MODELING THE STATE-PRICE DEFLATOR
AND THE TERM STRUCTURE OF INTEREST RATES

MARK FISHER AND CHRISTIAN GILLES

ABSTRACT. Generalizing the results of Kazemi (1992), we decompose the state—
price deflator into the product of an exponential martingale (the permanent com-
ponent) and the inverse of the price of the very-long discount (VLD) bond (a
trend-stationary process). We further decompose the permanent component into
a term-structure martingale correlated with bond returns and a neutrino factor
uncorrelated with bond returns. We analyze the implications of the constancy of
one or both of these permanent components. When the term-structure martin-
gale is constant, the risk premia for all bonds are determined by the covariance
with the return on the VLD bond. When the neutrino factor is constant, risk pre-
mia for all assets are determined by the price of term structure risk. When both
permanent components are constant, the state—price deflator is trend-stationary
and all assets are priced by the VLD bond. Since exchange rates can be mod-
eled as the ratio of two state—price deflators, expected exchange-rate depreciation
depends on the ratio of the two neutrino factors. When neutrino factors are con-
stant, an important source of variation is missing. We apply our analysis to
uncover the implicit restrictions in Constantinides (1992) and Rogers (1997).

1. INTRODUCTION

The state—price deflator (a.k.a. the pricing kernel) plays a central role in any
general-equilibrium or arbitrage-free model of asset prices. The existence of a state—
price deflator guarantees the absence of arbitrage opportunities, and (subject to
technical conditions) the converse is also true. The central feature of the state—
price deflator is that deflated trading gains are martingales. In the consumption-
based capital asset pricing model (C-CAPM), for example, the state—price deflator
is the subjectively discounted value of the marginal utility of consumption. In
this case, the martingale property is embodied in the optimality condition that the
expected marginal utility from liquidating a portfolio of assets in the future equals
the marginal utility of its purchase price today.

In the context of a nominal version of the C-CAPM, Kazemi (1992) demonstrates
that if the marginal utility of consumption has a limiting stationary distribution
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then the very-long discount (VLD) bond plays the same role as that of the mar-
ket portfolio in the CAPM, namely risk-premia are determined by the covariance
with the return on the VLD bond. Kazemi’s point generalizes beyond his equilib-
rium model to any state—price deflator—real or nominal, general-equilibrium based
or absence-of-arbitrage based: If the state—price deflator is trend-stationary, the
value of the VLD bond is its inverse, with the consequence that all risk premia are
determined by covariance with the return on the VLD bond.! This is a substan-
tive restriction that has significant implications, some of which may or may not be
desirable.?

The state—price deflator can be decomposed (subject to technical conditions) into
the product of two factors: a “permanent” process and a trend-stationary process.?
The permanent process is a martingale, which we compute as the asymptotic revision
process for the state—price deflator: The permanent component changes if and only
if the conditional expectation of the state—price deflator (suitable normalized) in
the distant future changes. The a trend-stationary process is the inverse of the
VLD bond price. When the state—price deflator is trend-stationary, the permanent
component is identically one.

In general, changes to the permanent component will be correlated with bond
returns, including the return on the VLD bond. This correlation can be used to
decompose the permanent component itself into the product of two (exponential)
martingales that are independent of each other (one or both of which may be iden-
tically one). Here is the recipe for computing the decomposition: Given the interest
rate and the price of risk, which can be computed from the dynamics of the state—
price deflator, one can compute bond returns. The difference between the price of
term-structure risk and the volatility of the return on the VLD bond identifies the
two components, one of which is correlated with bond returns (the term-structure
martingale) and the other of which is not (the neutrino factor). The neutrino factor
is so-named because it passes through the bond market without a trace (much as
neutrinos pass through the ordinary matter undetected).*

If it turns out that the term-structure martingale is constant (in which case
the neutrino factor comprises the entire permanent component of the state—price
deflator), then the price of term-structure risk is identical to the volatility of the

IThe returns process for the VLD bond is simply the limit of the returns process for zero-coupon
bonds with finite horizons. Since the Treasury can issue zero-coupon bonds with any initial matu-
rity, the return on the VLD bond can be approximated arbitrarily well.

21f the restriction were true, then of course it would be desirable to impose it. We suspect that it is
far from true and that its imposition simply reduces the flexibility of models and may lead one to
inappropriately abandon a model. One of the implications is spelled out in Appendix A where we
show how the VLD bond can be used to extract market expectations when the state—price deflator
is trend-stationary.

3This decomposition is similar in spirit to the decomposition of Beveridge and Nelson (1981). We
discuss the relation between the two in Appendix C.

4We are able to identify the neutrino factor because we assume we know the state—price deflator.
If instead we wished to construct a state—price deflator from bond prices, we would have no infor-
mation about any neutrino factors. We would need other security prices to compute a neutrino
factor, and even then there would always be the possibility that were other priced shocks beyond
those captured by the set of assets chosen.
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return on the VLD bond and consequently risk-premia for all bonds are determined
by the covariance with the return on the VLD bond. In other words, the VLD bond
prices the bond market. This by itself is a significant restriction that may or may
not be desirable, even if the VLD bond does not price all assets (as it would if the
state—price deflator were trend-stationary). For example, term premia in the bond
market are constrained in such a way that they can be identified from knowledge of
the formula for bond prices and the volatility of the state variables.’

The classic example of a model of the state—price deflator with a nonconstant
neutrino factor and a constant term-structure martingale is that of Constantinides
(1992), whose main purpose was to construct a model of the term structure with
positive interest rates. More recently, Rogers (1997) has proposed a strategy for
modeling both the term structure (also with positive interest rates) and foreign ex-
change rates that imposes trend-stationarity on the state-price deflator.® Not only
does this strategy have the side-effects already described, but it also constrains the
behavior of exchange rates in an important way. Exchange rates can be modeled as
ratios of two state—price deflators. As Rogers points out, if one follows his strategy,
there can be no shocks to the exchange rate that are independent of the two term
structures. There is, however, evidence that expected exchange-rate depreciation
has a component that is independent of both term structures. As we discuss, the
only way for this to come about is if there is a neutrino-factor component to ex-
pected exchange-rate depreciation. A neutrino-factor component will be present if
and only if the ratio of the two neutrino factors (one from each state—price deflator)
is not identically one, and this requires additional shocks.

One can imagine two modeling strategies for introducing Markovian state vari-
ables. The first strategy is to directly Markovianize the state—price deflator itself.
This is essentially what Constantinides and Rogers have done. The second strategy
is to Markovianize the dynamics of the state—price deflator—the interest rate and
the price of risk. Clearly a model derived via one strategy must be derivable at least
in principle via the other strategy: One can always recover the dynamics from the
solution using Ito’s lemma; conversely, a model of the dynamics is valid only when
the stochastic integral associated with those dynamics exists. Nevertheless, as we
have indicated, the typical strategy of modeling the state—price deflator directly has
lead to what could be called an “over-Markovianization.”

The source of the restrictiveness of the strategy of modeling the state—price de-
flator can be understood by considering the relation between bond prices and the
state—price deflator. In an economy where the price of a zero-coupon bond can be

5We note in passing that our analysis has implications for the macro literature that has examined
(in the context of the C—-CAPM) how the slope of the term structure depends on whether or
not output, and hence the state-price deflator, is trend-stationary. In particular, the analysis has
implicitly identified the permanent component of the state—price deflator with the term-structure
martingale. (See, for example, Labadie (1994).) By contrast, if a neutrino factor were introduced
into otherwise trend-stationary economy, the result would be a “trend-stationary” term-structure
in an economy that is not trend-stationary.

6Jin and Glasserman (1997) show how positive interest rate models can be built from a family of
positive martingales. In Appendix B we show that the permanent component of the state-price
deflator is the limit of that family.
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expressed as a function of a set of Markovian state variables, the state—price deflator
cannot in general be expressed as a function of the same set state variables. Conse-
quently, modeling strategies that impose a Markovian structure on the state—price
deflator impose restrictions on the price of risk that can be undesirable.

To explore these restrictions, we model the state—price deflator as the ratio of an
exponential martingale to the value of a Markovian bubble asset. We show that the
state variables that drive the value of the bubble also drive the term structure of
interest rates, and we show how the bubble is related to the VLD bond. We present
a compendium of results regarding the VLD bond, extending the results of Kazemi
(1992) that relate the volatility of the VLD bond to the price of risk.

Related work. Kazemi and Georgiev (1999) have independently covered some of the
same ground that we do in this paper. In particular, they adopt the exponential-
affine framework as delineated by Duffie and Kan (1996), where the market price of
risk is unspecified and the dynamics of the state variables are specified only under
the standard equivalent martingale measure (Q* in our notation; see Section 4).
Within this framework they provide two examples: a single factor model and a
multifactor model that includes a neutrino factor. In both examples the term-
structure martingale is constant. They confirm that the price of (term-structure)
risk equals the volatility of the return on the VLD bond in both examples. They
emphasize the advantage of the constancy of the term-structure martingale: No
additional parameters are required to complete the model, because the price of risk
can be computed from parameters identified in bond prices.

Outline of the rest of the paper. In Section 2 we provide an introductory example.
In Section 3 we provide an explicit statement of the information structure that we
adopt in this paper. In Section 4 we define the asymptotic revision process and
trend-stationarity, and we present a number of propositions in a non-Markovian
setting. In Section 5 we apply these results in a Markovian setting and discuss
Constantinides (1992). In Section 6 we treat the exponential-affine class of models
and provide additional examples that illustrate a number of results from Section 5.
In Section 7 we examine exchange rates, with particular focus on how the neutrino-
factor component affects the dynamics of expected exchange rate depreciation, and
we discuss Rogers (1997).

The paper has a number of appendices. In Appendix A we show how the VLD
bond can be used to extract market expectations. In Appendix B we discuss the
relation between the asymptotic revision process and the family of positive martin-
gales that are central to positive interest-rate models. In Appendix C we discuss
the relation between our decomposition and the Beveridge—Nelson decomposition.
In Appendix D we relate a generalized VLD bond to the payoff bubbles of Gilles
and LeRoy (1997).

2. AN INTRODUCTORY EXAMPLE

Before proceeding to the general analysis, we illustrate several of the main points
with a simple example.
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Preliminaries. First we establish some notation and state quite briefly a few asset-
pricing facts we use in the example.”

