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ABSTRACT

Hedging a derivative security with non-risk-neutral number of shares leads to portfolio
profit or loss. Unlike in the Black-Scholes world, the net present value of all future cash
flows till maturity is no longer deterministic, and basis risk may be present at any time.
The key object of our analysis is probability distribution of future P&L conditioned on
the present value of the underlying. We consider time dynamics of this probability
distribution for an arbitrary hedging strategy. We assume log-normal process for the
value of the underlying asset and use convolution formula to relate conditional
probability distribution of P&L at any two successive time moments. It leads to a simple
PDE on the probability measure parameterized by a hedging strategy. For risk-neutral
replication the P&L probability distribution collapses to a delta-function at the Black-
Scholes price of the contingent claim. Therefore, our approach is consistent with the
Black-Scholes one and can be viewed as its generalization. We further analyze the PDE
and derive formulae for hedging strategies targeting various objectives, such as
minimizing variance or optimizing distribution quantiles. The developed method of
computing the profit and loss distribution for a given hedging scheme is applied to the
classical example of hedging a European call option using the “stop-loss” strategy. This
strategy refers to holding 1 or 0 shares of the underlying security depending on the
market value of such security. It is shown that the “stop-loss” strategy can lead to a loss
even for an infinite frequency of re-balancing. The analytical method allows one to
compute profit and loss distributions without relying on simulations. To demonstrate the
strength of the method we reproduce the Monte Carlo results on “stop-loss” strategy
given in Hull’s book, and improve the precision beyond the limits of regular Monte-
Carlo simulations.
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1. Introduction

Practitioners in financial markets rely on various extensions of the conventional Black-
Scholes (BS) analysis when basic BS assumptions do not hold. These assumptions
require that the growth rate, risk-free rate of interest and volatility are constant, short
selling of securities is permitted, transaction costs, taxes and dividends are absent,
securities are perfectly divisible, trading is continuous, and there are no risk-less
arbitrage opportunities [1]. Under these assumptions pricing reduces to replication, and
there are no profits or losses (P&L) associated with contracts. Attempts to overcome the
restrictive assumptions inevitably involve some basis risk when the market participant is
no longer certain regarding the present or future value of portfolios. Considerations of
profit and loss can be sometimes suppressed by adjusting prices and implied volatilities.
Pricing derivatives with stochastic rates and volatilities [2-4], transaction costs [5,6],
hedging constraints [7-8], and other realistic features lead to a designated price increase or
decrease. It is supposed to compensate the financial institution for the residual basis risk.

As discussed below, it is practically impossible to eliminate the residual basis risk
completely. Even if it were possible, investors might prefer innovative and risky
strategies to risk-less replication of contingent claims. Such investors should be provided
with a tool, which enables them to select appropriate hedging strategies and serve their
personal risk profiles. Moreover, in incomplete markets risk can only be eliminated at a
high cost [9-17], and probabilistic approach seems to be the most natural one. With this in
mind we suggest to consider this risk in detail, and focus on the probability distribution
of profit and loss. Pricing in this respect becomes a separate issue, which should only be
attempted after the P&L distribution has been adequately described. In this paper the
dynamics of the P&L distribution is analyzed in conventional log-normal setting with
the exception of Appendix A where general stochastic process is considered.
Applications of this analysis to stop-loss strategy and other examples are discussed.

Pricing of basis risk is different in different markets. Insurance pricing corresponds to
adding risk premium in proportion to cumulants or quantiles of the P&L distribution.
Credit derivatives are characterized by spread above risk-less rate. In this paper we only
work with P&L distributions, which precede pricing.  After P&L probability distribution
is computed practitioners may refer to the guidelines of their financial institution to
complete pricing.

Risk-neutral valuation is a general approach to studying derivatives [1]. It states that the
price of a contract (European, for example), can be computed as an average of cash flow
function at maturity over the equivalent risk-neutral martingale measure [ ]S(t)M  on a

space of random walks of the underlying asset [ ]S(t) together with an appropriate

discounting

[ ]T)FEeF(S,t) M
Ttr ,()( ⋅= − (1.1)
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This prescription follows from the no-arbitrage argument. The dot here denotes a
realization of the random walk. The effective risk-neutral measure M  comes as a result
of gauging of an objective measure [ ])(tSM  by the risk-less hedging strategy ),(0 tSϕ

MM →),( 0ϕ (1.2)

Suppose a generic hedging strategy 0ϕϕ ≠  is chosen. This would lead to an effective

measure M which is generally neither risk-neutral nor martingale. We shall solve the
following problem. Given the objective measure M  (say, log-normal with drift µ and

volatility σ ) and a hedging function ϕ  derive an effective measure. As long as effective

measure M  is not risk-less, the value of future profit and loss is clearly uncertain.
Therefore, we should describe M  by a conditional probability distribution function
(PDF) ),|( tSFPϕ  for a given underlying value, S , and time, t

1),|( =∫
∞
∞− tSFPdF ϕ .  (1.3)

 Then equation (1.1) takes more general form

( ) [ ]),|(| )()( TFePEeS,tFP Ttr
M

Ttr ⋅= −−−−
ϕ

ϕ .  (1.4)

In the next Section we derive the partial differential equation for the time evolution of
PDF and discuss it in detail beginning with a very basic case*. Section 3 is devoted to the
equivalent martingale measure associated with PDE. Application of the developed
methods to a simple example of the “stop-loss” strategy is given in Section 4. Optimal
hedges are revisited in Section 5. Section 6 concludes the paper.

2. Dynamics of Profit and Loss Distribution.

2. 1 One Time Step

To begin we consider a single-time (static) hedge position which starts at time zero and
matures along with a European call option. Duration of the time step may be arbitrarily
large. Let us again denote the P&L value as F , underlying share value as S , number of
shares of the underlying security used for hedging as ϕ , the portfolio value as X , time

to maturity as T , option payoff at maturity as )( TT SF . The present best guess about the

probability distribution of the share value at time T is )0,|,( 0STSp T , it is conditioned

on today’s price 0S . Let us consider a position consisting of one option and ϕ  shares.

