulates gains on @V
@S
(St; t) shares held at each t 2 [0; T ].

� However, long positions in stock are costly. If we borrow to �nance the

stock position, then gains from the stock are reduced by the carrying cost

as follows:

V (ST ; T ) = V (S0; 0)e
r(T�t) +

Z T

0
er(T�t)

@V

@S
(St; t) [dSt � (r � �)Stdt]

+
Z T

0
er(T�t)

2
64�

2(St; t)S
2
t

2

@2V

@S2
(St; t) + (r � �)St

@V

@S
(St; t)� rV (St; t)

+
@V

@t
(St; t)

3
5 dt:

� Now, by choosing V (S; t) to solve the following fundamental PDE:

�2(S; t)S2

2

@2V

@S2
(S; t)+(r��)S@V

@S
(S; t)�rV (S; t)+@V

@t
(S; t) = �i(St; t);

with:

V (S; T ) = f(S);

we get f(ST ) +
RT
0 e

r(T�t)i(St; t)dt

= V (S0; 0)e
rT +

Z T

0
er(T�t)

@V

@S
(St; t) [dSt � (r � �)Stdt] :
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Representing the Payo�s (con'd)

� Recall the representation of the �nal and intermediate payo�s:

f(ST ) +
Z T

0
er(T�t)i(St; t)dt

= V (S0; 0)e
rT +

Z T

0
er(T�t)

@V

@S
(St; t) [dSt � (r � �)Stdt] :

� Thus the �nal and intermediate payo�s are the sum of:

1. the future value of the initial investment V (S0; 0) and

2. the accumulated gains from holding @V
@S
(St; t) shares, where all pur-

chases are �nanced by borrowing and all sales are invested in the bank.

� It follows that the fair value of the payo� is V (S0; 0).

� The initial lending is V (S0; 0)� @V
@S
(S0; 0)S0 (which may be negative). At

any time t, the lending must be V (St; t)� @V
@S
(St; t)St. This is proven for

the special case of the Black Scholes model with zero intermediate payouts

in Appendix 1.
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I-B Examples

� All of our examples will assume constant volatility:

�2(S; t) = �2:

Thus, we are assuming the validity of the Black-Scholes model. If the drift

were also constant, then the stock price would follow geometric Brownian

motion.

Example 1: Buttery Spread

� Assume no intermediate payouts and that the �nal payo� is:

f(S) = �(S �K);

where �(�) is Dirac's delta function.

� In this case, the fair value V (S; t) must solve:

�2S2

2

@2V

@S2
(S; t) + (r � �)S

@V

@S
(S; t)� rV (S; t) +

@V

@t
(S; t) = 0;

with the terminal condition:

V (S; T ) = �(S �K):

� Let V̂ be the forward price of the derivative:

V̂ (S; T ) = er(T�t)V (S; t):

� Then V̂ must satisfy:

�2S2

2

@2V̂

@S2
(S; t) + (r � �)S

@V̂

@S
(S; t) +

@V̂

@t
(S; t) = 0;

with the same terminal condition

V̂ (S; T ) = �(S �K):

Notice that we have eliminated the potential term �rV (S; t) from the

PDE.
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Buttery Spread Valuation (con'd)

� Recall the PDE for the forward price of the buttery spread:

�2S2

2

@2V̂

@S2
(S; t) + (r � �)S

@V̂

@S
(S; t) +

@V̂

@t
(S; t) = 0;

and the terminal condition:

V̂ (S; T ) = �(S �K):

� Now let us change the spatial independent variable as:

x = lnS

u(x; t) = V̂ (S; t):

� Then the PDE for u(x; t) is:

�2

2

@2u

@x2
(x; t) + �

@u

@x
(x; t) +

@u

@t
(x; t) = 0;

where � � r � � � �2

2 , and its terminal condition is:

u(x; T ) =
1

K
�(x� lnK);

where the division by K is a consequence of the requirement that the delta

function in x integrates to 1.
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Buttery Spread Valuation (con'd)

� Recall that the PDE for the forward price of the buttery spread written

as a function of x = lnS is:

�2

2

@2u

@x2
(x; t) + �

@u

@x
(x; t) +

@u

@t
(x; t) = 0;

where � � r � � � �2

2 , and its terminal condition is:

u(x; T ) =
1

K
�(x� lnK):

� Recognizing this PDE as the Kolmogorov backward equation for arithmetic

Brownian motion with constant drift rate � and constant di�usion rate �,

we can write the solution as:

u(x; t) =
1r

2��2(T � t)K
exp

8>><
>>:�

1

2

2
64lnK � (x + �(T � t))

�
p
T � t

3
75
2
9>>=
>>;:

� Then:

V̂ (S; t) =
1r

2��2(T � t)K
exp

8>><
>>:�

1

2

2
64lnK � (lnS + �(T � t))

�
p
T � t

3
75
2
9>>=
>>;

V (S; t) =
e�r(T�t)r

2��2(T � t)K
exp

8>><
>>:�

1

2

2
64lnK � (lnS + �(T � t))

�
p
T � t

3
75
2
9>>=
>>;:

� Notice that V̂ (S; t) is a lognormal density function and that V (S; t) is the

Green's function for the fundamental PDE, which we started with.
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Example 2: Binary Call

� A binary call has no intermediate payouts and has a �nal payo� which can

be written as:

f(S) = 1(S > K) =
Z 1
K
�(S � L)dL:

� From the integral representation of the indicator function and the previous

example, we easily get the price of the binary call:

V (S; t) =
1Z
K

e�r(T�t)r
2��2(T � t)L

exp

0
BB@�1

2

2
64 lnL� (lnS + �(T � t))

�
p
T � t

3
75
2
1
CCAdL;

where � � r � � � �2

2 .

� Let:

d2(L) � ln (S
L
) + �(T � t)

�
p
T � t

be a standardizing transformation. Then the fair value of the binary call

becomes:

V (S; t) = e�r(T�t)N(d2(K));

where N(x) is the distribution function of a standard normal random vari-

able.
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Example 3: Plain Vanilla Call

� A plain vanilla call has no intermediate payouts and has a �nal payo� which

can be written as the integral of the binary call:

f(S) = (S �K)+ =
Z 1
K

1(S � L)dL:

� Using integration by parts,

V (S; t) =
Z 1
K
e�r(T�t)N(d2(L))dL

= e�r(T�t)
�
LN(d2(L))j1K �

Z 1
K
LN 0(d2(L))dL

�

= e�r(T�t)
�
�KN(d2(K))�

Z 1
K
Se(r��)(T�t)N 0(d1(L))dL

�
;

since by completing the squareLN 0(d2(L)) = Se(r��)(T�t)N 0(d1(L)), where:

d1(L) = d2(L) + �
p
T � t:

� Rewriting the last integral in terms of the standard normal distribution

function, we get the (award-winning!) Black-Scholes formula:

V (S; t) = �Ke�r(T�t)N(d2(K)) + Se��(T�t)N(d1(K)):
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I-C The Martingale Measure

� Recall that the cost of creating
TR
0
er(T�t)@V

@S
(St; t) [dSt � (r � �)Stdt] paid

at T was zero, given that V satis�ed the fundamental PDE.

� Viewed as a process in T , the absence of arbitrage clearly requires that this

stochastic integral have realizations on both sides of zero for all T (or else

be zero).

� Consequently, one can de�ne a measure Q$ such that the integral has zero

mean under Q$ for all T .

� Since the integral is a Q$-martingale by the de�nition of Q$, Q$ is called a

martingale measure.

� Given our assumptions and given the initial prices of the stock and bond,

this martingale measure is uniquely determined.