A state—price deflator is a positive process that guarantees the absence of ar-
bitrage opportunities. Let n denote a state—price deflator, normalized so that
n(0) = 1. Let p(t,T) denote the value at time t of a default-free, zero-coupon
bond that pays one unit when it matures at time 1. The fact that the bonds are
default-free implies p(T,T) = 1. Forward rates can be computed from bond prices:

f(t7 T) - _alOg(p(ta T))/aT

The absence-of-arbitrage condition provided by the state—price deflator is that
deflated asset prices are martingales. For bond prices this means n(t)p(t,T) =
Ein(r)p(r,T)] for t <7 < T, where E;[-] is the expectation operator conditional
on information at time t. For 7 = T, the absence-of-arbitrage condition has a
convenient form:

p(t,T) = Ey[n(T)/n(t)]. (2.1)

Let us assume that all uncertainty is driven by Brownian motion and that the
state—price deflator and bond price are Ito processes. In this case, the dynamics of
n are given by

dn(t) T
—= =—r{t)dt—A(t) dW(t 2.2
T = T d = MO AW (), (22)
where r is the risk-free interest rate, A is the price of risk vector, and W is a vector
of independent Brownian motions.® The dynamics of bond prices can be written as
dp(ta T) T
———= = pu,(t,T)dt + o,(t, T) dW(t 2.3
T, = et T)dt oyt T) W (), (23)
where 1, is the expect return and o, is the volatility of the return. The absence-
of-arbitrage condition can be expressed in terms of these dynamics. In particular,
the fact that the deflated bond price, n(t) p(t,T), is a martingale means that it has
zero drift, which implies

pp(t, T) = r(t) + A1t) Top(t, T). (2.4)

Equation (2.4) says that the expected return equals the risk-free rate plus a risk
premium that depends on the covariance with the state—price deflator.

The example. In this example there is a single state variable with Ornstein—
Uhlenbeck dynamics:

dX(t) = (0 — X(8))dt + o dWx(t),

where K, 6, and o are parameters and Wy is a Brownian motion. With these
dynamics, the distribution of X (T') conditional on X(t) is Gaussian, with mean

"See Section 3 for more detail.
8The notation 2"y denotes the inner product of two vectors x and ¥.
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X(t,T) := E;[X(T)] and variance X(t,T) := E;[(X(T) — E;[X(T)])?], where

X(t,T)=0 (1 . e*ﬂT*t)) X () e T (2.52)
2
_9 2k (T—1)
Nt T) = 5 (1 e ) (2.5b)

Assuming k > 0, the limiting distribution as T — oo is independent of any infor-
mation at time t.

Model 1. In the first modeling strategy, we model the interest rate and the price of
risk as functions of the state variable:

r(t) =a+bX(t) and At) =gq, (Model 1)

where a, b, and ¢ are parameters. Together r, A, and the dynamics of X comprise an
exponential-affine model of the term structure.’ The price of a zero-coupon bond is
given by p(t,T) = P(X(t),T —t), where P(z,7) = exp(—A(7)— B(7) z). Given this
setup, absence-of-arbitrage condition (2.4) becomes a partial differential equation
(see (5.16) below), the solution to which is

b
B = _— (1 —¢e "7
(1)=2(—e)
1
A/(T) =a-+ (/{9 —qo)B(1) — 3 o2 B(T)Q.
Taking limits, we have
B(oo) = lim B(r) = 2
T—00 K
. bgo 1b%0?
A/(OO) = Th—@o A/(T) =a+b- T B 5 K2

The asymptotic forward rate is given by A’(co). The volatility of bond returns is
given by —B(7) o, so the asymptotic bond-return volatility is

—B(o0)o = —bo/k. (2.6)

(The asymptotic bond-return volatility is the volatility of the return for the VLD
bond. We introduce the VLD bond formally in Section 4.)

Model 2. In the second modeling strategy, we model the state—price deflator ng(t)
as a function of the state variable and time:

no(t) = exp {—at— B (X(t) — X(0))}, (Model 2)

where o and 3 are parameters. (The factor e®*(©) ensures ng(0) = 1.) We can
compute bond prices using absence-of-arbitrage condition (2.1):

po(t, T) = Bilno(T)/no(t)] = e~ (T80 g, [ =0 X))

9We treat exponential-affine models in general in Section 6, where we also provide a number of
other exponential-affine examples. In the current example, if we set a = 0 and b = 1 we have the
term structure model of Vasicek (1977).
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Since —3 X (T) is conditionally Gaussian, e™#X (1) is conditionally lognormally dis-
tributed, with

E, [efﬁX(T)} = exp (—ﬁ X(t,T)+ %ﬂ2 (¢, T)) . (2.7)

Therefore, bond prices are given by po(¢t,T) = Po(X(t),T — t), where Py(z,7) =
exp(—Ao(7) — Bo(7) ) and where

—KT ﬂ2 02 —2KT
Ao(r)=aT+B0(1—e ") — in (1—e ) (2.8a)
Bo(r)=—-B(1—€e"7). (2.8b)
We see that Model 2 produces a term-structure model of the same form as Model 1.
From (2.8), we can compute the asymptotic forward rate Aj(oco) = a and the

asymptotic bond return volatility —Bgy(co)o = Bo.
By applying Ito’s lemma to the state—price deflator ng and identifying the relative
drift and diffusion as in (2.2), we can compute the interest rate and price of risk for

Model 2: 7o(t) = ag + bp X (t) and Ag(t) = qo, where

1
aoza+ﬂ/€0—55202, bo = -0 K, and qo = Bo.

Although the Model 2 is quite similar to Model 1, there is an important distinction
between them. In Model 2, the price of risk A\g is necessarily identified with the
asymptotic volatility of bond returns —By(c0) o, which is not true in Model 1. In
other words, Model 2 is a restricted version of Model 1.

Model 3. We can modify the second modeling strategy to produce a model that is
equivalent to Model 1. In order to have an equivalent model, we must incorporate
an exponential martingale that is driven by the same Brownian that drives the term
structure. We call this martingale the term-structure martingale. Let z; denote the
term-structure martingale, and let z;(0) = 1, and let the dynamics of z; be given
by dzi(t)/z1(t) = —gdWx(t), where g is a parameter. Now model the state—price
deflator as follows:

ny(t) = z1(t) no(t), (Model 3)

where ng(t) is given in Model 2. The conditional expectation E[z1(t)no(t)] is
not as simple to compute, since z; and ng are correlated. In any event, we can
apply Ito’s lemma to n; to compute the interest rate and price of risk for Model 3:

r1(t) = a1 + by X(t) and A\ (t) = g1, where
ar=a—gBo, bi=b, and g =qo+g.

These equations provide a unique solution for a, 8, and g in terms of aq, by, and
q1, which we can identify with the parameters a, b, and ¢ of Model 1. In particular,
we have

a=Aj(x), B=-Bi(o), and g=gq-fo. (2.9)

Equations (2.9) highlight the features of the Model 3 that are and are not changed
relative to Model 2 by the addition of the term-structure martingale. Neither the
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asymptotic forward rate nor the asymptotic bond-return volatility are changed, but
the price of risk is changed, driving a wedge between the price of risk and the
asymptotic bond-return volatility.

Model J. There is another point we can illustrate with this example. As it stands,
the state—price deflator in Model 3 has the property that only term-structure-related
risk is priced. In other words, the risk premium on equities (for example) can be
computed from the price of risk that is identified solely from bond prices. If the
interest rate were constant, then there would be no risk premium for any asset.

In order to introduce additional components to the price of risk vector without
affecting the term structure, we can augment the model with what we call a neutrino
factor, an exponential martingale that is independent of the term structure. Let z9
denote this martingale (with z9(0) = 1), and define a new state—price deflator:

no(t) = zo(t) ni (1), (Model 4)

where n;(t) is given in Model 3. The key feature of Model 4 in relation to Model 3
is

Ei[na(T)/na(t)] = Eilni(T)/na ()], (2.10)

so that bond prices are the same in the two models. As an example, let the dynamics
of z9 be given by dza(t)/z2(t) = —h(X(t),Y(t)) dWy (t), where Wy is a Brownian
motion that is independent of Wy, h(x,y) is a deterministic function, and Y is
a state variable that may be driven by both Wx and Wy. Applying Ito’s lemma
to ng, we can see that ro(t) = r1(¢t) and the price of risk now has an additional
component:

Bo+
Aa(t) = (h(X(t),Yg(t))) '

The first component is the price of term-structure risk, since the second component
has no impact on bond prices as is clear from (2.10). In particular, a neutrino
factor does not affect the relation between the price of term-structure risk and the
asymptotic volatility of bond returns.

3. DESCRIPTION OF THE SETTING

Uncertainty. We refer the reader to Duffie (1996) or Karatzas and Shreve (1988),
for all the missing details and definitions.

We fix a vector W = (W7y,... ,Wy) of orthogonal standard Brownian motions
defined on a complete probability space {2, F, P} (the vector W is often split into
vectors Wy and Wy, with dimensions dx and dy satisfying dx + dy = d). All the
components of W are initialized to 0, that is, P(W(0) = 0) = 1. The filtration
{Fi |t > 0} that describes the evolution of uncertainty is that generated by W (t),
augmented so that F; includes all the P-null sets of F. This filtration satisfies the
so-called usual conditions.

We define a stochastic process Z as a jointly measurable function on [0, 00) x §2
into some Euclidean space, and we write Z(t) for the random variable Z (¢, -) defined
on ). We restrict attention to the stochastic processes Z that are adapted to the
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filtration {F;} and have continuous paths (that is, Z(t) is F;-measurable and, for
P-almost all w, t — Z(t,w) is continuous).

We write dZ(t) = p.(t)dt + o.(s)"dW(t) to mean that Z(t) is a process with
representation as a (scalar) stochastic integral of the form

Z@Z@+1}M@ﬁ+éaﬁfﬂmg

The drift of Z, p,(t), and its diffusion, o,(t), may be stochastic processes them-
selves, in which case we always assume that they satisfy the integrability condi-
tions: P-a.s. and for all t > 0, (a) fg\uz(s)\ds < oo and (b) fg o2 (s)]|?ds < oo.
This implies that all stochastic processes that we consider are square-integrable
(E[Z(T)?] < oo for all t < T, a.s., so that all conditional first and second moments

exist).
We write F; for the expectation conditional on the o-field F;, that is, given a
random variable X defined on Q, Ei[z] := E[X | F;]; conditional variances and

covariances are denoted in a similarly fashion.