Such portfolio has a present value 000 SFX ϕ+= . Making a one step in time to

maturity one finds that the value of the portfolio, TTT SFX ϕ+= , is uncertain because

                                                       
* Part of this work has been reported previously [18,19].
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of TS  being uncertain. If the distribution )0,|,( 0STSp T  is binary, with only two

possible values, 21, SSST = , it is possible to suppress the variability of the portfolio

TX  by making use of the hedge [20]

21

21

SS

FF

−
−

−=ϕ , (2.1)

where )( 2,12,1 SFF T= . Given that 2211 SFSFSFX TTT ϕϕϕ +=+=+= , the portfolio

becomes deterministic. In view of the risk-free discounting for deterministic claims

(perfectly replicated) one has rT
T eXX −=0 , and this leads to a discrete Black-Scholes

equation,

0)( 00 =−+− −− rT
T

rT
T eSSeFF ϕ . (2.2)

Solution of (2.2) gives the option value [20]

21

2112

21

21
00 SS

SFSF
e

SS

FF
SF rT

−
−

+
−
−

= − . (2.3)

For an arbitrary distribution )0,|,( 0STSp T  it is no longer possible to suppress the

distribution of the portfolio. At the initial moment 0=t  the PDF of the terminal
portfolio value TX  is simply expressed by the following convolution

),|(
~

)0,|,()0,|(
~

0 TSSXPSTSpdSSXP TTTTTT ϕ−= ∫ (2.4)

Now suppose that a value of the portfolio at the moment T  is TX  with some

probability. Then clearly the P&L value, as seen from the moment zero, is the

discounted portfolio value minus initial investment, SeXF rT
T ϕ−= − , with the same

probability. This simple reasoning leads to the useful relation between the P&L statistics
at the moments 0 and T

),|)(()0,|,()0,|( 000 TSSeSFPSTSpdSeSFP TT
rT

TT
rT ϕϕ −+= ∫ (2.5)

An important lesson, which we learn from this exercise it that statistics of P&L of cash
flows is closely related to a hedging strategy. To find out how valuable a contract is one
needs to examine it's statistical behavior under optimal hedging. We should return to
this point below.
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2.2 The Continuous Limit

We now take the continuous limit assuming that the time step dtttt +=',  is small and
therefore, the log-normal kernel,

( )[ ]












−

−−−
−

−
=

)'(2

)')(2/(/'ln
exp

)'(2'

1
),|','(

2

22

2 tt

ttSS

ttS
tStSp

σ

σµ

πσ
, (2.6)

is sharply peaked as compared to the typical support of ),|( tSFP . Then expanding the

r.h.s. of (2.5) to the first order in dt one finds* [18,19]

( ) 02
2

1
2

22

2

2
222 =











∂

∂
+

∂∂
∂

−
∂

∂
+








∂
∂

−
∂
∂

++
∂
∂

+
∂
∂

S

P

SF

P

F

P
S

F

P

S

P
SPSF

F
r

t

P
ϕϕσϕµϕ .

(2.7)

Second term on the l.h.s. corresponds to continuous discounting of the portfolio, third
term is responsible for the drift of the underlying and fourth one is a diffusion term a la
Fokker-Plank. For the readers who prefer modern mathematical methods of stochastic
calculus we present the alternative derivation in Appendix B. Eq(2.7) is supplied with a
terminal condition. For a derivative security with payoff )( TT SF the terminal condition

is )]([),|( SFFTSFP T−= δ .

2.3 Expected Values, Variances and Higher Cumulants

The expected P&L ),( tSF and its variance, ),( tSV

,),|()(),(,),|(),( 2∫∫ −== tSFPFFdFtSVtSFdFFPtSF

obey partial differential equations, which can be easily derived from (2.7)

                                                       
* This equation has been reported previously in Refs[18,19]. A mathematically similar
equation arises in the study of passport options, Ref[23]. We are thankful to A. Lipton-
Lifschitz for indicating this connection. The difference in the compounding rates in
Eq(2.7) and Eq(13) of Ref[23] can be adjusted at the cost of dismissing risk-neutrality.
The remaining difference is due to the fact that Eq(2.7) is written on the normalized
probability density, while Eq(13) is written on the option value. Other forms of Eq(2.7)
are given in Appendix B.  One of these alternative forms (B.7) can be found in the
presentation at the 8th Annual Derivative Structures Conference (April 24-25, 1998,
Boston University School of Management). This is the work by V. Putyatin and J.
Dewynne “Mean-Variance Approach to Hedging European Option in the Presence of
Transaction Costs”. SE is thankful to S. Adamchuk for the reference.
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( ) SrFr
S

F
S

S

F
S

t

F
ϕµσµ −=−

∂

∂
+

∂
∂

+
∂
∂

2

2
22

2

1 , (2.8)

2
22

2

2
22 2

2

1








∂
∂

+=−
∂

∂
+

∂
∂

+
∂
∂

S

F
SrV

S

V
S

S

V
S

t

V
ϕσσµ .  (2.9)

It is seen from Eq(2.9) that the variance of P&L vanishes at SF ∂−∂= /ϕ . The P&L

becomes deterministic. It is nicely peaked at the BS value of the contingent claim since
the substitution SF ∂−∂= /ϕ  in Eq(2.8) converts the latter into the BS equation,

0
2

1
2

2
22 =−

∂

∂
+

∂
∂

+
∂
∂

Fr
S

F
S

S

F
rS

t

F
σ . (2.10)

We briefly return to one time step considered in Subsection 2.1. From (2.5) one finds
that the mean and variance of F satisfy the following equations

T
rT

T
rT SeSFeF ϕϕ −− −=− 00 (2.11)