� Under Q$, the integrator dSt� (r��)Stdt has zero mean and has variance

�2S2
t dt. Consequently, there exists a unique Q$�Brownian motion W $

t

such that:

dSt
St

= (r � �)dt + �dW $
t ; t 2 [0; T ]; where S0 = S:

13



Risk-Neutral Stock Price Process

� Recall that the absence of arbitrage has allowed us to de�ne a unique

martingale measure Q$ and a unique standard Brownian motion fW $
t ; t 2

[0; T ]g such that:

dSt
St

= (r � �)dt + �dW $
t ; t 2 [0; T ]; where S0 = S:

� The drift of this process is simply the cost of carrying the underlying and has

no greater signi�cance. By sheer coincidence, it is also the drift which would

arise in equilibrium if all investors were risk-neutral, and for this reason, the

process is also called the \risk-neutral" process. The martingale measure is

also called the risk-neutral measure. These are terribly mis-leading terms,

since we are de�nitely not assuming that investors are risk-neutral.

� The volatility of the risk-neutral process is the same as the volatility of the

assumed process. This arises whenever one has continuous sample paths,

but does not necessarily follow when prices can jump.

� The risk-neutral process simply tells us the market's unique arbitrage-free

forward price for delta function type payo�s de�ned over various path bun-

dles.
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Risk-Neutral Valuation

� The examples hopefully made it clear that the key to valuing derivatives

with no intermediate payouts and any �nal (path-independent) payo� was

to �nd the value of a buttery spread.

� The forward price of a buttery spread with payo� �(ST �K) at T is the

risk-neutral density of the terminal stock price. Thus:

V (S; t) = e�r(T�t)
Z 1
0
f(K)Q$fST 2 dKjSt = Sg:

� Note that the payo� f(K) is unitless, while Q$ is measured in time T

dollars.

� When the payo�s are possibly path-dependent (eg. for barrier options), we

can write:

Vt = e�r(T�t)EQ$fVT jFtg:
� This says that to value a path-dependent derivative, we �rst determine

the forward price of each path from Q$ and then we determine the payout

along each path from VT . The value is given by multiplying the payout

along each path by its price and then summing (integrating) over paths.

� For example, given that we are at time t with the stock price at S, the for-

ward price of the security paying �(ST�K) at T is simply the sum(integral)

of the forward prices of all securities paying o� if a given path occurs, where

each such path starts at (t; S) and ends at (T;K). The total measure of

this path bundle is well-known to be:

QfST 2 dKjSt = Sg = dKr
2��2(T � t)K

exp

8>><
>>:�

1

2

2
64ln(K=S)� �(T � t)

�
p
T � t

3
75
2
9>>=
>>;
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II Finding Payo�s for Given Value Functions

� The last section showed how to hedge and value a derivative given the in-

termediate and �nal payo�s. In this section, we turn things around and

�nd the payo�s corresponding to a given value function V (S; t) and corre-

sponding hedge @V
@S
(S; t).

� Suppose we are given the value function V (S; t) corresponding to a European-

style claim with zero intermediate payo� i(S; t) and an unknown �nal payo�

f(S) paid at T .

� To recover the �nal payo�, recall that V (S; T ) = f(S). Thus, all we need

do is set t = T in the value function and the �nal payo� emerges.

� For example, if we are given that V (S; t) = e�r(T�t)N(d2(K)) is the value

function, then by setting t = T , we see that the corresponding �nal payo�

is 1(S > K).
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II-A Stationary Value Functions

� Now suppose that the given value function depends only on the stock price

V (S; t) = V (S). What can we conclude about its payo�s?

� Since when t = T , V (S; T ) = V (S) = f(S), we conclude that the �nal

payo� must be the same function of the stock price as its value.

� To �nd the intermediate payo�, we apply Itô's lemma to the function

f(St)e
r(T�t):

f(ST ) = f(S0)e
rT +

Z T

0
er(T�t)f 0(St)dSt

+
Z T

0
er(T�t)

2
64�

2(St; t)S
2
t

2
f 00(St)� rf(St)

3
75 dt:

� Once again, subtracting and adding the carrying cost of the underlying

gives:

f(ST ) = f(S0)e
rT +

Z T

0
er(T�t)f 0(St)[dSt � (r � �)Stdt]

+
Z T

0
er(T�t)

2
64�

2(St; t)S
2
t

2
f 00(St) + (r � �)Stf

0(St)� rf(St)

3
75 dt:

� Finally, bringing the last term to the LHS implies that a derivative with

intermediate payo�s of rf(St)� (r � �)Stf
0(St)� �2(St;t)S

2
t

2 f 00(St) at each

t 2 (0; T ) and a �nal cash ow of f(ST ) at T can be dynamically hedged:

f(ST ) +
Z T

0
er(T�t)

2
64rf(St)� (r � �)Stf

0(St)� �2(St; t)S
2
t

2
f 00(St)

3
75 dt

= f(S0)e
rT +

Z T

0
er(T�t)f 0(St)[dSt � (r � �)St]dt:
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II-B Examples of Stationary Securities

� Both of our examples will again assume constant volatility:

�2(S; t) = �2:

Example 1: Logger

� Consider a derivative security whose value Xt = lnSt; t 2 [0; T ].

{ The logger has initial value X0 = lnS0.

{ The intermediate payo�s are linear in the value:

rf(St)� (r � �)Stf
0(St)� �2S2

t

2
f 00(St) = r lnSt � (r � � � �2=2):

{ The �nal payo� is XT = lnST .

� Note that since the intermediate and �nal payo�s can be negative, the

initial value can also be negative.
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Examples of Stationary Securities(con'd)

Example 2: Power Plays

� Consider the family of derivative securities with value �t(p) = Sp
t ; t 2

[0; T ], where p is any real number.

{ Power plays have initial value �0(p) = Sp
0 .

{ The intermediate payo�s are proportional to the value:

rf(St)� (r � �)Stf
0(St)� �2S2

t

2
f 00(St) = q(p)Sp;

where q(p) � r � (r � � � �2=2)p� �2p2

2 .

{ The �nal payo� is �T (p) = Sp
T .

� When p = 0, a power play is a par bond, �t(0) = 1, while when p = 1, a

power play is a stock, �t(1) = St.

� For all p, the intermediate and �nal payo�s are non-negative, and thus so

is the value. The delta @�t(p)
@S

has the same sign as p, while gamma @2�t(p)
@S2

has the same sign as p(p� 1).

19



II-C The Risk-Neutral Process of a Stationary Security

� Recall that the risk-neutral process for a stock is:

dSt = (rSt � �St)dt + �(St; t)StdW
$
t ; t 2 [0; T ]; where S0 = S:

� The risk-neutral drift grows by rSt because the stock position is �nanced by

borrowing at the riskless rate. The risk-neutral drift drops by �St because

these dividends reduce the carrying cost.

� More generally, the risk-neutral process for a stationary security is:

df(St) =

8><
>:rf(St)�

2
64rf(St)� (r � �)Stf

0(St)� �2(St; t)S
2
t

2
f 00(St)

3
75
9>=
>; dt

+f 0(S)�(St; t)StdW
$
t ;

=

2
64(r � �)Stf

0(St) +
�2(St; t)S

2
t

2
f 00(St)

3
75 dt + f 0(S)�(St; t)StdW

$
t :

� For example, in the Black Scholes model, the risk-neutral process for the

logger Xt = lnSt is:

dXt = (r � � � �2=2)dt + �dW $
t ; t 2 [0; T ];

which has constant absolute drift and volatility.

� To take another example, in the Black Scholes model, the risk-neutral pro-

cess for a power play �t(p) = Sp
t is:

d�t(p)

�t(p)
=

2
64(r � � � �2=2)p +

�2p2

2

3
75 dt + p�dW $

t ; t 2 [0; T ];

which has constant relative drift and volatility.
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III Review of Dynamic Hedging of Quanto Derivatives

� We generalize the previous analysis fairly signi�cantly by now considering

the case where the payo� currency of the derivative is di�erent from the

currency describing the price St of the underlying stock.