The state-price deflator. The state-price deflator plays a central role in the
analysis. It is a strictly positive stochastic process n normalized so that n(0) = 1 and
such that the deflated gains process associated with any admissible trading strategy
is a martingale—the so-called no-arbitrage condition. For ease of exposition, we
restrict attention to assets that are claims to a single lumpy payoff. If S(¢),0 <t <
T, is the value process of such an asset with payoff at time T and n is the state-price
deflator, then n S is a martingale; that is,

n(t) s(t) = En(T) s(T) (3.1)

forall 0 <t<7<T, a.s.

We assume that all default-free zero-coupon bonds are traded. In other words,
for all T > 0 the claim to one unit of numeraire payable at T is traded, and p(t,T),
0 < t < T denotes its price process. Because p(T,T) = 1 and n(t)p(¢t,T) is a
martingale, we have that p(t,T') = E[n(T)]/n(t) for all t < T'; moreover, because
n(t) is strictly positive, p(¢,T) > 0, so that log(p(¢,T")) is well defined.

For any t > 0, we define the instantaneous forward rate curve {f(¢,T) | T > t}
by f(t,T) := —0log(p(t,T))/0T, when such a derivative exist, and we define the
short rate as r(t) := limp_ f(¢,7) when such a limit exists. We restrict attention
to state-price deflators that are regular enough that the forward rate curve and the
short rate exist a.s., for all t.

A state price deflator n can be represented as a stochastic integral, which in
differential form can be expressed as

dn(t) = pn(t) dt + o, (t) TdW (t). (3.2)
If s is the value of a strictly positive asset, then its process can be written
ds(t)/s(t) = us(t)dt + as(t)TdI/V(t). (3.3)

We can express absence-of-arbitrage condition (3.1) in terms of the parameters in
(3.2) and (3.3) by applying Ito’s lemma to the deflated asset price and setting the
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drift to zero:

pat) = — (‘;(f))) - (‘jj(f)) ) " o) (3.4)

Equation (3.4) characterizes the relative drift of this asset’s value (the expected
return of this asset) in terms of the relative drift of the state—price deflator and the
covariance between relative changes in the state—price deflator and relative changes
in this asset’s value.

We define the value of the money market account (MMA) as the process 5(t) =

exp ( fg r(s)ds), which obeys the locally risk-free dynamics

dp(t)/B8(t) = r(t) dt.
The MMA can be interpreted as a bubble, the value of a claim to a payoff at
infinity, as shown in the Appendix D. Applying (3.4) to the value of the MMA,

we see that r(t) = —pu,(t)/n(t). We can use this relation along with the definition
A(t) := —on(t)/n(t) to rewrite (3.4) as

pe(t) = r(t) + M) o4(0). (3.5)

The term A(t) " o,(t) is called the risk-premium and A(t) is called the price of risk
since it determines component-by-component the risk premium in terms of the
amount of risk as measured by os(t). In the case of bond prices, where the dy-
namics of p(t,T') are given by (2.3), the no-arbitrage condition boils down to (2.4).

An equivalent martingale measure. Given a process ¥, define

0 =ew ([ —FWeNRds— [ o awes). (36)

Under suitable integrability conditions, ¢V is a martingale under the physical mea-
sure P.19 The dynamics of ¢¥ as given by d¢?(t)/¢V(t) = —9(t) "dW (t). When n is
a state—price deflator, we assume ¢ is a P-martingale.

It is convenient to express expectations and dynamics under an equivalent mea-
sure, where an exponential martingale ¢? is the change-of-measure process. We refer
to this equivalent measure as QY. The Brownians for QY are related to Brownians
for the original measure (the physical measure P) via

dWO(t) = dW (t) + 9(t) dt, (3.7)

where W79 are standard independent Brownian motions under QY. Conditional
expectations under QY can be computed under P via

B lAr] = ¢t B [¢"(D) A ] (3:8)

10The Novikov condition is sufficient:

T
Eo {exp (%/ Hﬁ(s)H%ls)] < o0 forall 0 < T < 0.

=0

See Karatzas and Shreve (1988, Section 3.5.D).
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where Ar is any time-T' measurable random variable and E}[-] is the conditional
expectation operator under QY. Reversing direction, conditional expectations under
P can be computed under QY via

EiAr] = () B [¢"(1) 7" Ar] (3.9)

where ¢?(t)~! is a martingale under Q.

4. THE VLD BOND IN A NON-MARKOVIAN SETTING

Kazemi (1992) conducts his analysis in a specific equilibrium model in a Mar-
kovian setting in nominal terms. As we will show, the central idea extends beyond
this setting to a non-Markovian no-arbitrage setting, where the state—price deflator
may be measured in any units.

The very-long discount bond. The simplest positive asset is a default-free zero-
coupon bond that makes a single unit payment when it matures. Recall that p(t,T)
is the value at time ¢ of a zero-coupon bond that pays one unit when it matures at
time T. Now let v(¢,T') denote the value of a zero-coupon bond that pays 1/p(0,T)
units at maturity, so that v(¢,T) = p(¢t,T)/p(0,T). We define the value of the VLD
bond as follows: v(t) := limp_o v(t,T) if the limit exists, in which case we say the
VLD bond exists.
If the VLD bond exists, then

. ov(t, s .

Jm P o) (F0.1) = feT) <0 ()
where f(t,T) is the forward rate. Equation (4.1) indicates that, if the VLD bond
exists, any changes in the long (i.e., asymptotic) forward rate must be offset by
the value of the VLD bond going to zero. Dybvig, Ingersoll, and Ross (1996) have
shown that the long forward rate cannot fall absent arbitrage opportunities. Since
the existence of a state—price deflator implies the absence of arbitrage opportunities,
the long forward rate can never fall in our setting. However, the absence of arbitrage
does not rule out the possibility that the long forward rate may rise. If it were to
rise, then the value of the VLD bond must go to zero.!!

The asymptotic revision process and trend-stationarity. Here we present
some useful definitions and propositions.

"Dybvig, Ingersoll, and Ross (1996) provide two examples where the the long rate rises: A discrete-
time example where the value of the VLD bond goes to zero each time the long rate rises (simultane-
ously, a different asset takes on the value of a VLD bond defined in terms of the limit of normalized
bond prices) and a continuous-time example where the long rate rises from some finite value at
time zero to infinity thereafter so that the VLD bond ceases to exist beyond time zero. They also
refer to another continuous-time example, found in Ingersoll, Jr., Skelton, and Weil (1978), where
the long forward rate exists for all ¢ > 0. In this model, upward shifts in the yield curve are driven
by Poison events.
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Definition 1. We say that the forward rate is asymptotically-deterministic if, al-
most surely (hereafter a.s.),

Tlim f0,T)—f(t,T)=0 forallt>0. (4.2)

A constant long forward rate is sufficient to guarantee (4.2), but not necessary.
We could have f(t,T) = sin(T), for example, in which case v(t) = el=cos(t) > (.

Proposition 1. If the value of the VLD bond exists and is strictly positive a.s.,
the forward rate is asymptotically deterministic.

Proof. If value of the VLD bond is strictly positive, then (4.1) implies the forward
rate is asymptotically-deterministic. ]

Definition 2. Let n and n be two state—price deflators with forward rates f and
f respectively. We say f and f are asymptotically the same if a.s.

N

Tlim f@&,T)— f(t,T)=0 forallt>D0.

Definition 3. Let n be a strictly positive Ito process normalized so that n(0) = 1.
If a.s.
- Eyn(T))]
t)y=1 —_—
) = lim ]
exists for all t > 0, then we say that z is the asymptotic revision process for n (under
P), which we write as z = p(n). Otherwise, we say that the asymptotic revision
process for n does not exist. Similarly, if a.s.

El[n(T
z(t) = lim —%[n( )
T—co Eg[n(T)]
exists for all £ > 0, then we say that z is the asymptotic revision process for n under
QY, which we write as z = ¢?(n).

Proposition 2. For a positive Ito process n, suppose z = ¢(n) exists a.s. and is
integrable. Then z is a martingale.

Proof. Define z(t) := n(t)/Eo[n(t)], so that z(t) = limp_.o Et[z(T)]. Suppose the
Proposition is false; then there exist ¢t > 0, T" > 0, ¢ > 0, and a set of paths of
positive probability such that for all these paths ||z(t) — E[2(T)]|| > €. Because
z(t) is a limit, there exists S > ¢ such that Vs > S, ||z(t) — E¢[z(s)]]| < €/2, so that
Vs > S, ||Ez(s)] — Ei[z(T)]]] > €/2. Because of the integrability of z(T'), we have
(a consequence of Fatou’s lemma) that E[z(T)] = lim;_ FE¢[z(7)], so that there
is an S’ > max{S, T} such that |E[2(T)] — E[z(5")]|| < €/4. Therefore, Vs > S,
|Ez(s)] — Ex[z(S")]|| > €/4. Taking s = S’ yields a contradiction. O

Definition 4. We say that n is trend-stationary (under P) if a.s.
)
2% Eoln(T)

for all ¢ > 0, in which case we write ¢(n) = 1. In other words, a trend-stationary
process has an asymptotic revision process that is identically one, which is consistent

=1
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with the absence of revisions to the long-horizon forecast. Otherwise we say that
n is not trend-stationary. Similarly, we say that n is trend-stationary under QV if

©(n) = 1.

See Appendix C for a discussion of how our definition of trend-stationarity is
related to the notion of trend-stationarity in an ARIMA setting.

Proposition 3. Let v denote the VLD bond price process and let n denote the
state—price deflator. Then v exists if and only if p(n) exists, in which case

v = p(n)/n.
Proof.
v(t) = lim o(t,T) = lim = —— lim
() —00 ( ) T—o0 p(O,T) n(t) T—oo Eo[’n(T)]
O
Proposition 3 implies
v=1/n <= ¢(n)=1. (4.3)

In other words, the VLD bond is the inverse of the state—price deflator if and only
if the state—price deflator is trend-stationary. In this case, v is strictly positive
(since n is never infinite), and the forward rate is asymptotically-deterministic (by
Proposition 1).

We illustrate Proposition 3 with the example from Section 2. We start by com-
puting the asymptotic revision process for the state—price deflator from Model 2:

. Eino(T)] . By [ePXM)]
hm —_ 0 = hm —_—
T—oo Fy [no(T)] T—oo Ejy [e—ﬁ X(T)]

= lim_exp {—ﬂ(X(t, T) - X(0,T)) + %ﬂQ (%(¢,T) — %(0, T))}
=1,

where Fy [e*ﬁX(T)] is given in (2.7). Since ¢(ng) = 1, we have v(t) = 1/no(t) =
exp{at+ B(X(t)— X(0))}.