)](Var),(Cov2)(Var[)|(Var 22
00 TTTT

rT SSFFeSF ϕϕ +−= − . (2.12)

Eqs(2.11) and (2.12) require separate discussion for binary trees and other discrete
settings. On binary trees, for every time step, one can define 2,1F . At the nodes where

the hedging strategy is )/()( 2121 SSFF −−−=ϕ  Eq(2.11) reduces to the BS Eq(2.3) for

the expected values of P&L, and the r.h.s. of (2.12) is zero in full agreement with the
continuous case. For all other discrete settings the r.h.s. of (2.12) remains positive even
for the variance-minimizing hedge

( ) ( )TTT SSF Var/,Cov=ϕ , (2.13)

and the equation for the expected value of P&L, which can be obtained by substituting
(2.13) into (2.11), clearly deviates from the BS equation for the expected values of P&L.
Hedge (2.13) has been reported in [14] along with the corresponding variance-optimal
martingale measure. Formula (2.13) is well-known in finance as the optimal hedge ratio
(see [1] pp 35-37).

We now return to the continuous case. The second-order operator in Eqs (2.7) is
degenerate. This is a consequence of one Wiener process for two Eqs (2.1), (2.2).

Introducing a function ),(
~

tSF defined as ),(/
~

tSSF ϕ−=∂∂ , and changing variable F

for ),(
~

tSFFX −= , one finds from (2.7)

0
~

~

2

1
~~

2

1)(
2

2
22

2

2
22 =

∂
∂






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
−

∂
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+
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∂
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+
∂

∂
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∂
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(2.14)
The reader can compare the term in parenthesis with Eq(2.8). Comparison shows that
the basis risk is always present if the term in parenthesis is non-zero. This alternative
form of the condition SF ∂−∂= /ϕ  (see above) is sufficient but it is not necessary if the

final condition to Eq(2.14) already contains risk.

We conclude this Section with the equations for skewness, S , and kurtosis, K , defined
for the P&L distribution ),|( tSFP

∫∫ −−=−= ),(3),|()(),(,),|()(),( 243 tSVtSFPFFdFtSKtSFPFFdFtSS .

The equations read









∂
∂

+
∂
∂

=−
∂

∂
+

∂
∂

+
∂
∂

S

F

S

V
Sr

S
S

S
S

t
ϕσσµ 22

2

2
22 33

2

1
S

SSS
(2.15)













∂
∂









∂
∂

−+







∂
∂

−=−
∂

∂
+

∂
∂

+
∂
∂

SS

F

S

V
SrK

S

K
S

S

K
S

t

K S
ϕσσµ 434

2

1 2
22

2

2
22 . (2.16)

Although the inhomogeneity quickly becomes cumbersome the structure of the

differential operator on the l.h.s. is very straightforward. We denote as nL̂  the Green

function associated with this operator for a cumulant of order n

( )[ ]












−

−−−
−

−
=

−−

)'(2

)')(2/(/'ln
exp

)'(2'
),|','(ˆ

2

22

2

)'(

tt

ttSS

ttS

e
tStSL

ttnr

n
σ

σµ

πσ
. (2.17)

It satisfies the backward equation

).'()'(ˆ
ˆ

2

1ˆˆ

2

2
22 ttSSLnr

S

L
S

S

L
S

t

L
n

nnn −−=−
∂

∂
+

∂
∂

+
∂

∂
δδσµ (2.18)

3. The Equivalent Martingale Measure

Presence of basis risk makes pricing by arbitrage uncertain. The risk-neutral equivalent
martingale measure is no longer applicable. However, rewriting Eq(2.7) in the form

[ ]

,2
2

1

)(

2

22

2

2
222 rP

S

P

SF

P

F

P
S

S

P
S

F

P
SrrF

t

P

−=












∂

∂
+

∂∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

−−+
∂
∂

ϕϕσ

µϕµ

(3.1)
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one finds that the left-hand-side of Eq(3.1) has the form of the backward Fokker-Planck
equation, and corresponds to two coupled Itô stochastic differential equations

[ ]




+=
+−+=

.

,)(

SdWSddS

dWSdSrrFdF

στµ

σϕτϕµ

τ

τ (3.2)

The joint distribution

)()(),,( tt SSFFtTSF −−=− δδP (3.3)

generated by Eq(3.2) has to be discounted with the growth rate of underlying security to
obtain the correct conditional probability density

),,(),|( )()( tTSFeetSFP tTrtTr −= −− P . (3.4)

Eqs (3.2), (3.4) define the equivalent martingale measure. We now proceed to
computing the P&L distributions for simple non-BS strategies.

4. The “Stop-Loss” Strategy

Believers of the “stop-loss” strategy assume that hedging the risk of derivatives is very
straightforward [1,21]. For a long position in a European call option, which value at

maturity is +−=− )(]0,)([Max KSKTS  ♠, the writer of the option is supposed to hold 1

share of the underlying asset when its market value is above K  and zero shares
otherwise. Sometimes, a modified “stop-loss” is also used as a “put-replicating”
investment strategy [22].

The controversial aspect of the stop-loss strategy is the continuous limit [1,21], where
minimal time interval for re-balancing the portfolio, t∆ , and the minimal step in quoted
prices, S∆ , are simultaneously taken to zero. The idea of “stop-loss” comes from the
case when S∆  is taken to zero first. One can think that the re-balancing is done
“immediately” at KS = .

For the “stop-loss” strategy one has )(),( KStS −−= θϕ  where )(xθ  is the Heaviside

function. The variable X , see Eq(2.7) becomes +−+= )( KSFX . This variable has the

natural meaning of the total value, which consists of the value of the shares (if they are
held) and the accumulated profit or loss, F .