� For example, we will consider the case where the payo� currency of the

derivative is in pounds, while the underlying stock is denominated in dollars.

III-A Assumptions

1. Frictionless markets

2. No arbitrage

3. Constant interest rates r$ and r$

4. Underlying stock has a constant dividend yield �

5. Continuous underlying stock price process St and (spot) exchange rate

process Rt (in dollars per pound):

dSt
St

= ms
tdt + �s(St; t)dW1t

dRt

Rt

= mr
tdt + �r(t)[�(St; t)dW1t +

r
1� �2(St; t)dW2t];

where W1 and W2 are independent standard Brownian motions.
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III-B Representing the Payo�

� Apply Itô's lemma to V (St; t)e
r$(T�t) to get:

V (ST ; T ) = V (S0; 0)e
r$T +

Z T

0
er$(T�t)

@V

@S
(St; t)dSt

+
Z T

0
er$(T�t)

2
64�

2
s(St; t)S

2
t

2

@2V

@S2
(St; t)� r$V (St; t) +

@V

@t
(St; t)

3
75 dt:

� Since the stock trades only in dollars, the gain in pounds from holding one

share of the stock over [t; t + dt] is:

dSt
Rt+dt

=
dSt

Rt + dRt

=
1

Rt

1

1 + dRt
Rt

dSt

� 1

Rt

0
@1� dRt

Rt

1
A dSt

=
1

Rt

dSt � 1

Rt

�rs(St; t)Stdt;

where �rs(St; t) is the covariance of dR=R and dS=S.

� Substituting dSt = Rt
dSt
Rt+dt

+ �rs(St; t)Stdt in the top equation, we get:

V (ST ; T ) = V (S0; 0)e
r$T

+
Z T

0
er$(T�t)

@V

@S
(St; t)Rt

dSt
Rt+dt

+

Z T

0
er$(T�t)

8><
>:
�2s(St; t)S

2
t

2

@2V

@S2
(St; t) + �rs(St; t)St

@V

@S
(St; t)

�r$V (St; t) +
@V

@t
(St; t)

9=
; dt:
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� Recall:

V (ST ; T ) = V (S0; 0)e
r$T

+
Z T

0
er$(T�t)

@V

@S
(St; t)Rt

dSt
Rt+dt

+

Z T

0
er$(T�t)

8><
>:
�2s(St; t)S

2
t

2

@2V

@S2
(St; t) + �rs(St; t)St

@V

@S
(St; t)

�r$V (St; t) +
@V

@t
(St; t)

9=
; dt:

� Make a further adjustment so that the second term represents the gains

from a zero-cost self-�nancing strategy:

V (ST ; T ) = V (S0; 0)e
r$T

+
Z T

0
er$(T�t)

@V

@S
(St; t)Rt

2
4 dSt
Rt+dt

� (r$ � �)
St
Rt

dt

3
5

+
Z T

0
er$(T�t)

8><
>:
�2s(St; t)S

2
t

2

@2V

@S2
(St; t) + [r$ � � + �rs(St; t)]St

@V

@S
(St; t)

�r$V (St; t) +
@V

@t
(St; t)

9=
; dt:

� Choose V (S; t) to solve the following generalized fundamental PDE:

�2s(S; t)S
2

2

@2V

@S2
(S; t) + [r$ � � + �rs(S; t)]S

@V

@S
(S; t)� r$V (S; t)

+
@V

@t
(S; t) = �i(St; t);with V (S; T ) = f(S):

� Then we get f(ST ) +
RT
0 e

r$(T�t)i(St; t)dt

= V (S0; 0)e
r$T +

Z T

0
er$(T�t)

@V

@S
(St; t)Rt

2
4 dSt
Rt+dt

� (r$ � �)
St
Rt

dt

3
5 :

� In this case, the dynamic strategy is to hold @V
@S
(St; t)Rt shares of the

underlying stock at each t 2 [0; T ], �nanced by borrowing in dollars and

with gains converted into pounds.
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III-C Examples

� Again we assume that the volatilities and the covariance are constant.

Example 1: Buttery Spread

� Consider no intermediate payo�s and the Dirac �nal payo�, where the

underlying stock is denominated in dollars and the payo� is quantoed into

pounds:

f(S) = �(S �K):

� Compare the PDE with no quantoing:

�2sS
2

2

@2V

@S2
(S; t) + (r$ � �)S

@V

@S
(S; t)� r$V (S; t) +

@V

@t
(S; t) = 0;

to the PDE with quantoing:

�2sS
2

2

@2V

@S2
(S; t) + (r$ � � + �rs)S

@V

@S
(S; t)� r$V (S; t) +

@V

@t
(S; t) = 0:

� If we used \risk-neutral valuation", we would have an additional term �rs
in the drift and we would have a new discount rate r$.

� Recall the solution for the non-quantoed buttery spread:

BS(S; t) =
e�r$(T�t)r

2��2s(T � t)K
exp

8>><
>>:�

1

2

2
64 ln(K=S)� �(T � t)

�s
p
T � t

3
75
2
9>>=
>>;;

where � � (r$ � � � �2s
2 ).

� Thus, the quantoed buttery spread value is:

QBS(S; t) =
e�r$(T�t)r

2��2s(T � t)K
exp

8>><
>>:
�1
2

2
64ln(K=S)� (� + �rs)(T � t)

�s
p
T � t

3
75
2
9>>=
>>;:
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Example 2: Quanto Call

� Consider no intermediate payo� and a �nal payo� given by a vanilla call

on a US stock quantoed into pounds:

f(S) = (S �K)+:

� Note that f(S) is measured in pounds and not dollars.

� The Black Scholes formula for a call whose payo� and underlying are both

denominated in dollars can be written as:

C(S; t) = e�r$(T�t)[Se(r$��)(T�t)N(d1(K))�KN(d2(K))];

where:

d2 =
ln

�
S
K

�
+ (r$ � � � �2s

2 )(T � t)

�s
p
T � t

; d1 = d2 + �s
p
T � t:

� Adjusting the drift and the discount rate apppropriately gives the quanto

call value:

QC(S; t) = e�r$(T�t)[Se(r$��+�rs)(T�t)N( ~d1(K))�KN( ~d2(K))]

= Se(r$�r$��+�rs)(T�t)N( ~d1(K))�Ke�r$(T�t)N( ~d2(K));

where:

~d2 =
ln

�
S
K

�
+ (r$ � � + �rs � �2s

2 )(T � t)

�s
p
T � t

~d1 = ~d2 + �s
p
T � t:

� This quantoed call value could also have been obtained by integrating the

quantoed buttery spread value twice with respect to strike.

� Note that the standard call formula is obtained from the more general

quantoed call formula by setting the exchange rate R = 1 and r$ = r$.
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III-D Risk-Neutral Valuation of Quantoed Derivatives

� Recall the risk-neutral valuation formula for a path-independent derivative,

when the payo� and underlying are both denominated in dollars:

V (S; t) = e�r$(T�t)EQ$

[f(ST )jSt = S] � e�r$(T�t)EQ$

S;tf(ST );

where under the risk-neutral measure Q$, the risk-neutral stock price pro-

cess is:

dSu
Su

= (r$ � �)du + �(Su; u)dW
$
u ; u 2 [t; T ]; where St = S:

� Also recall that f is unitless, while Q$ is measured in time T dollars.

� If the payo� f is quantoed into pounds, the dollar value of the derivative

changes. If we wish to continue using American forward prices of paths (i.e.