Next consider the following state—price deflator: n = z9 ng, which combines the
previous state—price deflator with a neutrino factor. In this case we have

p(n) = p(z2n0) = 22 p(no) = 22,

where the second equality uses the factor that z9 is a martingale and is uncorrelated
with ng. Consequently v = zo/n = 1/ng as before. Suppose now we compute the
asymptotic revision process for n; = zq ng. This case is less straightforward, given
the correlation between z; and ng. We analyze this case following Proposition 4.

Proposition 4. Let z be an exponential martingale and let w be a trend-stationary
process. Then ¢(zw) = z.
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Proof. We can write

Bl em)] o B+ sty Covila(), u(T)
T—00 EO[Z(t) W(T)] T—o0 1+ COVo[Z(T), y(T)] s

where y(t) := w(t)/FEo|w(t)]; we want to show that limp_,o, Cov¢[z(T),y(T)| = 0 for
all t and all paths in a set of full measure.

Define z™ as the martingale z stopped at the random time 7" := inf{r | z(7) >
n}. Note that 2" is a bounded martingale, and therefore it converges a.s. and
in L to a random variable z"(0c0) such that z"(t) = Ei[2"(c0)]. As a result,

limp o0 Covy[2"™(T), y(T')] = limp_,o0 Covy[2"(00),y(T)]; and the last expression is
zero because otherwise limp_,oo E[y(T) | 2" (c0)] would be a non-constant function of
2"(00), meaning that on some paths (those leading to particular values of 2"(c0))
the asymptotic expectation of y(T') is revised, so that y is not trend-stationary.
Finally, note that

lim Covy[2(T),y(T)] = lim lim Cov¢[z"(c0),y(T)] = 0.

T—00 n—00 T'—o00

a

Let us return to consideration of n; = z1 ng. Since Cﬁ = 21 is an exponential
martingale under the physical measure and we have already confirmed ¢(ng) = 1,
it follows from Proposition 4 that z; = ¢(n1) and v = 1/ny.

The following proposition is an interesting corollary of Proposition 4.

Proposition 5. A process is trend-stationary under one measure if and only if it
is trend-stationary under an equivalent measure.

Proof. Suppose a positive process u is trend-stationary under P. Let Q be some
equivalent measure. Then, using (3.8) and Proposition 4,

BuD] oty B @ D)

5% EJ[u(T)] e BlP@w(T)

where ¢? is the change-of-measure process, an exponential martingale. Since P and
QY are equivalent, the argument works the other way as well. ]

We use Proposition 5 in the proof of the following proposition, which shows
that the asymptotic forward rate is determined entirely by the trend-stationary
component of the state—price deflator.

Proposition 6. If n = (Y w is a state—price deflator, where ¢? is an exponential
martingale and u is a trend-stationary process, then the asymptotic forward rate is
determined by w.

Proof. Compute bond prices from w: p¥

(t,T) = Ey|w(T)]/w(t). Note that p(0,¢) =
Eo[w(T)] and define m(t) := w(t )/Eo[w(t)], so that we can write w(t) = m(t) p*(0,1t).
Note that (by construction) Eo[m(T)] = 1 for all T > 0 and (by the trend-

stationarity of u) limp_ FE¢[m(T)] = 1 for all ¢ > 0. We can compute forward
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rates from w:
fw(t,T) _ —810g(pw(t,T)) o —(9Et[w(T)]/8T _

oT  Bfw(T)]
Compute bond prices and forward rates from n = ¢¥ w:

) = 2@ BC@m@)-0.T) _ Em(T)]5(0.7)
D== = @m0 0705

fw(O,T) -

and
OEY[m(T)]/0T
EP[m(T)]

Proposition 5 implies limp_.o, EY[m(T)] = 1 for all t > 0, which in turn implies
lim f"(¢t,T)— f“(t,T) =0,
T—o0

which was to be shown. O

—0log(p"(t,T))
oT

fn(taT): :fw(07T)_

Let (" be an exponential P-martingale and define yet another new state—price
deflator:

na(t) == (1) mi () = C(t) ¢V (8) m(t) = ¢V () y(t) n(t),
where ("7 is an exponential martingale and
t
vy =exo ([ v nwau).
u=0
If 9(u) "n(u) = 0, then y(t) = 1 and ny is formally the same as n;. Consequently,
fo is asymptotically the same as f. This would be the case if, for example, (¥ were
the term-structure martingale and " were the neutrino factor. On the other hand,
if 9(t)"n(t) # 0, then y(t) # 1. In this case, y is not trend-stationary in general and

the value of the VLD bond is not given by y(t) n(t). We do not persue the analysis
of this case further.

Proposition 7. Let z = ¢(n) and v = ¢(n)/n. The following are equivalent:
(a) Covy[1/v(T),=(T)] =0, 0<t<T <0
() p(t,T) = E¢ [v(t)/v(T)], 0<t<T < oo

Proof. Compute bond prices using n = z/v:

)= = 8 S wm) 5 ) 5 o o]

a

Proposition 7 says that if the conditional covariance is identically zero, then bond
prices can be computed from the dynamics of the VLD bond. Any variation in z is
due to variation in the neutrino factor; the term-structure martingale is constant.
In this case we say that the VLD bond prices all bonds. Referring to the example
in Section 2, given n = zo ng, the VLD bond prices all bonds.
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Dynamics. Let n be a state—price deflator and let ¢(n) exist. Let ¢¥ = ¢(n) and
v = p(n)/n. We can express the dynamics of the exponential martingale ¢V as

d¢’(1)/¢° (1) = —0(t) T dW (2).
The dynamics of v can be written as
do(t)/o(t) = (D) dt + o, () IV (2),
where, applying Ito’s lemma to v = Cﬁ/n,12
() =) 4 ADTou(t)  and  y(t) = AE) — 9().

If n is trend-stationary, z = 1, 9(t) = 0, and A(t) = o,(¢). In other words, if n is
trend-stationary, then the relative volatility of the VLD bond is the price of risk.
In this case we say that the VLD bond prices all assets. Note that we can write

M) Tou(t) = llow(@®)]1* +9(8) Tou(8),
so that
MO o) = o, OIF < 9T (t) = 0.

Note, however, that 9(t) ", (t) = 0 does not imply Cov; [1/v(T), 2(T)] = 0, because
v has a non-zero drift in general. (This point is illustrated in one of the examples
in Section 6.)

5. THE STATE—PRICE DEFLATOR IN A MARKOVIAN SETTING

In this section, we present a Markovian framework that is sufficiently general to
encompass all of our examples as well as many models in the literature, including
Constantinides (1992), which we discuss at the end of this section. The Markovian
framework allows us to flesh-out the implications of the previous section and to
put our examples into a more general context. In addition, the Markovian setting
provides a convenient framework in which () to partition the shocks into those that
drive the term structure (and hence the VLD bond) and those that do not, (i) to
define the price of term-structure risk, and (#4) to isolate the neutrino factor.

In a Markovian setting, asset prices can be expressed as functions of state vari-
ables. Bond prices, in particular, depend only on a subset of state variables. We
show how to construct the VLD-bond price function from the limits of the partial
derivatives of the zero-coupon bond price function.

12Also note that we can since v(t, T) = p(t, T)/p(0,T),
o (t) = Tlim up(t,T) and ou(t) = Tlim op(t,T).
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State variables. Assume there is a vector of nx state variables X and ny state

variables Y. The dynamics of the state variables under the physical measure are
given by

AX (1) = px (X() dt + o (X(8)) dW (t) (5.1a)

dY (t) = py (X(2),Y (t)) dt + oy (X(£), Y (£)) dW (2), (5.1b)

where

is a vector of dx + dy independent Brownian motions. Note that X and Y are
jointly Markovian, and that X is Markovian by itself; in particular, X does not
depend on Wy.

The state—price deflator. Let the state—price deflator be given by n(t) = ¢?(t)/u(t),
where ¢?(t) is given by (3.6), and where

w(t) = U(X(6),¢)  and ﬁ(t):(h&%fi})(t))) (5.2)

We can factor the martingale ¢V = z v into two independent components, the term-
structure martingale z and the neutrino factor v, where

dz(t) du(t)

z(t) v(t)
The state-price deflator cannot in general be expressed as a function of the state
variables unless both components are constant; i.e., g = h = 0.

Let Uy(z,t), Uz(z,t), and Uzy(z,t) denote the obvious partial derivatives. The
dynamics of u are given by

du(t)/u(t) = wa(t) dt + o (1) AW (),

where, by Ito’s lemma,

— —g(X(t))TdWx(t) and = —h(X(0), Y (£) Wy (0).

1
= UsfU + ik Un /U + 5t [ox 0 Usa /U (5.3a)
ou =0y Uy U. (5.3b)

The interest rate and the price of risk. Applying Ito’s lemma to n(t) = ¢¥(t)/u(t),
we get the Markovian dynamics of the state—price deflator:

r(t) = R(X(¢)) and At) = A(X(1),Y (1)) = ( Ax(X(t)) ) ’

U U\ U, 1 -
R——+{MX—UX (9+UXF>} F+§tr|:0XO'Xwa/U} (5.4a)

_ (ﬁi) _ (9+”)T;LUI/U) . (5.4b)

and
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Note that R and Ax depend only on X. We refer to Ax as the price of term-
structure risk.

Asset pricing. It is convenient to express expectations and dynamics under the
equivalent measure QV, where ¢V is the change-of-measure process. The dynamics
of the state variables X and Y under QY are given by

dX (t) = p% (X (1)) dt + ox (X (1)) dW(¢) (5.5a)
dY (t) = pd (X (t), Y () dt + oy (X (1), Y (t)) dW?(¢), (5.5b)
where
p (x) = px(z) — ox(z) g(x) (5.6a)
w3 (z,y) = py (z,y) — oy (z,y) (h?ng;)) : (5.6b)

Thus X and (X,Y) remain Markovian under QY.

We can use (3.9) to compute asset prices:

s B (B ar] ).

where w(t) = 2(X(t),Y(t),t). Note that EY[w(T)/u(T)] depends only on X(t),
Y (t), and the dynamics of (X,Y) under QV; in particular, it does not depend on
¢Y. Moreover, for any w(t) = 2(X (t),t) that does not depend on Y, EY [w(T)/u(T)]
depends only on X (t) and its dynamics under Q”; it does not depend on Y or ¢V.