The analytical solution of Eq(2.14) is given below for the simplest case 0== rµ  and

arithmetic Brownian motion (see also Appendix C). Eq(2.14) becomes

                                                       
♠ K is the strike. The option matures at Tt = .
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)(),|(;0)(
2

1
2

2
2 XTSXP

S

P

X

P
S

t

P
δδσ ==











∂

∂
+

∂
∂

+
∂
∂

, (4.1)

where 2
2
1 σ is now plays the role of diffusivity. One can see that the line 0=S  is a very

special place where, in the continuous limit, the portfolio loses money uniformly in time

at a rate 2
2
1 σ . This is where the “stop-loss” strategy acquires quotation marks.

There exists an elegant method to solve Eq(4.1), which relies on mirror images. Here we
give the most straightforward technique. An efficient solution by using integral
transforms can be found in Appendix C. Using Green function of the diffusion equation
the solution can be formally written as

X

tXP
ttSdtXtSXP

T

t ∂
∂

−+= ∫
)',0|(

)',(')(),|( 2
2
1 ρσδ (4.2)

Denoting ),0|(),( tXPtXf =  we get a closed Volterra-type equation for ),( tXf

X

tXf

tt

dt
XtXf

T

t ∂
∂

−
+= ∫

)',(

'

'

8
)(),(

π

σ
δ (4.3)

The standard method of solving such equations is to consider (4.3) as an iterative recipe

and find the resolvent. Denoting ∑
∞

=
=

0
)(),(
n

nCXtXf δ where

X

C

tt

dt
C n

T

t
n ∂

∂

−
+= ∫+

'

'

8
11

π

σ
, (4.4)

one can see that each integration adds a factor of 
( )

( ) dX

dtT

n

n

18
2

2
1

2

+Γ

+Γ−σ
. As a result

( )1

1

8
2

+Γ








 −
=

n

n

n dX

dtT
C

σ
, (4.5)

and their sum is










 −
−









 −
=

+Γ








 −
= ∑∑

∞

=

∞

= dX

dtT

dX

dtT

dX

dtT
C

n
n

n

n
n

8
erfc

8

)(
exp

)1(

1

80
2

22

20

σσσ
.

(4.6)
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The function ),( tXf  is computed through its Fourier transform












−
−

−

−
=





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

 −
−





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


 −
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∞

∞− )(

2
exp

)(2

)(4

8
erfc

8

)(
exp

2 2

2

2

22

tT

X

tT

XtTkitTkdk
f

σπσ

θσσ
π

.

(4.7)

It is interesting to note that this function can be expressed through the Green function of
the diffusion equation, ),2()(4),( tXXtXf ρθ −= . One can see that at 0=S , where

function f  is defined, the probability evolves with a 4 times slower diffusivity then

along S -axis. This is the slowest loss the “stop-loss” can achieve. Using (4.7) and
returning to original variables one finds

( ) ( ) ( )












−

+
−

−

−−
+
















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+=

+
+

)(2

2
exp

)(2

4

)(2
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erf),|(

2

2

22 tT

SF

tT

SF

tT

S
SFtSFP

σπσ

θ

σ
δ . (4.8)

This answer consists of two parts. The first, with delta-function, refers to the scenarios
where the underlying asset value never crosses the threshold 0=S (recall that here we
measure S  from the strike price K ). Other trajectories cross the threshold, and lead to
losses. It is interesting to note that the answer given by Eq(4.8) is related to the local
time distribution by virtue of the Tanaka formula (see [29] p. 42).

Another interesting case, which is reducible only to a convolution involving the Tanaka
formula, arises when the stop-loss strategy is applied to a “zero payoff contract”.  In this
case there is no payoff at maturity, and one is hedging zero. As before, 1 share is
purchases every time the stock price is above the stop-loss benchmark. The relevant final

condition is )(),|( FTSFP δ=  or )(),|( +−= SXTSXP δ . We only give the final

answer obtained by the method of mirror images. For 0≥S

),2()()],2(),()[(),|(
3
8

3
1 tTSFSFtTSFtTFSFtSFP −+−−+−+−−+= ρθρρθ

(4.9)
and for 0<S















−
+−+−+−−=

)(2

||
erf)(),2()(),()(),|(

23
8

3
2

tT

S
FtTSFFtTSFFtSFP

σ
δρθρθ ,

(4.10)
where, as before, ρ  is the Green function of the diffusion equation.

We now return to the original log-normal case. A measure of the variability of the “stop-
loss” strategy, as suggested in [1], is the ratio of the standard deviation defined by the
probability distribution ),|( tSFP  to the Black-Scholes price of the perfectly hedged

option. We gave a general expression for the variance of ),|( tSFP  in our previous
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work  [19], see Eqs(10,11,21) in there. Since at the point Tt = the distribution is
deterministic, the variance is given by the integral
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where the average profit or loss is
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Some of these integrals can be computed analytically, and the remaining work was done
on Mathematica, using a set of parameters from the Hull’s book [1]

13.0,3846.0,20.0,05.0,50,49 ==−==== µσ tTrKS .

The Black-Scholes price for the corresponding European call is 2.40047=F . Our
computation gave for the standard deviation of the profit or loss of the “stop-loss”

strategy 0.00021.84962/1 ±=V . This fixes the ratio, 0001.07705.0/2/1 ±=FV . In the
Hull’s book number 76.0  was obtained by a MC simulation with a finite re-balancing
frequency. We challenge the readers with access to high-speed computers to reproduce

our precision with Monte-Carlo simulations by performing of order 810  iterations on
very fine lattices.