Q$), then the change in dollar value arises from a change in the magnitude

of the payo�:

QV (S; t)R0 = e�r$(T�t)EQ$

S;tRTf(ST ):

Here, QV is in pounds, RTf(ST ) is unitless, while Q$ continues to be

measured in time T dollars.

� Alternatively, one can use British forward prices of the dollar denominated

stock price paths. Denoting these forward prices by Q$
$ , quantoed values

are obtained by:

QV (S; t) = e�r$(T�t)E
Q$
$

S;t f(ST );

where under our new risk-neutral measure Q$
$ , the risk-neutral stock price

process is:

dSu
Su

= (r$ � � + �rs)du + �(Su; u)dW
$

$;u; u 2 [t; T ]; where St = S:
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Risk-Neutral Valuation of Quantoed Derivatives(con'd)

� Recall the two approaches for valuing a quantoed derivative:

QV (S; t) = e�r$(T�t)EQ$

S;t

RT

R0
f(ST );

QV (S; t) = e�r$(T�t)E
Q$
$

S;t f(ST ):

� Thus, the change in the magnitude of the payo� of the derivative from

f(ST ) to RT
R0
f(ST ) is handled by keeping the payo� �xed at f(ST ) and

simply changing the growth rate of the underlying, and changing the cur-

rency in which the premium is �nanced.

� The intuition for this result arises from the property of any continuous

model that at any time t 2 [0; T ), the dollar value of a standard derivative

at t+ dt is known to be linear in the time t+ dt dollar prices of the bond

and stock.
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III-E Interpreting the Standard European Call Black Scholes Formula

� First, we re-write the �nal payo� of the standard European call as:

CT = (ST �K)+

= ST1(ST > K)�K1(ST > K):

� In the last expression, the second term is K binary calls and its value at

time 0 is Ke�r$TN(d2(K)) dollars.

� To interpret the �rst term, we quanto the payo� into shares and adjust the

magnitude of the payo� to preserve value.

� If the new payo� currency is to be shares, then the old magnitude of

ST1(ST > K) relevant for dollars must be changed to 1(ST > K), since

a payo� of ST1(ST > K) dollars is clearly equivalent to a payo� of

1(ST > K) shares.

� Since we are now using shares instead of pounds as the \currency" we are

quantoing into, Rt � St and r$ � �. This makes two changes to the

standard binary call valuation:

1. New drift: since �rs = �2s in this case, we add �2s to r$� � � �2s
2 . Then

~d2(K) turns out to be d1(K).

2. New discount rate: use � instead of r$ to discount.

� Making these changes, the value of the binary call quantoed into shares

becomes e��TN(d1(K)) shares. Therefore, its value in dollars is

S0e
��TN(d1(K)), which is the same as the �rst term in the Black-Scholes

formula.
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III-F Quantoing the Logger in the Black Scholes Model

� Just as quantoing the payo� of a binary call into shares simpli�es valuation

of a vanilla call in the Black Scholes model, quantoing the payo�s of a logger

into a power play will simplify valuation of a barrier option in this model.

� Setting �(S; t) = �, recall that the risk-neutral processes under Q$ of the

logger Xt = lnSt and a power play �t(p) = Sp
t are:

dXt = (r � � � �2=2)dt + �dW $
t ;

d�t(p)

�t(p)
=

2
64(r � � � �2=2)p +

�2p2

2

3
75 dt + p�dW $

t :

� Consider quantoing the intermediate and �nal payo�s of a logger into a

power play. The relative drift correction is �x� � Cov
�
dXt
Xt
; d�t(p)
�t(p)

�
, so the

risk-neutral price process for the logger under Q
�(p)
$ is:

dXt =

2
64r � � � �2=2 + Cov

0
B@dXt;

d�t(p)

�t(p)

1
CA
3
75 dt + �dW

�(p)
$;t

= [r � � + (p� 1=2)�2]dt + �dW
�(p)
$;t :

� The power p can be chosen so that the drift vanishes:

r � � + (p� 1=2)�2 = 0() p =
1

2
� r � �

�2
� :

� Thus, under Q � Q
�()
$ , the risk-neutral price process for the logger is

arithmetic Brownian motion with no drift:

dXt = �dW 
t ; t 2 [0; T ], where W 

t �W
�()
$;t :

� Furthermore, the discount rate under Q is the dividend yield on the power

play r � (r � � � �2=2) � �22

2 = r + �22

2 = �2�2

2 , where � �
r
2 + 2r

�2
.

� We will use these results to apply the reection principle shortly.
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Part II

Dynamic Hedging of Barrier Options
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IV Introduction

� In general, path-dependence introduces more state variables into the PDE

to be solved.

� For simplicity, I only cover up-and-in options with no intermediate pay-

o�s, although it would be straightforward to deal with down-options, out-

options, intermediate payo�s, and quantoed barrier options.

� Thus, we retain the assumptions of the �rst section dealing with path-

independent derivatives on spot, but we now suppose that the payo� occurs

only if an upper barrier has been touched before maturity.

� The additional variable we will need to keep track of in the PDE is the

indicator function describing whether or not this barrier has already been

hit.
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V Representing the Payo�

� Let V b(S; t); S 2 [0; H ] and V a(S; t); S > 0 be functions of the stock price

S and time t 2 [0; T ], which will respectively give the barrier option value

before and after hitting the barrier.

� Let �HS denote the �rst passage time of the spot S to H and let fui(ST )

denote the desired payo� at time T if �HS < T .

� For t > �HS , the barrier has already been hit, and so the valuation problem

is identical to the path-independent problem:

V a(S; t) = e�r(T�t)EQ$

S;tfui(ST ):

� Let � � �HS ^ T denote the smaller of the �rst passage time and maturity.

� Since � is a bounded stopping time, we can use Itô's lemma on V b(S; t)er(��t):

V b(S� ; � ) = V b(S0; 0)e
r� +

Z �

0
er(��t)

@V b

@S
(St; t)dSt+

�Z
0

er(��t)
2
64�

2(St; t)S
2
t

2

@2V b

@S2
(St; t)� rV b(St; t) +

@V b

@t
(St; t)

3
75 dt:

� If we borrow to �nance long positions in the stock, then gains from the

stock are reduced by the carrying cost, so:

V b(S� ; � ) = V b(S0; 0)e
r(��t) +

Z �

0
er(��t)

@V b

@S
(St; t) [dSt � (r � �)Stdt]

+
Z �

0
er(��t)

2
64�

2(St; t)S
2
t

2

@2V b

@S2
(St; t) + (r � �)St

@V b

@S
(St; t)� rV b(St; t)

+
@V b

@t
(St; t)

3
75 dt:
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Representing the Payo� (con'd)

� Recall:

V b(S� ; � ) = V b(S0; 0)e
r(��t) +

Z �

0
er(��t)

@V b

@S
(St; t) [dSt � (r � �)Stdt]

+
Z �

0
er(��t)

2
64�

2(St; t)S
2
t

2

@2V b

@S2
(St; t) + (r � �)St

@V b

@S
(St; t)� rV b(St; t)

+
@V b

@t
(St; t)

3
75 dt:

� Suppose we again choose V b(S; t) to satisfy the fundamental PDE.:

�2(S; t)S2

2

@2V b

@S2
(S; t) + (r � �)S

@V b

@S
(S; t)� rV b(S; t) +

@V b

@t
(S; t) = 0;

for S 2 (0; H); t 2 (0; � ) with:

V b(S; T ) = 0;

and:

lim
S"H

V b(S; t) = h(t) � e�r(T�t)EQ$

S;tfui(ST ):

Then for �HS < T , we get:

h(�h) = V b(S0; 0)e
r�HS +

Z �HS

0
er(�

H
S �t)

@V b

@S
(St; t) [dSt � (r � �)Stdt] ;

while for �HS � T , we get:

0 = V b(S0; 0)e
rT +

Z T

0
er(�h�t)

@V b

@S
(St; t) [dSt � (r � �)Stdt] :

� Thus, in either case the payo� is achieved by investing V b(S0; 0) initially

and holding @V b

@S
(St; t) shares until time � .
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VI A Canonical Problem

� The last section showed that valuing an up-and-in derivative with payo�

1(�HS < T )fui(ST ) at T is equivalent to valuing a claim which pays h(u) �
e�r(T�u)EQ$

h;ufui(ST ) at �
H
S if �HS < T and zero otherwise.