For example, consider the value of a zero-coupon bond p(¢,T') that pays one unit
of the numeraire at time 7' > t without fail (i.e., for which w(T) = 1):

p(t,T) = u(t) B} [w(T) ']
=U(X(t),t) By [UX(T), T)™"] (5.7)
= P(X(t),t,T),

where P(z,t,T) is a deterministic function of z, t, and T only. In other words,
conditional on the value of X (¢) and its dynamics under Q”, Y (¢) and its dynamics
are irrelevant. The expression for bond prices in (5.7) shows that the exponential
martingale plays no role in bond pricing once the measure has been changed. Note
that the price of a zero-coupon bond is a function of X even if the state—price
deflator cannot be expressed as a function of (X,Y").

The value of the VLD bond. Given n = Cﬁ/u, Proposition 4 shows that if
¢” is an exponential martingale and ((1/u) = 1, then u is the value of the VLD
bond. Given our Markovian setup, it is sufficient that X have a limiting stationary
distribution under P. With this assumption, we can compute U(z,t) from bond
prices.

At this point, it is convenient to consider a bond price function of the form
p(t,T) = P(X(t),T —t), where P(z,7) is a function of ¢ and T only through the
remaining time to maturity 7. In addition we assume P-(z,7) = —0P(z,T —t)/0t,
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which rules out the possibility that any of the state variables behaves like time.
Given this bond price function, we have

U(z,t) = Tlim P(z, T —t)/P(x0,T). (5.8)
—00
Taking the log of both sides of (5.8), we have
log (U(z,t)) = Tlim log (P(z,T —t)) — log (P(z0,T))
(1)

= lim dlog(P(§,T - ())
=00 J(g=u0,(=0)
@D Pr(¢,T =) (Px@,T—o)T
=1 —— 7 d
M Jecneen PET-0 “t\PEeT-0) “
(@) . PT<5,T—<>> P(&,T <>>T
= | —— > \|d | d
/(§=z0,C:0) (Tg%o P(&vT_ C) <+ ngo P(gaT C) 5
(w,t)
-/ adC + (€)Tde
(§=20,(=0)
—at+ 86" de,
§=z0
(5.9)
where
= T]l_)rgo —P(z,7)/P(x,T) and B(x) = Th_)rgo Py(z,7)/P(z,7). (5.10)

Note that a is the long forward rate.'® The second line of (5.9) re-expresses the
first line as a path-independent line integral of the total differential dlog P. The
third line re-expresses the second line in terms of the differentials of the arguments.
The fifth line is justified by the existence of the VLD bond under the conditions
stated, which in turn implies the existence of the limits. The last line follows from
the path-independence of the integral. To conclude,

U(z,t) = exp(at + f(z)),
where f(z) := fgc:wo B(€)Td¢. For example, if B(z) = B, then f(z) = B (z — z0).

Specialize the bubble. Changing perspective, let us now assume

U(z,t) =exp{at+ f(z) — f(z0)}, (5.11)

where « is constant and f(z) is an arbitrary twice-differentiable function of the
vector x. This form of U will produce a constant long forward rate equal to o and
bond prices that depend only on maturity. In this case, we have

Ut/U:Oé, U:c/U:f:ca and U:cx/U:fzfq—;r“‘fzz

13Since bond prices do not separately depend on 7T in this formulation, the long forward rate must
be constant if the forward rate is asymptotically deterministic.
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We can rewrite R and Ax in (5.4) in terms of f:

R=at {px—ox Ax} fut 5 tr[ox ol (Ff] + fuu)] (5.12a)
Ax =g —i—aX fa- (5.12b)

In addition, we can specialize (5.7):
P(z,7) = e @™+ (@ gV [e*ﬂX(HT)) | X(t) = x} . (5.13)

Note that g(z) = 0 implies ux(z) = p% (), so that the dynamics of X are the
same under Q” as under P. In this case we can compute bond prices under the
physical measure via

Pla,7) = eo™H@ g [e—f(X(t+T)) | X () = x} , (5.14)

As a result, the physical drift py is separately identified in bond prices. In general,
the price of term-structure risk is not identified from the bond price function P(x, 7).
However, if X has a limiting stationary distribution and g(z) = 0, then the price
of term-structure risk equals the volatility of the VLD bond, Ax = ox f., which is
identifiable from bond prices. Clearly, (5.14) embodies a substantial restriction.

PDE bond pricing. Given the dynamics of the state variables (i.e., the functions
px, and ox), we can use Ito’s lemma to write p,(t,T) = pup(X(t),T —t) and
op(t,T) = op(X(t),T — t) where the functions pup(z,7) and op(z,7) are given by

P P, 1 Pra Py
up=——+4u T +— tr [axa;r( } and UP:U;—( P (5.15)

P Xp P

With these functions, absence-of-arbitrage condition (2.4) can be written as the
partial differential equation

P. TP 1 P
R:_FT+(MX_UXAX) F+§t1‘|:0)(0;( ;w:| (516)
subject to P(z,0) = 1.

The instantaneous term premium, p,(t,T) — r(t), is given by

- P, U\ (1P
up — R = AX( P>:(g+0;—(7> (0}F> (5.17)

In (5.17), both P,/P and Uz /U are completely determined by the bond price func-
tion P when w is the value of the VLD. If, in addition, g = 0, term premia can be
computed directly from P and ox. No direct knowledge of px is required.

Constantinides. Constantinides (1992) produces a model of the term structure
by modeling the state—price deflator directly. Constantinides introduces non-trend-
stationarity into the state—price deflator with a neutrino factor. (Indeed, we con-
sider this to be the classic example.) By contrast, the term-structure martingale is
constant in his model.
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Constantinides model of state price deflator can be expressed as follows. Let!'*
u(t) = exp(at — | X(t) — ¢|*),

where ¢ is a constant vector and X is a vector of independent, mean reverting
Gaussian variables:

dX(t) = —K X(t)dt + S dWx (2).

K and S are diagonal matrices of positive constants. The dynamics of the expo-
nential martingale can be specified in terms of

g(x)=0 and h(-)= o0,

where g is a scalar constant. Thus d¢?(t)/¢(t) = —oodWy(t), where Wy is
a scalar Brownian motion independent of Wx. Using (5.4) we can compute the
interest rate and price of risk:

R(z)=a —tr[S?*] +2(z — c)T{(K— 5% (z — ¢) + K c}
Az) = (25’(0— x)) ‘

g0

Constantinides computes bond prices using (5.14).

Since the state variables are stationary, u is the value of the VLLD bond. Moreover,
since g = 0, the volatility of the VLD bond is the price of term-structure risk. The
volatility of the VLD bond is

na) = (254577,

This restriction can be relaxed, extending Constantinides’ model, by allowing a
nonzero g(z) that is linear in z and interpreting the specified dynamics to be those
under QY. To proceed along these lines, let

pi(z) = —K .
Choose a suitable g(x) and define

px(z) = pk(z) + ox(z)g(z)  and  Ax(z) =ox(z
For example, let
g(z) =S {Kz+B(0-2)},
so that
px(z)=B(@—=z) and Ax(z)=2S(c—z)+ S '{Kz+B(0—-z)}.

Constantinides’ expressions for bond prices, bond yields, and the interest rate are
all unchanged, but his expressions for term premia must be modified since they
were computed with g =0 (see (5.17)). We have introduced parameters (in B and
0) that are not identified using purely cross-sectional information.

170 avoid clutter, we have not imposed u(0) = 1.
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6. EXPONENTIAL-AFFINE MODELS OF THE TERM STRUCTURE

Exponential-affine models of the term structure are sufficiently important and
useful to merit explicit treatment.

Fisher and Gilles (1996) define a term-structure model to be “exponential affine”
whenever (a) yields of zero-coupon bonds and (b) the first and second conditional
moments of the distribution of future state variables are both affine in the current
state variables. This definition is more restrictive than the original definition of
Duffie and Kan (1996), which covers only condition (a); as a result, the circum-
stances under which our conditions hold are a little bit more restrictive than those
set out in Duffie and Kan. The term “exponential affine” comes from the fact that
for condition (a) to hold, the bond price function P(z, 7) must have the form

P(X(t),T) = exp ( — A(r) =Y Bi(r) Xi(t)), (6.1)
i=1

where A(7) and B;(7) are fixed functions of 7, the time to maturity. As explained
in Fisher and Gilles (1996), a model has an exponential-affine structure if and only
if

M(z) and S(z)'S(z) are affine in x, (6.2)

where
M(z) = (MRX((;))> and S(z) = (ox(z)" Ax(z)).

Conditions (6.2) are more restrictive than the conditions that Duffie and Kan assume
since they do not model the price of risk. They assume only that
R(z),  px(z)—ox(z)Ax(z), and ox(z)ox(z)'
are affine in z.
It will be convenient to refer to explicitly affine representations for the relevant
variables. Starting with M(x), let

nx nx
,U,X(ac):MOJrZMixi and R(a:):ROJrZRixi.
i=1 i=1

Next, turning to S(z), adapting a proof in Duffie and Kan to the present context
shows that S(z)"S(z) is affine in z if and only if S(z) can be written as

S(z) = (ox(2z)T Ax(z)) =D(z) (2 7)

where 2 is a nx X dx matrix of constants, v is a nx x 1 vector of constants, and
D(z) is a diagonal nx X nx matrix whose i-th diagonal entry, u;(x) satisfies

nx
ui(z) = | @io + Zaij Zj;
j=1
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Now, we can write ox(z)ox(z)" = Q'D?*(2)Q, A(z)"A(zx) = v D?*(z)y and
ox(z) A(z) = Q" D?(z)~, which are all affine since D?(z) has the representation

nx
D*(x) = D§ + ) | D} i,
i=1
where each DZ-2 is an ny x nx diagonal matrix with j-th diagonal entry D;; = a;;.
To show that bond prices satisfy (6.1), assume that they do and show that for
specific functions A(7) and B;(7), the PDE (5.16) is satisfied.
Now let us further specialize (5.12), letting f(z) = 3"z, so that

R:a+{uX—UXAX}Tﬁ+% tr [axa}ﬁﬁq (6.3a)
Ax =g+ox0. (6.3b)

We can use (6.3) to reproduce any exponential-affine model of the term structure.
Given ux, ox, R, and Ay, first choose o and (3 to match coefficients in (6.3a), then
use (6.3b) to determine g. For Gaussian models (i.e., models for which the volatility
matrix ox is constant), there is a unique solution. For non-Gaussian models, there
may be more than one solution. However, if the state variables have a limiting
stationary distribution, then there is a unique solution where a and § are the limits
of the log bond-price derivatives.