5. Realistic Optimal Hedges

Hedging at discrete times, hedging with the subjective vlolatility and many other
realistic strategies necessarily involve basis risk and can be optimized. If the strategy is
fully specified, and it depends only on the value of the underlying asset and/or time, Eqs
(2.4) – (2.9) can help to determine the residual basis risk and to control a chosen
measure of risk. For example, discrete hedging at times ,...2,1,0, == mtt m leads to the

difference equations for the incremental contributions to cumulants [see
Eqs(2.5),(2.6),(2.8),(2.9)]
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)(ˆ)( 11 SLrFF mmm ϕµ−=−+ , (5.1)
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where subscript m refers to the moment mt . Expressions under the Green function nL̂

are to be evaluated continuously by using Green functions of lower orders (see below).
Increments of skewness and higher cumulants are linear functions of the number of

shares of the underlying asset used for hedging, mϕ . Thus, as long as the range of

acceptable hedge values is not artificially restricted, focusing on higher cumulants
cannot be a part of the rational risk management scheme. Variance minimization, if
attempted discretely requires, a hedge
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2
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2
2

SL

FSL S
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=ϕ (5.5)

This expression deviates from what can be found in literature [8] although the vanishing
leading order for small time steps is the same, and there is a clear resemblance to
Eq(2.13). Eq(5.5) refers to a mixed discrete-continuous setting, where everything is
continuous except for the process of rebalancing. In order to evaluate the right-hand-side
of (5.5) and the resulting optimal variance, one has to solve (2.5) and (2.6) along with

(5.5). The corresponding “continuous” hedge is simply )()( 1
* tttt mmm −−= +∑ θθϕϕ .

The solution for the expected profit and loss and corresponding variance is

)(ˆ)( *
1 ϕµ SLrF −= , (5.6)
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Closed formulae can be obtained for the case of small time steps between the events of
re-balancing, t∆ . To the leading order in time step one finds from (5.6), (5.7)
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Here to the leading order one can replace F  by F , the latter is the solution of the BS
Eq(2.10), i.e. the option price for perfect replication. Eqs(2.8), (2.9) yield
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where FFG −= . Eqs(5.10), (5.11) are supplied with zero final conditions. Eq(5.11)
has been reported [28] (misprint - t∆  missing on the right-hand-side of Eq(5.3) of
Ref[28]). Solutions of Eqs(5.10), (5.11) are easily expressed through the Green functions

2,1L̂ , respectively. In the case of a European call option with the strike K  the resulting

integrals can be reduced to
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Here it is assumed that t∆  is constant. (Variable ),( tSt∆ would remain under the

integrals.) Recalling that by definition G  given by Eq(5.12) is the excess return “on
top” of the BS price, and V given by Eq(5.13) is the squared standard deviation of this
excess return, we conclude that the excess return scales as the square of the standard
deviation as the time step t∆  is taken to zero. This parabolic line in the plane excess
return vs its standard deviation is clearly below any efficient frontier [30] for small

t∆ even if 0>G . Thus, very frequent hedging or re-balancing is an inefficient
investment of risk capital. The structure of the right-hand sides of Eqs(5.10), (5.11)
implies that this statement holds for all options which can be perfectly replicated in
theory. Formulae (5.12)-(5.14) can be used to get practical estimates of minimal
reasonable time steps based on risk and return.

 Different approach to risk management is to optimize the VaR or given quantile
associated with the portfolio. Strictly speaking quantile hedging makes limited sense for
a single contract, but may be of interest if the portfolio is large enough. One can show
that holding
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securities represents the optimal hedge [19]. The expression (5.15) is evaluated at the
quantile position which changes over time, its dynamics can be extracted from solving
Eq(2.7) in parallel with (5.15).

6. Conclusion

We have presented a quantitative approach to the residual basis risk associated with
dynamic hedging strategies. In the conventional log-normal setting evolution of the
profit and loss distribution obeys a partial differential equation (2.7). By using this
equation we have shown that the classical “stop-loss” strategy exhibits significant basis
risk. The problem of discrete hedging in continuous time was visited briefly and the
variance-minimizing solutions are given. Application of Eq(2.7) to contracts with
discrete prices, and passport options [23]  is tempting, and this work is in progress. We
remind that this study does not address pricing of residual risk [24]. Here we have only
shown how to use the risk-minimizing replication to the best possible extent and access
the remaining P&L distribution, ),|( tSFP . When ),|( tSFP  is computed one may

apply actuarial techniques (for recent interest in these techniques see [25] ), methods used
in credit markets, or VaR methods to handle the residual risk. Applying these methods
from the very beginning, before the optimal replication is imposed, may lead to
arbitrage.

Acknowledgements

The authors are grateful to John Hull and Peter Carr for interest and discussions, and to
Marco Avellaneda for encouragement and suggestion to revisit the profit and loss of the
“stop-loss” strategy using techniques presented here. Part of this work was written at
Caffé Dante, and we thank their stuff for patience and understanding. SE is thankful to
Dajiang Guo, Chunli Hou and Tim Newman for useful conversations. The authors
acknowledge the interest by Iraj Kani and his invaluable help with the manuscript. Part
of this work and its underlying philosophy was presented by one of us in the Fall of 1997
as a mini-course in the program entitled “Master of Arts in Mathematics” with
specialization in the Mathematics of Finance at Columbia University (New York):
http://www.math.columbia.edu/department/masters_finance.shtml. SE is grateful to
Ioannis Karatzas and Jaksa Cvitani� for their interest in insurance approach, to Jay
Blumenstein for providing good communication with Columbia, discussions, and help
while at Centre, and, certainly, to students of the program for their active participation
and rewarding response. SE is indebted to the participants of the University of Chicago
Financial Mathematics Seminar, where part of this work was presented, and to the
Seminar organizer, Alexander Adamchuk, for warm hospitality.

All errors in this text are our responsibility.



On the Profit and Loss Distributions of Dynamic Hedging Strategies      15

References

[1] J. Hull, Options, Futures and Other Derivatives, Prentice-Hall, Inc., 3rd edition. (1997) 310-
312.

[2] J. C. Hull and A. White, The Pricing of Options on Assets with Stochastic Volatilities. Jouranl
of Finance 42 (1987) 281-300

[3] S.I. Heston, A Closed Form Solution for Options with Stochastic Volatility with Applications
to Bond and Currency Options, The Review of Financial Studies 6 (1993) 327-343

[4] D.S. Bates, Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche
Mark Options, The Review of Financial Studies 9 (1996) 69-107.

