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Main Risks in Options Markets
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e Index volatility is mean-reverting

Markets jump
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e It is negatively correlated with the price

e Ajump in price often entails a volatility jump

Most models ignore at least one of these risks
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What Is the Shape of Smile?
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e Implied volatility decreases with strike price
e The skew slope is the greatest for short maturities

What underlying processes produce such skews?



Is the Skew Due to Jumps?

e Jump Diffusion model
— between jumps dS /S =mdt+s dz(t)

—inajump S ® S’ epu N(0J)
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The jump diffusion model works well for short maturities



What Happens at Longer Maturities?

e Stochastic volatility Volatility surface from
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Stochastic volatility models work well for long maturities



How to Combine Stochastic Volatility
and Jump Diffusion ?

bet ' tdS/ S =ndt++/vd
e between Jumpsll \K/ Z COI‘I‘(dZi,de) _
tdv=k(q- v)dt+s \K/dz2

e market crashes form a Poisson process with rate |
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e the option price obeys the equation
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European option prices can be computed analytically



What Is the Distribution of Stock Prices?

e Call pricesequal C=SP, - Ke T P,

e Find the characteristic functional
f(t,f) = E'|e"™® | = Fourier Transform of Pg

N\

o Use the affine ansatz P = C(T-1] )*D(T-1) )V to derive
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This model accounts for the main risks of options markets



Does the Model Fit the Smile?

S&P500 volatility surface calibration errors
on June 11, 1997
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The whole volatility surface is described by
one set of constant parameters



Are Smile Parameters Stable Over Time?

e Volatility parameters: e r .
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Mean reversion, correlation and crash size are constant



Patterns in Stochastic Volatility Parameters
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Long run diffusion volatility is relatively stable



What Is the Intuition?

e How does each source of risk affect the smile slope
— at long maturities
— at short maturities

e What is its effect on
— ATM volatility
— smile curvature

e For many models, the “weak smile expansion” is a good
guide.

e However, the natural expansion is for the characteristic
functional, not the implied volatilities.

How to construct the weak smile expansion?



Linking Characteristic Functionals to
Implied Volatilities

e The characteristic functional ¥ .
Ft(h) — GO(K) e|hIn(K/F)dK
0
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Linking Characteristic Functionals to
Implied Volatilities

e Changing the integration variable to Z
and integrating by parts -
-ihj ¢5j +22

Fm)—cﬂzmz)e 2 o(1+ihj’)

e Interms of w©° z+ihj (2)

2h(h+)i 2(w)

F(h)= cﬂwNQw)e 2

F() is related to the analytic continuation of |



What Is the First Order Perturbation?

o Assume | 2(W) @ & +y,(h,w)

with | o independent of Ww.
-Ej oh(h+i)

e Then Fh)=e2' {1+F(h)}
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The smile slope is a simple integral of Eh’)



What Is the Effect of Price Jumps?

e In the Merton model

The ATM smile slope

.
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e The smile curvature (g =0)
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— at small d, very straight skews
— strong dependence on d whend is large



What Is the Effect of Stochastic Volatility?

e Black-Scholes variance jZ2° qT+Vl_(q - e*T)

1
e As T® 0, qu(X)=§rsT
Hence the smile slope (in stdev space)
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— calibration of rs more stable
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The long run Heston smile is often too flat



How Jumps in Volatility Change the Picture?

e If g=d =0, only the change in volatility level

1
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Volatility jumps significantly affect the skew



What Is the Delta?

e When the spot moves, the smile can move too

dC C qCds
Thus D= ﬂ ﬂ
dS fqS ﬂs dS<
e Threeregimes
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Stochastic volatility and jump diffusion yield relative smiles



How to Minimize the P(L) Variance?

e Given dS and dv, dC =DdS+L dv

Hedge with Yshares: P/L=dC- ydS

e In a stochastic volatility model
Var(P/L) =(D- y)*Var(dS) + 2(D- y)L Cov(dS,dv) + L*Var(dv)
Minimize with respect to Y: y=D+rsL/S <D

e Since D=D,- LS2(x)/S

y=Dg+rsL/2S

Optimal “risk management” delta < Dy



What Is the Meaning of the Implied Tree?

e Imagine the world is described by a stochastic volatility model,
but we hedge with the implied tree model

e Then the smile slope ds rs
dx 4s
e When we move the spot keeping the implied tree fixed,
é u
ds*(x,T) _ —cylt EBB"’ﬂS ?(x,1) ;
dx @ ﬂX X=XBB(t)H

Thus
D =D +rsL/2S=y

Implied tree delta mimicks the risk management delta



Summary and Overview

e Stochastic volatility and market jumps produce a skewed
surface of implied volatilities

e The effect of volatility jumps on the skew is highly significant

e Perturbative expansions are a useful tool for understanding
the smile

e The optimal delta depends on the dynamics of volatility