Going the other way, we can choose U and g to deliver an exponential-affine term
structure: Given py(z) and ox(z)" = D(z) 2, choose

Ulz,t) = exp(at+ (' z)
9(z) = D(z) (v — 29).
D(z

(
Then R(z) is affine in z and Ax(x) )7. In this case, the restriction g(z) =0
is equivalent to v = £2 3.

We now provide a number of examples from the exponential-affine class that
illustrate many of the points from the preceding sections.

One-factor CIR. In this example, we model the interest rate and the price of risk
directly and derive the solution to the state-price deflator.'® To keep things simple,
we take the interest rate to be the single state variable, r(t) = X (¢), and model it
as a square-root process along the lines of CIR:

dX(t) =r(0—X(t))dt + s/ X(t)dWx(t), (6.4)
so that pux(z) = k(0 — z) and ox(z) = s/z. Let the price of risk be given as

follows,'6
s = (G20,

for some function A and some state variables Y.

5We will relate the model in this section to the C~-CAPM framework in the following section.
0ur ¢ is CIR’s parameter \.
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We can solve (6.3) for a = =k 03, g(x) = /z(q/s — s 3), and

Ktaq, o
= :t—

where v = \/(k + ¢)? + 2 s2.

Thus there are two representations for the state—price deflator that are consistent
with our restrictions on functional forms. The drift of = under QY is given by

po(x) = K0 £z

Thus X has a limiting stationary distribution with the second solution for 3, 8 =
(k +q —)/s?, but not with the first solution. Therefore, it is the second solution
that delivers the decomposition into the asymptotic revision process and the inverse
of the VLD bond price.

It is well-known that the bond price function is given by P(x,7) = exp(—A(7) —
B(1)x), where

277 —1)

(Y+r+a) (e —1)+2y
Al(1) = k0 B(1).

Note that Py(z,7)/P(z,7) = —B(1), —Pr(z,7)/P(z,7) = A'(T) + B'(7) z, and

B(r) =

. -2 k+q v

1 _B — = _

S A
lim A'(t)+ B'(r)z=—k0 ( lim —B(T)) ,

which agrees with the stationary solution computed above.

The parameters x and g do not appear in the bond price function separately, but
only as the sum k + q. As a result, these parameters are not separately identified
using the bond price function P(z,7) alone, although the sum is. In general, one
needs time-series data to identify the price-of-risk parameter ¢ via the drift under
the physical measure. However, if we restrict the model to have g = 0, then g = s 3
is identified without resorting to time-series data. This identification of ¢ flows from
the equivalence of the price of term-structure risk with the volatility of the VLD
bond.

An equilibrium interpretation. Consider the C-CAPM with power utility. In this
case we have n(t) = e 9t ¢(t)~'/7 where 6 is the rate of time preference and 7 is the
elasticity of intertemporal substitution. Given the dynamics of consumption,

dlog(c(t)) = ie(t) dt + o.(t) AW (1),

or equivalently

) =eo ([ putoras+ [ o).

=0 s=0
the interest rate and price of risk are given by

1. 1 1
r(t) =0+ L Hell) — 3 IAOI? and  A(®) = 7 7<)
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As long as the dynamics of consumption (i.e., fi.(t) and o.(t)) are deterministic
functions of Markovian state variables, bond prices will also be deterministic func-
tions of those state variables—even though consumption and the state—price deflator
are not. Our approach provides an explicit decomposition of the state—price deflator
into (i) trend-stationary and (i) martingale components.'”

As an illustration, consider a case where X and Y each contain a single state
variable, and there are two Brownians. In particular, let

Rult) = =ndn (145 (/5P ) X(0) + 51V (D)

o (t) — (1(a/s) VX(1)
o= (")

Let the dynamics of X be given by (6.4) and the dynamics of Y be given by
dY (t) = ky (By — Y (t))dt + sy /Y (t) dWy ().

In this case,

_ _ ((a/s) v X (t)>
r(t) = X(t) and A(t) ( YD )
This interest rate and price of risk deliver CIR bond prices. As shown above,
the VLD bond is the Markovian bubble asset, which can be computed from the
appropriate limit. In this example, g(z) = v/ (y — £)/s and h(z,y) = ¢ \/y. Thus
if Kk =7, g(x) = 0 and the VLD bond will price all bonds, even though it does not
price all assets as long as ¢ # 0.18

A Markovian MM A-bubble with stochastic interest rates. Under what con-
ditions can the money-market account be a Markovian bubble asset? Value of the
MMA is B(t) = exp (fst:o r(s) ds), so its dynamics are given by dB(t)/B(t) =
r(t)dt. Therefore, if the value of the MMA is proportional to U(X(t),t), we must
have (%) wy(t) = r(t) and (i) oy (t) = 0. Condition (ii) implies ox U, /U = 0, which
in turn implies condition (7). (Compare (5.3) with (5.4a)). Assuming ox is invert-
ible, condition (#i) implies U, = 0. In other words, if ox is invertible the MMA
can only be the Markovian bubble when U is a function of time only, in which case
the interest rate is deterministic. However, if ox has less than full rank, the MMA
can be a Markovian bubble even with stochastic rates. We can summarize this dis-
cussion by saying that if the bubble depends on any stochastic state variables, they
must be locally riskless in order for the bubble to be the MMA. Finally note that
condition (4i) implies the price of term-structure risk is given by Ax(z) = g(x).
We illustrate the foregoing analysis with an example in which the VLD bond
exists and the MMA is not a Markovian bubble in general. However, the example

TWe could of course separately decompose consumption into its trend-stationary and martingale
components: ¢(c)/c and ¢(c).

B Campbell, Kazemi, and Nanisetty (1999) examine risk-premia in the bond market to see whether
the VLD bond prices bonds by itself. The example shows that even for the C-CAPM, the finding
that the VLD bond prices all bonds is not sufficient to conclude that the VLD bond prices all
assets.
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can be specialized in two ways (one way making the interest rate deterministic and
the other way leaving it stochastic), both of which identify the VLLD bond with the
MMA. Let the dynamics of the state variables be given by

dX;q (t) = K1 (9 - X (t)) dt + s dVVXl (t) (6.5&)
ng(t) = K2 (X1 (t) —0X9 (t)) dt + s9 dVVX2 (t) (6.5b)
Let u(t) = exp(at+ 3 Xy(t)) e B X2(0),
g(z) = (Z;) , and h(z,y) = 0.

For future reference, note that n(t) = z(t)/u(t), where

d2(t) (@ (dWx, (t)
2(t) @) \dWy, 1))
Assuming k1 > 0 and kod > 0, there is a limiting stationary distribution for

X = (X1, X2) under both P and QY. Consequently, u is the value of the VLD

bond. We can compute the interest rate and the price of term-structure risk,

R(x) = (a —q2Bs2 — % (B 52)2) + (Br2)x1 — (6 BRa) X2 (6.6a)

g2 + B s2

which together with (6.5) comprise an exponential-affine model of the term struc-
ture.The volatility of the bubble asset is

=0 ) (5)- ()
XU 0 s9) \B Bsa)"

By making this volatility zero, we identify the VLD bond with the MMA. One
way we can do this is by setting 8 = 0, in which case the interest rate becomes
deterministic: r(t) = a. The other way we can do this is by setting so = 0, which
makes X locally risk-free and reduces the rank of ox. In this case the interest rate
is stochastic: r(t) = a + S Ko (X1(t) — d Xa(t)), the relative drift of u(t).

This example provides an illustration of the fact that 9o, = 0 does not imply
Ax = o0,. Let go = 0. In this case, 9o, = 0 and A}au = ||ow||* even though
oy # Ax.

A change of state variables. We can examine a different issue by specializing the
model in the previous section in another direction. Given the setup in the preceding
section, bond prices are given by

P(t,T) = exp{—=A(T — t) = BT — ) X,(t) — C(T — t) X (1)},

Ax(x)< o ) (6.6b)

where
/8 Ko (67’%2 0T _ e K1 T)

K1 — K90

B(1) and C(1)=0 (e_’”‘h - 1) .

Note that for § # 0, B(co) = 0 and C(o0) = —4.
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Now let 6 = 0. X5 no longer has a limiting stationary distribution. In this case
C(1) =0, and B(oo) = ko 8/k1. The VLD bond can be expressed as a function of
X1 alone, which is Markovian and has a limiting stationary distribution:

V(z,t) =exp {dt —I—B(xl — X1(0))} ;

where
. K1q2 82 + K2 q1 S1 o (K383 + K3 s
aG=a+f| k0 — -8 —== (6.7a)
K1 2 K7
G _r2b (6.7b)

Since X9 does not enter either R(x) of Ax(z), it is irrelevant to the term structure
and can be removed from the X vector. In this case, given

R(zy) = (a —q2fBs2— % (B 52)2) + (B K2) 21,

/\X(xl) = qi, px(x1) = k1 (0 — 1), and 6x(x1) = s1, the unique solution to a
version of (6.3) with hats is given by (6.7) and

. Ko 8

§(a) — g + 2222

K1

Given 4(t) = exp(at+3 X1 (t)) and §(z), we can find an k(- ) such that the dynamics
of n(t) = 2(t)/u(t) are identical to those of n(t). The volatility of n(t) involves the
second component of Ax(-) in (6.6b). In order to keep the price of risk unchanged,

define Ay (-) = h(-) = g2 + 32, so that
di(t) (ql + ﬂ—)T (dwxl <t>)
2(t) a2+ Bs2 dWy, (t) )

where we have relabeled W, as Wy,. Since n(t) and n(t) have the same dynamics,
they price all assets identically, including u(t) in particular.