[5] H.E. Leland, Option Pricing and Replication with Transaction Costs, Journal of Finance 40
n.5 (1985) 1283-1301

[6] K.B. Toft, Exact Formulas for Expected Hedging Error and Transaction Costs in Option
Replication, UCB preprint (1993).

[7] J. Cvitani� and I. Karatzas, Hedging Contingent Claims with Constrained Portfolios, Annals
of Applied Probability 3 (1993) 652-681

[8] J. Cvitani�, Optimal Trading under Contraints, in Financial Mathematics. W.J. Runggaldier
(ed.), Lecture Notes in Mathematics #1656, Springer, New York (1997)

[9] H. Föllmer and D. Sondermann, Hedging of Non-redundant Contingent Claims. In W.
Hildenbrand and A. Mas-Colell (eds.) Contributions to Mathematical Economics (1986) 205-
223

[10] D. Duffie and H.R. Richardson, Mean-variance hedging in continuous time, Ann. Appl.
Probab. 1 (1991) 1-15

[11] H. Föllmer and M. Schweizer, Hedging of Contingent Claims under Incomplete Information.
In M.H.A. Davis and R.J. Elliott (eds.) Applied Stochastic Analysis, Stochastic Monographs,
Gordon and Breach, London 5 (1991) 389-414

[12] M. Schweizer, Mean-Variance Hedging for General Claims, Annals of Applied Probability 2
(1992) 171-179

[13] M. Schweizer, Approximating Random Variables by Stochastic Integrals, Annals of
Probability 22 (1994) 1536-1575

[14] M. Schweizer, Variance-Optimal Hedging in Discrete Time, Mathematics of Operations
Research 20 (1995) 1-32

[15] M. Schweizer, Approximation pricing and the Variance-Optimal Martingale Measure,
Annals of Probability 24 (1996) 206-36

[16] J.P.Laurent and H.Pham, Dynamic Programming and Mean-Variance Hedging. (1997)
preprint

[17] C.Hipp, Hedging and Insurance Risk. Preprint 1/96, University of Karlsruhe (1998)
[18] S. Esipov, unpublished (1996).
[19] S. Esipov and I. Vaysburd, Time Dynamics of Probability Measure and Hedging of

Derivatives. Archive at Los Alamos (1998) http://xxx.lanl.gov/abs/math.PR/9805014
[20] J.C. Cox and M. Rubinstein, Options Markets, Prentice Hall, Englewood Hills, NJ, 1985.
[21] P. Carr, The Stop-Loss Start-Gain Strategy and Option Valuation, Review of Financial

Studies, (1990)
[22] R.R. Trippi and R. B. Harriff, Dynamic Asset Allocation Rules: Survey and Synthesis, J.

Portf. Mgmt, Summer (1991) 19
[23] T. Hyer, A. Lipton-Lifschitz, and D. Pugachevsky. Passport to Success, Risk, 10, No 9
(1997)

127-131. See also an extended version in the book Hedging with Trees, M. Broadie and P.
Glasserman, eds.,  Risk Publications, London, Risk Books (1998) 49-56.



Sergei Esipov and Igor Vaysburd16

[24] S.Esipov and D.Guo, Portfolio-Based Risk Pricing: Pricing Long-Term Put Options with
GJR-GARCH(1,1)/Jump Diffusion Process, forthcoming paper in the Proceeding of the
Seminar on Mathematical Finance at Courant Institute, World Scientific, Singapore (1998)

[25] The World According to Steve Ross, Derivatives Strategy, September (1998) 45-50
[26] C. W. Gardiner, Handbook of Stochastic Methods, 2nd edition, Springer (1997)
[27] F. Russo and P.Vallois, Forward, backward and symmetric stochastic integration,

Prob. Th. Rel. Fields 97 (1993) 403-421
[28] D. Bertsimas, L. Kogan, and A. Lo, When is Time Continuous?, preprint (1998)
[29] A. Borodin and P. Salminen, Handbook of Brownian Motion – Facts and Formulae,

Birkhäuser Verlag, Basel, Boston, Berlin (1996).
[30]. H. M. Markowitz, Portfolio Selection, J. Finance, 7 (1952) 77

Appendix A

General Stochastic Processes, Path Integral Solutions and The Effective Measure

Deriving equation (2.7) we had in mind that the probability distribution is a smooth
function of its arguments (otherwise partial derivatives would not be well defined or
truncation of expansion at second order is problematic). Unfortunately, this is not always
true. The PDE is not applicable if we have to deal with binary, delta-like or any other
singular distribution at maturity. However, it is possible to derive closed form integral
solution (evolution kernel) which would make sense for any reasonable final conditions

),|( tSFP .

Suppose that we are interested in PDF at the initial moment t . Let us divide the time
interval ),( Tt  in N  little segments 1, +kk tt  such that tt =0  and Tt N = . We should

move backward in time - from maturity to the present moment - applying backward
transfer matrix at each step. Introducing notations kk StS =)(  and kktS ϕϕ =),(  one

can rewrite (2.5) as

),|(),(),|( 111 kkkkkkk tSFPSSTdStSFP ∫ −−− = ϕ (A.1)

 The T -operator acts on both arguments of P - on S  as a trasfer-matrix and on F  as a
shift. After N  successive backward steps we get

),|(),()...,(...),|( 110100 NNNNN tSFPSSTSSTdSdStSFP −∫ ∫= ϕϕ (A.2)

In the ∞→N  limit the transfer-matrices accumulate to the measure

),()...,(... 1101)(| NNNStS SSSSdSdSDM −= ∫ ∫∫ = ρρ (A.3)

whereas stepwise shifts of F  produce an integral shift

)')(,(],[ )'( dtrSdStSeS tt
T
t

ttr −=Ψ ∫ − ϕϕ (A.4)
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c.f. (A.2) defined by the path tS  and the hedging function ϕ . So, we get a compact

answer for the PDF

( )∫ ⋅Ψ+= −− TSFePSDMetSFP tTrtTr ,|]),[(][),|( )()( ϕ (A.5)

Now it is appropriate to recall the formula (1.4). Effective measure ϕM on the space of

random walks tS  turns out to be a differential operator acting on probability

( )∫∫ ∂Ψ= FSSDMSMD ],[exp][][ ϕϕ (A.6)

It should be stressed that formula (A.6) does not require any special properties of the
probability measure like smoothness or continuity. It perfectly works for any
distribution.