� This section shows that we can restrict attention to the case h(u) = 1. (In

the PDE literature, this is known as Duhamel's principle).

� Let ABC(S; t;T ) denote the value at t of an American binary call, which

pays one dollar at the �rst passage time to H , if this occurs before T , and

pays zero otherwise. Let �(S; t;T ) � @
@T
ABC(S; t;T ) denote the value of

a claim paying �(�HS � T ) at T .

� Then the value of an up-and-in claim is given by:

Vui(S; t) =
Z T

t
�(S; t;u)h(u)du:

� Integrating by parts gives:

Vui(S; t) = ABC(t; S;T )f(H)�
Z T

t
ABCt(u)h

0(u)du;

since h(T ) = f(H) and ABC(t; S; t) = 0 for S < H .

� We next focus on valuing American binary calls and up-and-in claims in

the Black-Scholes model.
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VI-A Valuing American Binary Calls in the Black-Scholes Model

� We now assume constant volatility �2(S; t) = �2:

� Recall that power plays were securities with value �t(p) = Sp
t ; t 2 [0; T ]; p 2

<, and constant dividend yield:

q(p) � r � (r � � � �2=2)p� �2p2

2
:

� Setting q(p) = 0 and solving for p yields

p� �  � �;

where recall:

 � 1

2
� r � �

�2
� �

vuuut2 + 2r

�2
:

� Thus, the two power plays with no intermediate payo�s and with �nal

payo�s given by S+�
T and S��

T respectively have time t values given by

S+�
t and S��

t respectively.

� It follows that these plays have constant value along any at barrier H .

� As shown by the �gure on the next page, the play paying S+�
T has zero

value at S = 0, while its cousin has in�nite value. Since the ABC has zero

value in the BS model, we focus on the play paying S+�
T at T .

� Normalizing the payo�, the play paying
�
ST
H

�+�
at T has time t value�

St
H

�+�
, which vanishes when St = 0 and is unity when St = H .
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Valuing American Binary Calls in the Black-Scholes Model(con'd)

� Recall that the power play with time t value
�
St
H

�+�
vanishes when St = 0

and is unity when St = H .

� Unfortunately, this play has value
�
ST
H

�+�
> 0 at T , while the ABC has

zero value.

� To solve this problem, we will reect the portion of the play's payo� which

is belowH to the region aboveH . In reecting the payo�, we must preserve

the value along S = 0 and S = H . Since the stock price absorbs at the

origin, the �rst requirement is automatic. The second requirement entails

�nding a reected payo� f r(S) with the property that:

EQ$

H;u1(ST < H)

0
@ST
H

1
A+� = EQ$

H;u1(ST > H)f r(ST );

for all times u 2 [t; T ].

� To �nd f r(S), it will be useful to think of the underlying as the logger,

Xt = lnSt, which has normally distributed terminal values (under Q$).

� In our new spatial variable, the requirement on f r(�) is:

EQ$

h;u1(XT < h)e(+�)(XT�h) = EQ$

h;u1(XT > h)f r(eXT );8u 2 [t; T ];

where h � lnH .
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Valuing American Binary Calls in the Black-Scholes Model(con'd)

� Recall that f r(�) solves:

e�r(T�u)EQ$

h;u1(XT < h)e(+�)(XT�h) = e�r(T�u)EQ$

h;u1(XT > h)f r(eXT );

8u 2 [t; T ], where h � lnH and under Q$:

dXv =

0
B@r � � � �2

2

1
CA dv + �dW $

v ; v 2 [u; T ]; Xu = h:

� The Left Hand Side (LHS) is the value of a normalized binary play along

the barrier, which we denote by B(h; u).

� Now consider the LHS as arising from quantoing a payo� of

1(XT < h)e�(XT�h) into a power play with normalized payo� �T ()
H =

e(XT�h):

B(h; u) = e�r(T�u)EQ$

h;u

�
e(XT�h)1(XT < h)e�(XT�h)

�
;

� Along the barrier, �t()
H = 1, so the value of the normalized binary play is

also given by:

B(h; u) = e�
�2�2

2 (T�u)EQ

h;u

�
1(XT < h)e�(XT�h)

�
;

where recall:

 � 1

2
� r � �

�2
� �

vuuut2 + 2r

�2
;

and where under Q, the logger has no drift:

dXv = �dW 
v ; v 2 [u; T ]; Xu = h;

or equivalently:

XT = h + �(W 
T �W 

u ):
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Valuing American Binary Calls in the Black-Scholes Model(con'd)

� Recall that given X � u = h, then under Q:

XT = h + �(W 
T �W 

u ):

and the value of the normalized binary play along the barrier is:

B(h; u) = e�
�2�2

2
(T�u)EQ

h;u

�
1(XT < h)e�(XT�h)

�

= e�
�2�2

2
(T�u)EQ

h;u

�
1(XT < h)e��(XT�h)

�
;

by the symmetry of the normal distribution.

� Reverting to the original risk-neutral measure:

e�r(T�u)EQ$

h;u

�
1(XT < h)e(+�)(XT�h)

�
= e�r(T�u)EQ$

h;u

�
1(XT > h)e(��)(XT�h)

�
:

� Recalling XT = lnST and h � lnH ,

e�r(T�u)EQ$

H;u

2
641(ST < H)

0
@ST
H

1
A+�

3
75 = e�r(T�u)EQ$

H;u

2
641(ST > H)

0
@ST
H

1
A��

3
75 ;

so the reected payo� must be:

f r(ST ) = 1(ST > H)

0
@ST
H

1
A�� :

� We de�ne the adjusted payo� f(S) as the payo� of a European-style claim

with the same value as the ABC for S < H . Then:

f(S) = 1(S > H)

2
64
0
@ S
H

1
A+� +

0
@ S
H

1
A��

3
75 :

� Letting � � T � t, the American binary call is valued by:

ABC(S; t) = e�r�EQ$

S;tf(ST )

=

0
@ S
H

1
A+�N

0
BB@ln

�
S
H

�
+ ��2�

�
p
�

1
CCA +

0
@ S
H

1
A��N

0
BB@ln

�
S
H

�
� ��2�

�
p
�

1
CCA ;

for S 2 (0; H), where recall  � 1
2 � r��

�2
; � �

r
2 + 2r

�2
:
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VII Valuing Up-And-In Claims in the Black-Scholes Model

� Recall that the value of an up-and-in derivative with �nal payo� 1(�HS <

T )fui(ST ) is obtained by solving:

�2S2

2

@2V b

@S2
(S; t) + (r � �)S

@V b

@S
(S; t)� rV b(S; t) +

@V b

@t
(S; t) = 0;

for S 2 (0; H); t 2 (0; T ) with:

V b(S; T ) = 0; and V b(H; t) = h(t) � e�r(T�t)EQ$

H;tfui(ST );

where under Q$, the risk-neutral stock price process is:

dSu
Su

= (r � �)du + �dW $
u ; u 2 [t; T ]:

� To solve this problem, it is helpful to use risk-neutral valuation:

V b(S; t) = e�r(T�t)EQ$

S;t1(�
H
S < T )f(ST )

= e�r(T�t)EQ$

S;t1(�
H
S < T )EQ$

H;�HS
f(ST );

by the double expectations theorem.