No VLD bond. We present an example of an affine economy in which there is no
VLD bond. The example was introduced by Fisher and Gilles (1998). There are
two state variables whose dynamics are given by

dXi(t) = (0 — Xa(t))dt — CdWx, (t)

dXo(t) = X1 (t) dt + CdWx, (t),

where 0 and ( are constants. The conditional expectation of the state variables is
given by Ey[X(T)] = E(X(t),T —t), where

B x1 cos(T) + (z2 — 0) sin(7)
E(x,7) = (9 + xll sin(7) + (x22 —0) COS(T))

The point zg = (0,0) is a stationary point in state space: &(xg,7) = 9. However,
there is no tendency for the state variables to move toward this stationary point.
Consequently, there is no limiting stationary distribution.
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Let the interest rate and price of term-structure risk be given by

R(z) =25 and AX(x)<g),

which produces an exponential-affine model of the term structure. Bond prices are
given by
P(z,7) = exp(—Ao(1) — A1(7) 21 — Aa(7T) x2),
where
Ao(1) =60 (1 —sin(7)), Ai(r)=1—cos(7), and Ay(r)=sin(7).
The forward rate function is
F(z,7) =0+ x; sin(7) + (z2 — 0) cos(7),

which is identical to the conditional expectation of the interest rate, Xo. In other
words, the “strong form” of the expectations hypothesis holds in this model.
Let us examine the state—price deflator. The solution to (6.3) is given by

Oé:0+%g2, /8(_(1))7 and g(x)(g>7

n(t) =exp {— (0 +¢%/2)t+ (X1 (t) — X1(0))},

assuming h(z,y) = 0. Perhaps surprisingly, X9 does not appear in the state—price
deflator. Since n has no asymptotic revision process, the VLD bond does not exist,
and the long forward rate is not asymptotically-deterministic. Finally note that
even though g = 0, so that the price of risk is the volatility of the bubble asset
(u = 1/n), the price-of-risk parameter ¢ is not identified by bond prices since the
bubble asset is not a bond.

so that

7. EXCHANGE RATES

Absence-of-arbitrage conditions can be expressed in more than one numeraire.
There will be a state—price deflator for each numeraire. Let ny be the state—price
deflator for the original numeraire, and let s; be the value of an asset denominated
in that numeraire. Let 1(t) be the exchange rate between the two numeraires, such
that so(t) = ¥(t) s1(t)." Then

ni(t) si(t) = Eyni(7)s1(7)] and  na(t) s2(t) = Ey[na(7) s2(7)]

are equivalent if

na(t) = 222 (7.1)

9The exchange rate can refer to either foreign exchange or, if one numeraire is nominal and the
other is real, to the price level.
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By the parallel structure of the absence-of-arbitrage conditions in the two nu-
meraires, we have

dn;(t)
n;(t)
Solving (7.1) for ¢ and applying Ito’s lemma produces

dlog(1(t)) = py () dt + oy (t) dIV (1),

= —ri(t)dt — N(t) T dW () fori=1,2.

where

ps(t) = () = 1 () + 5 (A2 @17 = A (®)1)
op(t) = Aa(t) — M (t).

At this point we adopt the Markovian setting of Section 5. We fix the dynamics
of the state variables in (5.1), and let

1
2

ni(t) = s (7.2)
where

Uit = esploct 160) 000 = (,, G )

With this structure, we can write the Markovian dynamics of the exchange rate,

) S Ua(X(0),)
vit) = n;(t) o (Y2(t) Ui(X(t),t)’

as follows:
pw(z,y) = Ra(z) — Ri(x) + % (1A% (@)11* = [[Ax, (@)]%) +

L el - Itz n)lP), (73)

where the functions R; and A x; are the appropriately subscripted versions of (5.4),
and

0(2.9) = hafe9) = Ma(awy) = (#0779 T o) Uale) = L)),
(7.4)

We refer to the last term on the right-hand side of (7.3) as the neutrino factor
component of expected exchange-rate depreciation.
First, note that

t
) =) = vl = 2 @l = Q% (7.5
1
Thus when (Y1 = (Y2, the exchange rate is the ratio of the values of the two

bubble assets and there a single equivalent martingale measure for both numeraires.
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Moreover, the neutrino factor component is identically zero and the volatility of the
exchange rate is reduced to

op(z,y) = (ax(x) (flx(g) - f2w(x)>> . (7.6)

Second, note that one of the central stylized facts of foreign exchange rates is
that the instantaneous expected rate of depreciation of the exchange rate, p,, has
a component that is orthogonal to both term structures.?? In order for this feature
to obtain in (7.3), the neutrino factor component must depend on Y in a non-trivial
way (and Y must depend on Wy in a non-trivial way).?!

This requires that ¥4 # 99, in which case there are two different equivalent
martingale measures, Q”! and QY2. Nevertheless, we could still have ¢; = go,
in which case X would have identical dynamics under each of the two martingale
measures. In this case, the only difference in the Markovian bond prices across
the two numeraires would come form Uj(z,t) # Ua(z,t). Nevertheless, converting
the numeraire-1 value of a bond to its numeraire-2 value (for example) would still
require the exchange rate which, if it is to capture the afore-mentioned stylized
fact, involves Y. Therefore, given g1 = g2, additionally imposing h; = hs would
impose empirically incorrect cross-currency bond pricing restrictions. We provide
an example of an exponential-affine model of the exchange rate below.

Exponential-affine model the exchange rate. This example is in the spirit
of Sad-Requejo (1994). We model two yield curves that share one factor: r(t) =
X1(t) + X3(t) and r2(t) = Xa(t) + X3(t), where X, X5, and X3 are independent

square—root processes:

dXZ(t) = K; (02 — Xz(t)) dt + s; \/ Xz(t) dW/X,- (t)

Let Y be an independent scalar square-root process

dY(t) = Ry (Qy — Y(t)) dt + sy \/ Y(t) dI/Vy(t).

Let

a1 v/ X1 (1) B v/ Xu(t)

ag \/Xa(t) By v/ Xo(t)

AM(t) = and Ao(t) =
1( ) as /XB(t) 2( ) ﬁB /Xg(t)

ay /Y (1) Ba/Y (1)
Evidently, hi(z,y) = as/y and ha(z,y) = B4./y. The dynamics of expected
exchange-rate depreciation are given by

g (8) = draft) — dry (1) + 5 {a (IR2()1P) — d (a0}

3 7.7)
& (B—ad (
— ;a dXi(t) + ( 5 ) dy (),

20See Saa-Requejo (1994) and the citations therein.
21This point can be found in Sad-Requejo (1994).
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where the coefficients a; can be easily computed. We see that as long as aﬁ * ﬁz,
expected inflation is driven by Y which is uncorrelated with both yield curves.

Rogers. Rogers (1997) models the state—price deflator as n(t) = 1/u(t), where
u(t) = exp(at+ f(X(t))).22 For most of his examples, he specifies the dynamics of
the state variables as

ux(z) =—Bz and ox(x) =1, (7.8)

where B is a general d X d matrix and I is the d x d identity matrix. Given this
setup, we have g(z) =0, h(z,y) =0, and u = v, the value of the VLLD bond. Rogers
shows that with (7.8), the expectation in (5.14) is straightforward to compute for a
variety of functional forms f.

Rogers uses the foregoing setup to model foreign exchange rates, which are given
by

w(t) = 2 — (7.9)

where u;(t) = exp(a;t + fi(X(t))). As a result, there is no neutrino-factor com-
ponent to exchange rates. As discussed above, these are strong restrictions. In
particular, it is not possible for expected exchange-rate depreciation to move in
ways that are orthogonal to both term structures. Moreover, the volatility of the
log of the exchange rate is constrained to be as given in (7.6). Rogers, however,
points out a “practical advantage” to his approach: “ ... once the term structure
has been modeled in the two countries, the exchange rate between them is deter-
mined; no further Brownian motions are needed!”?3 The upshot is that all foreign
exchange-rate risk can be hedged in the bond markets.

In our analysis of Constantinides (1992) in Section 5, we showed that by assuming
the drift of the state variables was specified under an equivalent martingale measure
QY rather than under the physical measure P as in the original model, one can relax
the restriction that imposes the constancy of the term-structure martingale and yet
keep the bond price function unchanged. We can apply the same approach here.
Modeling under QY is not restrictive, since one is free to introduce g(z), h(z,y),
and the dynamics of Y to obtain a more general model of the state—price deflator.?*
What are the consequences of this reinterpretation for exchange rates? Given (7.9),
we must have ¢V1(t) = ¢Y2(t) and consequently

g1(z) = ga(z) and  hi(z,y) = ha(z,y). (7.10)

Therefore, even with the benefit of the reinterpretation, the neutrino-factor compo-
nent must be absent from exchange-rate dynamics.

2ZRogers’ function f(z) is equivalent to exp(—f(x)) in our notation.

23Emphasis in the original.

240f course if we wish to maintain the same functional form for the drift of X under both measures,
we must restrict the form of g. Given (7.8) for example, as long as g(z) is linear in z, the form of
ux will be the same as pu%.
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APPENDIX A. USING THE VLD TO REVEAL MARKET EXPECTATIONS

Throughout this appendix, we assume the VLD bond exists. Let v denote the
value of the VLD bond, n denote the state—price deflator, and z = n/v be the
asymptotic revision process for the state—price deflator. Let §(T') be some time-T
measurable random variable for T' > t. First we show how to extract the conditional
expectation of §(T). Let s(t) be the value at time t of an asset that has a single
payoff v(T)d(T) at time T. In this case, the martingale property of deflated asset
prices (see (3.1)) can be written as

n(t) s(t) = En(T) o(T) 6(T)]. (A1)

Dividing both sides of (A.1) by z(t) produces

I
—~

~
~—

Thus, if

for all t < T, then

in which case asset values can be constructed using the VLD to reveal the market’s
expectation about 6(7"). We consider two cases. First, if g = 0, then (A.2) holds
for any 6(T') that is measurable with respect to the filtration generated by Wx.
Second, if in addition A = 0, then (A.2) holds for any time-T" measurable 6(T).
Thus far, we have shown how to extract the conditional expectation of 6(T") using
the VLD bond. Now we show how to extract the entire conditional distribution of

5(T). Let s(t,T,K) be the value of the asset with payoff v(T') (§(T) — K)*, where
(z)* := max(z,0). In this case we have
s(t, T, K)
v(t)
If the covariance term is zero (for one reason or another), then we have
t,T,K o0
2 " e ) otast, T o
v(t) K

where ¢(z;t,T) is the probability density function for §(T') conditional on the in-
formation at time t. Differentiating twice with respect to the strike price produces

= B, [(5(T) — K)*] + Cov, [ZZ( ) (6 - k)|

9% s(t,T,x)

3.2 o0 = ¢(z;t,T).
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Prozy VLD bond. Since it is infeasible to issue a zero-coupon bond with an infinite
maturity, we investigate the effects of using a finite-maturity bond as a proxy for
the VLD bond. A natural proxy for v(t) is v(t,7) = p(t,7)/p(0, 7) for some large 7.
Next we show how to use the proxy VLD bond to extract an approximation to the
market expectation, where the approximation error can be made arbitrarily small.