Appendix B

Derivation of Eq(2.7) by Stochastic Calculus

Let it be again assumed (see (2.6)) that the underlying security )(tS  is described by a

log-normal process in time Ttt ≤≤0, ,

tttt dWSdtSdS σµ += , (B.1)

where the growth rate µ  and volatility σ  are assumed to be constant, and the

normalized Wiener process tW  has zero mean and unit variance. If market participants

follow a certain dynamic strategy ),( tSϕ for hedging, investment or portfolio insurance

(which may differ from the perfect Black-Scholes hedge), the portfolio is risky and may
generate profit and loss tX  depending on realizations of the Wiener process in (B.1)

and corresponding path )(tS during the finite time interval Ttt ≤≤ '

)')(,()'(
,],[ dtrSdStSeX tt

T
t

ttr
TtS −= ∫ − ϕ , (B.2)

where r  is the (constant) risk-free rate. Intuition behind Eq(B.2) is based on a sequence
of cash flows. During an infinitesimal time interval 'dt the value of shares in the
portfolio tSϕ changed due to the change in asset value )( ttt dSSS +→ ϕϕ as seen “on

top” of the risk-free appreciation )'( dtrSSS ttt −→ ϕϕ . The sum of these two

independent changes discounted to present moment by the multiplier )'( ttre −  is the
“remaining” profit or loss of the portfolio. Differentiating (B.2) with respect to time one
finds the stochastic process for the portfolio value



Sergei Esipov and Igor Vaysburd18

tttttTtSTtS dWStSdtStSrdtrXdX ),(),()(,],[,],[ σϕϕµ +−−= , (B.3)

In addition to future contribution to profit and loss (B.2) there exists P&L accumulated
from the past,

)')(,(0
)'(

,0],[ dtrSdStSeX tt
t ttr

tS −= ∫ − ϕ , (B.4)

which obeys Ito stochastic differential equation

ttttttStS dWStSdtStSrdtrXdX ),(),()(,0],[,0],[ σϕϕµ +−+= . (B.5)

It is noteworthy that Eq(B.1) and, therefore, Eq(B.5) are Ito stochastic differential
equation (not Stratonovich). This property stems from the fact that the change of the
asset value is assumed to be uncorrelated with the asset value and the number of shares

),( tSϕ . Eq(B.3) will be discussed below.

We first present forward and backward Fokker-Planck (FP) equations for (B.1), (B.5)
[26]. The purely forward version reads
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while the purely backward version is

[ ] 02
2

1
)(

2

22

2

2
222 =











∂

∂
+

∂∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

−++
∂
∂

S

Q

XS

Q

X

Q
S

S

Q
S

X

Q
SrrX

t

Q
ϕϕσµϕµ . (B.7)

Eqs (B.6) and (B.7) are equivalent, and describe the same joint probability density
),',',,( TSXtSXQ →  to arrive at TXS ,',' starting from tXS ,, . The normalization

condition reads

1),',',,('' =→∫∫ TSXtSXQdXdS . (B.8)

(Obviously, the integral over dSdX does not lead to any relevant constraint.)

In order to explain the difference between Eq(2.7) and regular FP equations (B.6), (B.7)
we have to make a step back and address the issue of causality in detail. We shall show
that the problem of contingent claims leads to an unusual stochastic calculus.
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The two classical conventions named after Ito and Stratonovich define the rules of
stochastic integration for the so-called non-anticipating functions. From here on we
follow very closely the textbook by Gardiner [26] (see also [27] ). Symbols x∂∂ /  and

x∂ are used interchangeably. Consider three stochastic integrals
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where ms-lim stands for the so-called mean square limit in Hilbert space theory. Here
),( txG  is an arbitrary function, and )(tW  is, again, a Wiener process. Convention (B.9)

defines the Ito stochastic integral ∫I , convention (B.10) defines the Stratonovich

stochastic integral ∫S *, and (B.11) defines the integral ∫Z , which we analyze below.

It is possible to write a stochastic differential equation (SDE) using the latter integral
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and find equivalent Ito SDE and Stratonovich SDE. Assuming that )(tx  is a solution of

Ito SDE bdWadtdx +=  one can deduce the corresponding A  and B . Using (B.11)
and Ito’s formula we write
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∫∫ ∂+I , (B.13)

                                                       
* The symbols ∫S appear together and should not be confused with the skewness

S defined in the main text.
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where, for brevity, we write iB  etc, instead of ]),([ ii ttxB . This formula gives a

connection between our integral and the Ito integral. We observe that the Ito SDE

bdWadtdx += , (B.14)

is the same as our SDE

bdWdtbbadx x +∂−= )( , (B.15)

and (is known to be) the same as the Stratonovich SDE

bdWdtbbadx x +∂−= )(
2
1 . (B.16)

Conversely, our SDE

BdWAdtdx += ,
(B.17)

is the same as the Ito SDE

BdWdtBBAdx x +∂+= )( , (B.18)

and the same as the Stratonovich SDE

BdWdtBBAdx x +∂+= )(
2
1 . (B.19)

Our SDE defines a special calculus, which is different from ordinary calculus in the
same manner as the Ito calculus. Namely, making a connection between (B.17) and
(B.18), changing variables, using Ito’s formula, and translating back with the help of
(B.14) →  (B.13), we find