� As with the ABC, suppose that we can �nd an \adjusted payo�"

f(S); S > H with the property that:

EQ$

H;ufui(ST ) = EQ$

H;u1(ST > H)f(ST ); 8u 2 [t; T ]:

� Then valuation is easy since:

V b(S; t) = e�r(T�t)EQ$

S;t1(�
H
S < T )EQ$

H;�HS
1(ST > H)f(ST )

= e�r(T�t)EQ$

S;t1(ST > H)f(ST );

which is path-independent.
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VII-A Finding the Adjusted Payo�

� Recall that the adjusted payo� f(S); S > H has the property that:

EQ$

H;ufui(ST ) = EQ$

H;u1(ST > H)f(ST );

for all times u 2 [t; T ].

� Note that the component of fui with support above the barrier has the

above property trivially. Thus, the adjusted payo� has the form:

f(S) = 1(S > H)[fui(S) + f r(S)];

where f r(S) is a reection of the payo� fui from below the barrier to the

region above it, i.e. the reected payo� f r(S); S > H solves:

EQ$

H;u1(ST < H)fui(ST ) = EQ$

H;u1(ST > H)f r(ST );

for all times u 2 [t; T ].

� Expressing our spatial state variable in terms of the logger Xt = lnSt, the

reected payo� also solves:

e�r(T�u)EQ$

h;u1(XT < h)fui(e
XT ) = e�r(T�u)EQ$

h;u1(XT > h)f r(eXT );

for all times u 2 [t; T ], where h � lnH and recall that under Q$:

dXv =

0
B@r � � � �2

2

1
CA dv + �dW $

v ; v 2 [u; T ]; Xu = h:
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Finding the Adjusted Payo�(con'd)

� Recall that we are seeking the reected payo� solving:

e�r(T�u)EQ$

h;u1(XT < h)fui(e
XT ) = e�r(T�u)EQ$

h;u1(XT > h)f r(eXT ):

� Let U b(h; u) denote the LHS, which is the value at the barrier of a claim

with payo� 1(ST < H)fui(ST ) at T .

� Now consider quantoing the payo� of this claim into the play paying S
T =

eXT at T , and changing the magnitude of this payo� to conserve value:

U b(h; u) = e�r(T�u)EQ$

h;u

�
eXT1(XT < h)fui(e

XT )e�XT
�
:

The value in dollars is given by:

U b(h; u) = ehe�
�2�2

2
(T�u)EQ

h;u

�
1(XT < h)fui(e

XT )e�XT
�
;

where recall:

 � 1

2
� r � �

�2
� �

vuuut2 + 2r

�2
;

and under Q, the logger X has no drift:

dXv = �dW 
v ; v 2 [u; T ]; Xu = h;

or equivalently:

XT = h + �(W 
T �W 

u ):
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Finding the Adjusted Payo�(con'd)

� Recall that given Xu = h, then under Q, XT = h + �(W 
T �W 

u ); and:

U b(h; u) = ehe�
�2�2

2
(T�u)EQ

h;u

�
1(XT < h)fui(e

XT )e�XT
�

= eh
Z h

�1
fui(e

k)e�ke�
�2�2

2
(T�u)EQ

h;u�(XT � k)dk

= eh
Z h

�1
fui(e

k)e�ke�
�2�2

2
(T�u)EQ

h;u�(XT � (2h� k))dk:

since by symmetry:

EQ

h;u�(XT � k) = EQ

h;u�(XT � (2h� k)):

� Letting ` = 2h� k be a change of variables:

U b(h; t)eh = eh
Z 1
h
fui(e

2h�`)e�(2h�`)e�
�2�2

2
(T�u)EQ

h;u�(XT � `)d`

= eh
Z 1
h
fui(e

2h�`)e2(`�h)e�
�2�2

2 (T�u)EQ

h;u�(XT � `)e�`d`:

� Reverting to the original risk-neutral measure:

U b(h; t) =
Z 1
h
fui(e

2h�`)e2(`�h)e�r(T�u)EQ$

h;u�(XT � `)d`

= e�r(T�u)EQ$

h;u1(XT > h)fui(e
2h�XT )e2(XT�h):

� Recalling XT = lnST and h � lnH , the reected payo� must be:

f r(ST ) = 1(ST > H)fui

0
B@H

2

ST

1
CA
0
@ST
H

1
A2 :

� Thus, the adjusted payo� is:

f(S) = 1(S > H)

2
64fui(S) + fui

0
B@H

2

S

1
CA
0
@ S
H

1
A2

3
75 :
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VII-B Adjusted Payo� for Out and Down Claims

� Recall that the adjusted payo� for an up-and-in claim is:

f(ST ) �
8><
>: fui(ST ) +

�
ST
H

�2
fui

�
H2

ST

�
if ST < H ;

0 if ST < H .

� The in-out parity relationship implies:

Vuo(S; t) = V (S; t)� Vui(S; t):

� By in-out parity, the adjusted payo� for an up-and-out claim is:

f(ST ) �
8><
>:�

�
ST
H

�2
fuo

�
H2

ST

�
if ST > H ;

fuo(ST ) if ST < H .

� Similarly, the adjusted payo� for a down-and-in claim is:

f(ST ) �
8><
>:
0 if ST > H ,

fdi(ST ) +
�
ST
H

�2
fdi

�
H2

ST

�
if ST < H .

� For a down-and-out security, in-out parity implies that the adjusted payo�

is:

f(ST ) �
8><
>:
fdo(ST ) if ST > H ,

�
�
ST
H

�2
fdo

�
H2

ST

�
if ST < H .
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Barrier Security Adjusted Payo� f(S)

No-touch binary put 1 for ST > H

�(ST=H)2 for ST < H

One-touch binary put (European) 0 for ST > H

1 + (ST=H)2 for ST < H

Down-and-out call (ST �Kc)
+ for ST > H

�(ST=H)2
�
H2

ST
�Kc

�+
for ST < H

Down-and-out put (Kp � ST )
+ for ST > H

�(ST=H)2
�
Kp � H2

ST

�+
for ST < H

Table 0.1: Adjusted Payo�s for Down Securities. ( = 1

2
� r��

�2
)

VII-C Examples of Adjusted Payo�s

� The table above and the �gures on the next page show the adjusted payo�

for some common down securities.

� Note that the payo�s are \close to" piecewise linear, suggesting static repli-

cation using options.
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Part III

Introduction to Static Hedging
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VIII Introduction to Static Hedging of a Path-Independent

Payo�

� Consider a �nal payo� f(ST ) paid at T , which is a twice di�erentiable

function of the stock price S.

� Let F0 be the initial forward price for delivery at T .

� Using the fundamental theorem of calculus twice, Appendix 2 proves the

following \spectral decomposition":

f(ST ) = f(F0) + f 0(F0)[ST � F0]

+
Z F0

0
f 00(K)(K � ST )

+dK +
Z 1
F0
f 00(K)(ST �K)+dK:

� This may be interpreted as a Taylor series expansion with remainder of the

�nal payo� f(�) about the forward price F0.

� The �rst two terms give the tangent to the payo� at F0; the last two terms

bend the tangent so as to conform to the payo�.

� The payo� of an arbitrary claim has been decomposed into the payo� from

f(F0) bonds, f 0(F0) forward contracts, and the spectrum of out-of-the-

money forward options.