Let s(t) be the value of an asset that makes a single payment of v(T,7)d(T),
where 7> T'. Assume, as above, Cov[2(T")/z(t),6(T)] = 0. Then

) — g, [SEDD) A i)

u(t,T) v(t,7)/v(t) =(t)
Et[d(T)]ﬁ—Covt[ (( ;;ZEtT)) (( ))5(:/1)}.

In the second equality we have used the fact that v(t,7)/v(t), the deflated value of
an asset, is a martingale. The covariance term in (A.3) is the approximation error,
which can be made arbitrarily small by choosing 7 sufficiently large. (A similar
argument shows that we can approximate arbitrarily-well the entire conditional
distribution of 6(T') using assets with payoffs equal to v(t,7) (6(T) — K)*.)

For example, the Treasury could issue zero-coupon bonds with an original ma-
turities of 1000 years (a very long Treasury security). The Treasury would fix the
issue-date value at unity, and the bidders would bid on the face value at matu-
rity with the lowest bids being accepted. The Federal Reserve could require the
Primary Dealers to make markets in a sequence of assets with payoffs r(T') v(T, 7)
where 7(T) is the interest rate at time T in the future. (The Fed could ensure liquid-
ity by actively trading with the Primary Dealers if necessary.) Then (assuming the
appropriate covariance were zero) the values of these assets, deflated by the current
value of the very long Treasury security would reveal the market’s expectation for
the path of the interest rate. After 10 or 20 years, the Treasury could issue new
very long Treasury securities and retire the outstanding ones.

(A.3)

APPENDIX B. RELATIONSHIP TO POSITIVE INTEREST RATE MODELS

Given (3.2), we can write the conditional expectation of the state—price deflator
as follows:

Eiln(T) / Eylptn(u (B.1)

Given (B.1), we can express z = p(n) as

D)+ Jyy Bulpn(w)] du

z(t) = lim (B.2)
T—oo 1+ [ Eolpn(uw)] du
For strictly positive interest rates, limy_ Fy¢[n(T)] = 0, so both numerator and

denominator in (B.2) go to zero. Applying [.’Hopital’s rule, we have
z(t) = lim M(¢,T) (B.3)
T—o0
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where

Ei|pn(T)]

Eo[pn(T))

M (t,T) is the family of positive martingales that is central to the positive interest

rate models of Jin and Glasserman (1997). In particular, they express the state-price
deflator as

M, T) :=

n(t) = / " h(s) M(t, 5) ds,

where h(s) := —Eg[un(s)].?°

APPENDIX C. BEVERIDGE-NELSON DECOMPOSITION

When there are no state-dependent volatilities, there is a close correspondence
between our decomposition via the asymptotic revision process and the decomposi-
tion of Beveridge and Nelson (1981) for discrete-time ARIMA models. We illustrate
this with an example.

First, we introduce two definitions.

Definition 5. Let n be a positive process with n(0) = 1. If
(1) = Jim  Eillog(n(T))] ~ Eollos(n(T))]

exists a.s. for all ¢ > 0, then we say that £ is the permanent component of n, which
we write as & = x(log(n)).

Definition 6. We say that n is log-trend-stationary if x(log(n)) = 0.

Let us take no = 29 21 ng from the example in Section 2 as the state—price deflator,
but replace the function h(z,y) with the parameter h. Then we can write

log(na(t) = log(no(®)) — 5 (6° + h2) t —g Wx (1)~ hWy (1) (C.1)

One can verify that the permanent component of log(nz) is given by £(t) = —g Wx (t)—
h Wy (t), and that log(ng(t)) — % (9% + h?) t is trend-stationary.

Let us assume that we sample this process discretely, at unit intervals. We
introduce the standard lag operator L, where L x(t) = x(t — 1) for any process z.
By applying the differencing operator 1 — L to X (¢ + 1) we can decompose

t+1

(I—L)X(t+1)= (X(t,t+1)— X&) + /:t dX(s,t+1) ©2)

=(1—e")(0—X()+et+1)
into expected and unexpected components, where
t+1 t+1
et+1) = / dX(s,t+1) = / & e~ H1=3) g7y (s)
s=t s=t

BEquation (B.3) implies ¢(n) = @(—n) = @(n7), where 7 is the interest rate. See Appendix D
for a discussion of generalized VLD bonds.
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is conditionally Gaussian with mean zero and variance X(¢,t+1).26 Thus discretely-
sampled X follows an AR(1), which we can write as
(I=pL)X(t+1)=m+e(t+1), (C.3)
where m = (1 —e %)0 and p = e ",
AR(1) plus deterministic drift.
Differencing (C.1) produces

(1 —=1L) log(na(t+1)) =
—a—PF(1-L)X(t+1)—gex(t+1)—hey(t+1), (C4)
where & = a + § (¢ + k%) and g;(t + 1) = (1 — L) W;(t + 1). The &;(t + 1) have
conditional mean zero and variance one. Also note, the covariance between ey (t+1)

and €(t + 1) is given by (o/k) (1 — e *). The variance of the first difference of the
permanent component is g2 + k2. Substituting (C.3) into (C.4) produces

(1 =L)log(na(t+1)) =

—a-8 (11__pLL> e(t+1)—gex(t+1)—hey(t+1), (C.5)

Consequently, if g = h = 0, log(ng) is an

where we can expand

(1_L ) =1+(p—1)(L+pL*+p*L*+---).

1—pL
We can compute the autocovariance function from (C.5):

v(0) = C + g* + h?

1y = =D (C6)
where
_ 620-2 —2K 29/80 —K
C—m(l—e )+ P (1—6 )

This autocovariance function is characteristic of an ARIMA(1,0,1) with AR coeffi-
cient p. Therefore, we can parameterize the process for (1 — L) log(na(t + 1)) as
follows:

(1—pL)(1=L)log(na(t+1)=(0-p)a+(1+6OL)e(t+1) (C.7)
is
1+6%+2p0 ,

7(0) Tz O
(1) = (1+;)]C9_)£;2)+9) o (C.8)

26T he expressions for X (t,T) and X(¢,T) are given in (2.5).
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where o2 is the conditional variance of e(t + 1).27 Matching expressions for ~(0)
and v(1) in (C.6) and (C.8), we can solve for © and o2.

We now turn to the Beveridge—Nelson decomposition. We can normalize (C.7)
into an infinite-order MA repersentation for the growth rates of no:

(1— L) log(na(t +1)) = & + c(L) e(t + 1),

where ¢(L) := (14+©L)/(1 — pL). Beveridge and Nelson decompose this operator
into permanent and transitory components: ¢(L) = ¢(1) 4+ ¢*(L), where ¢*(L) =
c(L) — ¢(1) is the transitory component.?® The one-step ahead conditional variance
of the permanent component is given by

ol(14+0)?
Wer = "oy

which (as noted) is the variance of the permanent component. (The second equality
comes from solving (C.8) for © and o2, and the third equality comes from using
(C.6) to eliminate v(0) and ~(1).)

2v(1) 2, .2
= 0) — —~2 = h
W) = —75 =g+,

APPENDIX D. THE GENERALIZED VLD BOND AND PAYOUT BUBBLES

In this appendix we define a generalization of the VLD bond and we show that
these assets are payout bubbles in the sense of Gilles and LeRoy (1997).
The generalized VLD bond. Define
e,
n(t)

where w(t) is some strictly positive process. In other words, s(t,T') is the value at
time t of an asset that makes a single payment of w(7T) at time T. Now define

s(t,T) = E, [

wor - sen B G)em] (20 ),

s(0,T)  Eo[n(T)w(T)] n(t)

where
D)
Y0 = B e

In other words, 5(¢,T) is the value at time ¢ of an asset that makes a single payment
of @(T') at time T'. Note that s(0,7") = 1. Now define

u(t) = lim §(¢,T),
T—o0
if the limit exists for all ¢ > 0, which we can write as u = p(nw)/n. We refer to

u as the value process of a generalized VLD (GVLD) bond and to w as its payoff
process. The VLD bond is a special case, where w = 1.

2TSee Harvey (1981, chapter 2), for example.
Be(l)=c(L=1)=32,c.
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Proposition 8. Let w be the payoff process for the GVLD bond u and let v =
©(n)/n be the value of the VLD bond. Then

u=v <= pw/v)=1.
Proof. Let ¢ = p(n). Then

u=p(nw)/n= e’ wv)/n ="’ (w/v)/n=ve’ (W/v).
But by Proposition 5, ¥ (w/v) =1 <= ¢(w/v) = 1. O

Relation to payoff bubbles. In this section, we sketch how the MMA and the
VLD can be given a mathematical representation, following the argument in Gilles
and LeRoy (1997). For ease of exposition, we assume that traded securities are
claims to lumpy dividends payable at any dates that are in a fixed countable set,
say 7 = {0,1,2....}, endowed with the counting measure on 27 (the set of all
subsets of 7 (the analysis can be carried out on the half-line [0, c0) with Lebesgue
measure, but the technical difficulties would obfuscate the main idea).

With fixed state-price deflator n(t), consider the space of cashflows

c={c(0),c(1),¢(2),...}

such that c(t) is Fi-measurable and ||c||1 := > ,c7 Eo[n(t) [c(t)|] < oo. This space
can be thought of as an L; space with norm || - ||; over the measurable space
{Qx T,F x 27}; its norm dual is the Lo, space consisting of the processes m
such that m(t)/n(t) is essentially bounded on 7, and the norm of m is ||m||e =
ess sup;er{|m(t)|/n(t)}. The norm dual of this L. space is a space, denoted ba,
of finitely-additive measures v on Q x T, such that ||v|| := sup{ [, n(T)d|v| | A €
F x 2T} < 0.

The space Ly of cashflows is embedded in ba in such a way that the unit ball of
L1 is dense in the unit ball of ba, when L is endowed with the weak® topology.
Consider a sequence (z1,z2,...) of cashflows in Ly, with x; consisting of a single
non-negative cashflow ¢(i) payable at time i satisfying Fy[n(i)c(i)] > 0, so that
llzi|l = Eo[n(i)c(:)] > 0. Defining y; := z;/||z;||, the sequence y := (y1,y2,...) is
contained in the unit sphere in L1, and each y; has unit value. Therefore y has a
limit point b in ba, a bubble, or payoff at infinity with value [n(-)db= 1.
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