BdW
x

f
dtB

x

f
A

x

f
xdf

∂
∂

+










∂

∂
−

∂
∂

=
2

2

2
1)( . (B.20)

Note the unconventional minus sign. Similar change can be demonstrated for functions
of many variables. Finally, the forward FP equation, which corresponds to our SDE
(B.17) can be deduced from the forward FP equation corresponding to (B.18). In the
case of many variables it reads

)()( ''''''2
1

'' PBBPAP kkjjiiiiT ∂∂+−∂=∂ , (B.21)
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where summation over repeating indices is understood. The structure of the diffusion
term is different from the FP equation for the Ito SDE,

)()( ''''''2
1

'' PBBPAP jkkijiiiT ∂∂+−∂=∂ , (B.22)

and the FP equation for the Stratonovich SDE,

)]([)( ''''''2
1

'' PBBPAP kjjkiiiiT ∂∂+−∂=∂ . (B.23)

As usual, in addition to the forward FP equations (B.21) – (B.23) there exist the
corresponding backward FP equations. If we begin with the backward equation for the
Ito SDE,

)(
2
1 PBBPAP jikjikiit ∂∂−∂−=∂ , (B.24)

and use the connection formulae (B.13)-(B.15) we find our backward FP equation

)()(
2
1 PBBPAP kjkijiiit ∂∂−−∂=∂ , (B.25)

and the “Stratonovich form” of the backward FP equation

)()(
2
1 PBBPAP jkjiikiit ∂∂−−∂=∂ . (B.26)

In total there are 3 versions of SDEs and 6 FP-equations. This ends the presentation of
forward convention in stochastic calculus. For a detailed analysis of forward, backward
and symmetric stochastic integrals and further references see [27]. Obviously, there exists
a whole family of calculi for different weights placed on initial and final points in (B.9)-
(B.11).

We are now in a position to classify Eq(2.7). Consider a designated time axis, which
begins at t , proceeds into future up to T , and then returns back to present. Fig. 2 shows
the corresponding S -trajectory and X -trajectory. They belong to different sections of
the “folded” time axis.

  )( TT SfX =

   TS

                         )(tX   
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                            t

           )(tS

                 t                                          T

Fig.2 This “3D” illustration shows the “folded” time-axis (bold),
corresponding to a contingent claim. Since the condition

)( TT SfX =  is imposed at the future moment T , the causality does

not hold. Fluctuating lines show S -trajectory (solid) and X -trajectory
(dashed).

Consider a “trajectory” which begins at )(tS  in the S -plane, proceeds into future to

TS , jumps to )( TT SfX =  at this moment, and then returns to )(tX in the X -plane.

Let us now define the probability of having )(tX given that we begin with )(tS  along

the “folded” time axis. When time t decreases we simultaneously proceed “into the past”
with our “initial” condition )(tS , and “into the future” with out target variable )(tX .

That is why the resulting FP-equation looks like mixed forward & backward. While the
behavior of the “initial” condition is reflected by the corresponding terms of the
backward I -equation, the behavior of the target variable is described by the terms of the
forward E - equation. Using these guidelines and Eqs(B.23), (B.24), (B.1), (B.3) one
can immediately compile Eq(2.7).

Eqs(2.7), (B.6), (B.7) are mathematically equivalent.  Equivalence of (B.6) and (B.7)
can be found in textbooks, e.g. [26] page 56. As for Eq(2.7) the probability Q  depends on

'X  and X  in the form )(' tTrXeX −− . Therefore, one can introduce a new variable

XeXX tTr −= −− )('''  in Eq(B.7), which has the meaning of P&L discounted to its
present value, renormalize the probability density Q  to arrive to the probability density

for ''X  by using the multiplier )( tTre − , and integrate over 'S . For readers, who are
familiar with Eq(B.7), this gives the quickest derivation of Eq(2.7).

Appendix C

Solutuions for Stop-Loss Hedging Strategies Based on Integral Transforms
(by Alexander Lipton-Lifschitz,- Bankers Trust, NY)

We consider the stop-loss strategy for the arithmetic Brownian motion. We introduce

)(2
2
1 tT −= στ and write Eq(4.1) as

XSS PSPP )(δτ += , (C.1)
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)()0,|( XSXP δ= . (C.2)

We combine the Fourier transform in X  and the Laplace transform in τ and rewrite the
the problem (C.1), (C.2) in the form

1])([ −=−+ PSikPSS λδ (C.3)

A simple algebra shows that

.
)2(

)||exp(2)||exp(1
),|(
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SkP (C.4)

The inverse Fourier transform yields

).(
)]2|(|exp[2

)(
)||exp(1

),|( X
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X
S

SXP −
−−

+
−−

= θ
λ

λ
δ

λ
λ

λ (C.5)

Finally, the inverse Laplace transform yields Eq(4.8) in the main text.

Now we show how to apply a similar technique in order to study the stop-loss strategy
for the geometric Brownian motion. The problem corresponding to the strategy

)( KS −=θϕ  can be written as as

xPPPP )(ξδξξξτ +−= , (C.6)

)()0,|( xxP δξ = , (C.7)

where )/ln( KS=ξ , KKSFx /])([ +−+= .  The Fourier-Laplace transform yields

1])([ −=−+− PikPP λξδξξξ . (C.8)

We write λξ /12/ += QeP  where Q  is determined by the equation

,])([ )(
4
1

λ
ξδ

ξξ λξδ ikQikQ −=−−+ (C.9)

so that

.
)4/12(

)4/1||exp(
),|(
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−=
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λξ

ik

ik
kQ (C.10)

The inverse Fourier transform yields
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).(
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(C.11)
By virtue of the inverse Laplace transform after returning to the probability density we
get
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(C.12)

where 24)( 2
2 −= zzH is the Hermite polynomial. (C.12) is the resulting formula for

the geometric Brownian motion. For the constant elasticity of variance problem we can
obtain similar formulas but they are slightly more complicated and (naturally) involve
the modified Bessel functions.