� The �gures on the next page illustrate this result for the square root payo�

f(S) =
p
S.
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VIII-A Payo�s and Prices

� Recall the \spectral decomposition" of the �nal payo� f(ST ) into payo�s

from bonds, forward contracts, and options:

f(ST ) = f(F0) + f 0(F0)[ST � F0]

+
Z F0

0
f 00(K)(K � ST )

+dK +
Z 1
F0
f 00(K)(ST �K)+dK:

� The initial value V f
0 of the �nal payo� f(�) can be expressed in terms of

the initial prices of bonds B0, calls C0(K), and puts P0(K) respectively:

V f
0 = f(F0)B0 +

Z F0

0
f 00(K)P0(K)dK +

Z 1
F0
f 00(K)C0(K)dK:

� Note that no term is required for the forward contracts because they are

initially costless.
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VIII-B Examples of Static Hedges

� Recall that the value of an arbitrary claim can be decomposed into f(F0)

bonds, f 0(F0) costless forward contracts, and the spectrum of out-of-the-

money options:

V f
0 = f(F0)B0 +

Z F0

0
f 00(K)P0(K)dK +

Z 1
F0
f 00(K)C0(K)dK:

� We next illustrate this fundamental decomposition with some examples.

� One of the simplest examples is a claim which pays ST at maturity, i.e.

f(ST ) = ST . Letting S0 denote the initial spot price of this claim, the

above equation implies:

S0 = F0B0;

which is the well known cost-of-carry relationship.

� We can relax the assumption that f be twice di�erentiable by working

with generalized functions (a.k.a. distributions). For example, suppose we

are interested in decomposing an in-the-money European call, i.e. f(S) =

(S �Kc)
+; Kc < F0. Formally using the above decomposition gives:

C0(Kc) = (F0 �Kc)B0 + P0(Kc);

which is Put Call Parity.

48



VIII-C Intrinsic and Time Value

� Again recall that the value of an arbitrary claim can be decomposed into

f(F0) bonds, f
0(F0) costless forward contracts, and the spectrum of out-

of-the-money options:

V f
0 = f(F0)B0 +

Z F0

0
f 00(K)P0(K)dK +

Z 1
F0
f 00(K)C0(K)dK:

� This fundamental decomposition may be used to provide general de�nitions

of intrinsic value and time value.

� We take f(F0)B0 as our de�nition of the intrinsic value of a claim with an

arbitrary continuous payo� f(�):
IV f

0 � f(F0)B0:

� We de�ne the time value of this claim as the sum of the last two terms in

the above decomposition:

TV f
0 �

Z F0

0
f 00(K)P0(K)dK +

Z 1
F0
f 00(K)C0(K)dK:

� Since the options used in the time value de�nition are out-of-the-money,

the de�nition expresses the time value of an arbitrary claim in terms of the

time values of vanilla options.

� Note that if the �nal payo� function f(�) is linear, then f 00(K) = 0 for all

K and there is no time value. Conversely, if the payo� is globally convex,

then f 00(K) � 0 for all K, and the time value is positive.
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IX Introduction to Static Hedging of Barrier Options in the

Black-Scholes Model

� Recall that in the Black Scholes model, we were able to �nd adjusted payo�s

de�ned on the whole domain, which had the property that any European-

style claim with this payo� had the same value as the barrier option.

� Since this payo� can be created with a static position in options, barrier

options can be statically hedged.

� To illustrate with a simple example, recall that the adjusted payo� for a

down-and-out call was:

f(S) =

8>><
>>:
(ST �Kc)

+ for ST > H ;

�(ST=H)2
�
H2

ST
�Kc

�+
for ST < H .

where recall  = 1
2 � r��

�2
:

� For simplicity, suppose Kc > H and r = �, which would be the case if the

underlying were a futures price. Then  = 1
2 and so the adjusted payo� for

a down-and-out call simpli�es to:

f(S) =

8><
>:
(ST �Kc)

+ for ST > H ;

�Kc
H

�
H2

Kc
� ST

�+
for ST < H .

� Thus, to hedge the sale of a down-and-out call, buy a vanilla call with the

same strike and sell Kc
H

vanilla puts struck at H2

Kc
. All options have the same

maturity.

� If the underlying never hits the barrier, then the vanilla call covers the

liability on the down-and-out. When the underlying hits the barrier, sell

the puts and buy the call. If the Black Scholes model still holds, the switch

will be self-�nancing.
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IX-A Using Dynamic Hedging Results to Uncover Static Hedges

� The valuation formulas for barrier options developed using dynamic repli-

cation can be used to uncover the adjusted payo�, and the static hedge.

� For example, assuming we know the formula U(S; � ) for an up barrier

security as a function of the current stock price S and time t, the �rst step

is to �nd the value of the replicating option portfolio for any stock price by

simply removing the restriction that stock prices be below the barrier:

V (S; t) = U(S; t); 8S > 0:

� The second step is to obtain the payo� which gives rise to this value. Since

values converge to their payo� at maturity, simply take the limit of the

value as the current time approaches maturity:

f(S) = lim
t"T

V (S; � ); S > 0:

� The third step is to use the static representation of a path-independent

payo� to uncover the requisite static position in bonds, forward contracts,

and vanilla options.
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IX-B Example 1: American Binary Call

� Recall that the valuation formula for an American binary call (ABC) is:

ABC(S; t) =

0
@ S
H

1
A+�N

0
BB@ln

�
S
H

�
+ ��2�

�
p
�

1
CCA+

0
@ S
H

1
A��N

0
BB@ln

�
S
H

�
� ��2�

�
p
�

1
CCA ;

for S 2 (0; H), where  � 1
2 � r��

�2
; � �

r
2 + 2r

�2
:

� Removing the requirement that S < H and letting t " T gives the adjusted

payo� as:

f(S) = lim
t"T

V (S; t) =

0
@ S
H

1
A+� 1(S > H) +

0
@ S
H

1
A�� 1(S > H):

� The payo� from each of the 2 path-independent calls can be statically

replicated with a portfolio of vanilla options, with each portfolio paying o�

S��
T 1(ST > H) at T .

� From the spectral decomposition with F0 < H , each payo� can be repli-

cated by a static portfolio consisting of H�� bond-or-nothing calls struck

atH , (��)H���1 vanilla calls struck atH , and the in�nitessimal position

( � �)( � �� 1)dK in all vanilla calls struck above H :

S��
T 1(ST > H) = H��1(ST > H) + ( � �)H���1(ST �H)+

+
Z 1
H
( � �)( � �� 1)K���2(ST �K)+dK:

� Since the bond-or-nothing call is a vertical spread of vanilla calls, the value

at t of an ABC can be expressed in terms of the contemporaneous prices

of vanilla calls:

ABCt(T ) = 2B_NCt(T ) +
2

H
Ct(H; T ) +

Z 1
H
nc(K)Ct(K;T )dK;

where:

nc(K) �
2
64( + �)( + �� 1)

0
@K
H

1
A+��2 + ( � �)( � �� 1)

0
@K
H

1
A���2

3
75 1

H2
:
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Example 1: American Binary Call(con'd)

� Recall that the value at t of an ABC was expressed in terms of the con-

temporaneous prices of vanilla calls:

ABCt(T ) = 2B_NCt(T ) +
2

H
Ct(H; T ) +

Z 1
H
nc(K)Ct(K;T )dK;

for S 2 (0; H), where  � 1
2 � r��

�2
; � �

r
2 + 2r

�2
; and where:

nc(K) �
2
64( + �)( + �� 1)

0
@K
H

1
A+��2 + ( � �)( � �� 1)

0
@K
H

1
A���2

3
75 1

H2
:

� We note that if r = �, then nc simpli�es to:

nc(K) =
2r

�2H2

2
64
0
@K
H

1
A+��2 +

0
@K
H

1
A���2

3
75 :

� Furthermore, if r = � = 0, then nc = 0 and the American binary call value

is simply given by:

ABCt(T ) = 2B_NCt(T ) +
1

H
Ct(H; T ):
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Part IV

A Comparison of Static with Dynamic

Hedging
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X Ex Ante Analysis

� When used in the Black Scholes model, static and dynamic hedging both

work perfectly in theory and give rise to the same model value.

� In practice, one approach may work better than another:

{ Static hedging generally requires many strikes. Similarly, dynamic

hedging requires many trading opportunities.

{ Static hedging may require large positions in options; dynamic hedg-

ing may require large positions in the stock. Both may require short

positions or excessive borrowing.

{ Static hedging exposes the hedger once to options transactions costs at

every strike; dynamic hedging exposes the hedger to underlying trans-

actions costs on every trade.

{ Static hedging with options carries with it a sensitivity to changes in

the parameters governing the volatility process. Dynamic hedging is

relatively immune to volatility changes.

{ Static hedging may hurt or help vis-a-vis dynamic hedging when jumps

are taken into account. If the static hedge has positive gamma near the

barrier, then jumps favor the static hedge.
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XI Simulating Static vs. Dynamic Hedging of an American

Binary Call

� We simulated the dynamic and static hedge for the sale of an American

binary call with strike $100, maturity 1 year, and an initial spot price of

$90 when r = :1; � = 0; and � = :2.

� The dynamic hedge assumed that the hedger could trade every 4t � T
N

years, where T = 1 and N varied from 4 to 1024.

� The static hedge assumed that strikes were available in increments of4K,

where 4K varied between $1 and $10.

� Proportional transactions costs of 0.1% were used for both hedging strate-

gies. The static hedge was also conducted under transactions costs of 0.5%.

� Chart 1 shows that for the same transactions costs, one can always �nd a

static hedge with a higher mean P&L and a lower P&L vol than the \best"

dynamic hedge. This result also holds when the static hedge transactions

costs are raised 5-fold.

� Chart 2 shows that this mean-variance domination also holds when the

stock vol is � = :5.

� Chart 3 shows that static hedging does not �rst order stochastically domi-

nate dynamic hedging.

� However, Chart 4 shows that it does second order stochastically dominate.

Thus, any investor with increasing utility and positive risk aversion would

prefer static hedging to dynamic hedging.

� An American binary call has positive gamma up to the barrier. Con-

sequently, the imposition of jumps in the process would favor the static

hedge in this case.
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XII Conclusions

� The concept of an adjusted payo� is useful for understanding the valuation

and hedging of barrier options.

� Once this payo� is known, barrier options can be hedged either by dynam-

ically trading in the underlying or statically positioning in options.

� Although static hedging outperformed dynamic hedging for American bi-

nary calls, other barrier options (eg. up-and-out calls) might result in the

opposite conclusion.

� In general, the best hedge will involve a combination of static and dynamic

hedging.

� Dynamic trading in options will also improve hedging in more general sit-

uations, although the risk reduction comes at a high price in terms of

transactions costs.

� More research needs to be done concerning the impacts of alternative pro-

cesses (ideally incorporating stochastic vol and jumps) and frictions (espe-

cially discrete trading, transactions costs, and position limits).
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Appendix 1: An Analysis of Borrowing when Delta-Hedging in

the Black Scholes Model

We assume the standard Black Scholes model of frictionless markets, no arbitrage, a constant riskfree rate

r, a constant continuous dividend yield � and a geometric Brownian motion for the stock price S over the

option's life [0; T ]. Let V (S; t) be the unique C2;1 function solving the Black Scholes p.d.e.:

@

@t
V (S; t) +

�2S2

2

@2

@S2
V (S; t) + (r � �)S

@

@S
V (S; t)� rV (S; t) = 0; (0.1)

subject to the terminal condition:

lim
t"T

V (S; t) = f(S); (0.2)

where f should be continuous, but need not be di�erentiable everywhere.

Suppose that at time 0, a trader sells a European-style claim paying f(ST ) at T for the Black Scholes

model value V (S0; 0). We assume that the claim is sold for the implied volatility � which will be realized

over the claim's life. Let V (S; t) be the value function describing the fair value of the claim. Let Nt denote

the number of shares held by the trader at time t 2 [0; T ]. To hedge the sale of the claim, the trader

initially buys N0 =
@V
@S
(S0; 0) shares, each at price S0. Let �t � 0 denote cumulative borrowing at time

t 2 [0; T ]. The initial borrowing is the di�erence between the cost of setting up the initial stock hedge and

the proceeds from the sale of the claim:

�0 =
@V

@S
(S0; 0)S0 � V (S0; 0): (0.3)

We now assume that the trader follows an equity trading strategy where all stock purchases are �nanced

by borrowing and all stock sales are used to reduce cumulative borrowing. We next note that cumulative

borrowing is also a�ected by carrying costs. The cumulative borrowings at t, denoted �t will grow at

the riskfree rate r over time. Furthermore, the stock position pays dividends which reduces cumulative

borrowings. Thus at each t, the change in cumulative borrowings can be expressed as:

d�t = dNt(St + dSt)| {z }
dollar cost of
buying shares

+ r�tdt| {z }
additional
interest

� Nt�Stdt| {z }
dividends
received

:
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The �rst term can be represented as the change in the dollar value of the stock position, less the portion

of that change due to capital gains on the shares held:

d�t = d(NtSt)| {z }
change in $ value
of stock position

� NtdSt| {z }
capital gains
in stock

� Nt�Stdt| {z }
dividends
received

+ r�tdt| {z }
additional
interest

: (0.4)

Suppose that the trader holds the number of shares warranted by the Black Scholes model

Nt =
@V

@S
(St; t): (0.5)

Now, by Itô's Lemma:

dVt =

"
@V

@t
+

�2S2

2

@2V

@S2

#
dt+

@V

@S
dSt

= r

"
V �

@V

@S

#
dt+ �S

@V

@S
dt+

@V

@S
dSt

from the Black Scholes p.d.e. (0.1). Solving for the last two terms and substituting this result and (0.5)

in (0.4) gives:

d�t = d

"
@V

@S
(St; t)St

#
� dV (St; t)� r

"
V (St; t)�

@V

@S
(St; t)

#
dt+ r�tdt:

The solution to this equation is:

�t = St
@V

@S
(St; t)� V (St; t):
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Appendix 2: Proof of Spectral Decomposition

The fundamental theorem of calculus implies that for any �xed F :

f(S) = f(F ) + 1S>F

Z S

F
f 0(u)du� 1S<F

Z F

S
f 0(u)du

= f(F ) + 1S>F

Z S

F

�
f 0(F ) +

Z u

F
f 00(v)dv

�
du

�1S<F

Z F

S

"
f 0(F )�

Z F

u
f 00(v)dv

#
du:

Noting that f 0(F ) does not depend on u and applying Fubini's theorem:

f(S) = f(F ) + f 0(F )(S � F ) + 1S>F

SZ
F

SZ
v

f 00(v)dudv + 1S<F

FZ
S

vZ
S

f 00(v)dudv:

Performing the integral over u yields:

f(S) = f(F ) + f 0(F )(S � F ) + 1S>F

SZ
F

f 00(v)(S � v)dv + 1S<F

FZ
S

f 00(v)(v � S)dv

= f(F ) + f 0(F )(S � F ) +

1Z
F

f 00(v)(S � v)+dv +

FZ
0

f 00(v)(v � S)+dv: (0.6)

Setting F = S0, the initial stock price, gives Theorem 1. Note that if F = 0, the replication involves only

bonds, stocks, and calls:

f(S) = f(0) + f 0(0)S +

1Z
0

f 00(v)(S � v)+dv;

provided the terms on the right hand side are all �nite. Similarly, for claims with lim
F"1

f(F ) and lim
F"1

f 0(F )F

both �nite, we may also replicate using only bonds, stocks, and puts:

f(S) = lim
F"1

f(F ) + lim
F"1

f 0(F )(S � F ) +

1Z
0

f 00(v)(v � S)+dv:
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