Weakly étale v.s. pro-étale.

I. Ind/Weakly-étale II. Statements and consequences III. pf.

I. A \rightarrow B ring map is called:

- Ind-étale if B is a filtered colimit of étale A-alg.
- Weakly-étale if A \rightarrow B is flat & B \otimes_A B \rightarrow B is also flat.

Defn. A \subset R ideal is called pure if R/I is flat - R-alg.

Lemma. If I is a pure ideal, then \forall J \subset R ideal, I.J = I \cap J.

pf. Consider \[(0 \rightarrow J \rightarrow \mathbb{R} \rightarrow R/J \rightarrow 0) \otimes R \rightarrow \mathbb{R} \rightarrow \frac{R}{I/J} \rightarrow 0\]

Cor. Apply. If A \rightarrow B is weakly étale, then \mathcal{S}^1_{B/A} = 0.

Ex: k \rightarrow T_k is weakly étale if k is a finite field.

weakly étale + finite presentation = étale.

Lemma. If f is ind-étale, then it's naïve Ind-étale \implies weakly étale.

pf. Consider: flat map is flat\[\dim B_i \otimes B_i \rightarrow B_i \rightarrow B_i^{\text{flat}}\]

Lemma. If f & g of are ind-étale, then g of is ind-étale.

pf. ind-étale case can be reduced to étale case.

weakly-étale case:

\[A \rightarrow B \otimes A \rightarrow B \rightarrow C \rightarrow D \rightarrow \mathbb{R} \rightarrow 0\]
Lemma.

\[
\begin{array}{c}
B \xrightarrow{f} \frac{f\circ f}{C} \\
\text{-flat} \\
\text{A-flat}
\end{array}
\]

pp.

commutative diagram:

\[
\begin{array}{ccc}
\text{C} & \xrightarrow{\text{flat}} & \text{C} \\
\text{flat} & \uparrow & \text{flat} \\
\text{B} & \text{flat} & \text{flat} \\
\text{A-flat}
\end{array}
\]

Defn. \(d \leq d\), we say \(A\) has weak dim \(\leq d\) if every \(A\)-module has tor dim \(\leq d\). (equivalently, admits flat resolution of length \(d\))

\[A\text{ has weak dim } \leq d \text{ is also called absolutely flat}
\]

"all the modules are flat". (equivalent to \(A\) being

\[
\begin{array}{c}
\text{1. reduced} \\
\text{2. 0-dim.}
\end{array}
\]

Fact:

\[A \rightarrow B \text{ weakly étale } \Rightarrow B \text{ has weak dim } \leq d.
\]

Main Thm:

\[\text{Thm A: } f: A \rightarrow B \text{ weakly étale. Then } \exists B \rightarrow C \text{ faithfully flat and ind-étale}
\]

s.t. \(A \rightarrow C\) is ind-étale.

\[\text{Cor.}
\]

Weakly étale & pro-étale gives rise to the same topos on the category of affine schemes:

\[\text{U pro-ét } \rightarrow \text{V pro-ét}
\]

\[\text{W pro-ét } \rightarrow \text{W pro-ét}
\]
It's easy to see that Thm A implies:

Thm B: A is a strictly henselian local ring, B is a weakly étale local A-alg. Then \(f: A \to B \) is an isom.

Thm C: Any weakly étale \(K \)-alg. \(A \) is a \(\text{ind-étale}/K \).

Example: \(k \xrightarrow{N} k \) is weakly étale iff \(k \) is a finite field.

Proof of Thm C: It suffices to show any \(f \)-g. \(K \)-sub-alg. \(A' \) is \(\text{étale}/K \).

Go to top of page 2, implies \(\forall f \in A \).

A has weak dim'n 0 \(\implies (f) = (f)^2 \) (since \(f \) is a prime ideal).

Every local ring \(A \) is reduced & \((f) = (e) \) where \(e \) is an idempotent of \(A \) is a field, every prime is max'll.

\(k \hookrightarrow A \hookrightarrow A', \forall \) minimal prime \(p' \subseteq A' \), \(\exists \) prime \(p \subseteq A \) above it.

Consider \(k \hookrightarrow k(p') \hookrightarrow k(p) \triangleq A_p \) still weakly étale.

Go to top page 2, implies \(k \hookrightarrow k(p') \) is weakly étale but it's also fp. hence étale. (sep. alg. extn).

So every generic pt of \(\text{Spec}(A') \) is closed, now \(A' \) is finite type \(/K \), reduced \(\forall \) generic pt an sep alg. extn of \(K \).
Thm C: Defn. A topological space \(X \) is w-local if
- A ring \(A \) is w-local if every counit component of \(\text{Spec}(A) \) contains a unique closed point.
- The set of closed points \(\text{Spec}(A)^c \) is itself a closed subset of \(\text{Spec}(A) \).
- A ring homomorphism of w-local rings \(A \to B \) is w-local if \(A, B \) w-local, \(A \to B \) \(f \) (max ideals in \(B \)) \(\to \) are max
 \(f \) (max ideal) is always a max ideal in \(A \).
- A w-local ring is w-strictly local if
 1. it's w-local and
 2. all the local rings of closed pts are strictly henselian.

Lemma. If \(A \) is a w-local rings, then
1. any Zariski cover \(U = \bigcup U_i \to \text{Spec}(A) \) admits a section.
2. \((\text{Spec}(A))^c \to \text{Spec}(A) \to \text{top} (\text{Spec}(A)) \)

Proof:
1. since any open cover of w-local is an open cover of \(\text{top} (\text{Spec}(A)) \), which is profinite.
 (To see \(\text{top} (\text{Spec}(A)) \) is always profinite, use Hochster's Thm: \(\text{Spec}(A) \) is always a cofiltered limit of finite \(\text{Spec}(A) \) s).
2. by assumption: \(\text{Spec}(A)^c \to \text{top} (\text{Spec}(A)) \) is a bijective continuous map between compact Hausdorff spaces.
 (an affine scheme is 0-dim \(\Rightarrow \) Hausdorff), hence a homeo.

Fact: The inclusion of rings \(\{ \text{w-local} \} \to \{ \text{rings} \} \) admits a left adjoint.
\(A^2 \to A \)
where \(A \to A^2 \) counit is an ind (Zariski localization).
Lemma \quad \text{w-local ring } A \text{ is w-strictly local iff all local rings of } A \text{ at closed points are strictly henselian.}

\text{if } A \text{ is w-strictly local, } A_x \xrightarrow{\text{f.f.}} B_x \text{ w.f. invertible at } x \text{ equivalently } (f \neq 0, f \in A).

\text{hence } \exists h \in M \text{ w. } h + fg = 1. \text{ Consider } A_x \xrightarrow{f,f} B_x \times A[\frac{1}{h}].

\text{hence get } A_x \xrightarrow{h} B_x \times A', \text{ think about the image of } (b,h).

Conversely, \quad A \xrightarrow{f,f} B, \text{ at every closed pt } x \in \text{Spec}(A), B_x.

\text{have section locally around each } x \in \text{Spec}(A).

\exists \text{ a Zariski cover of } \text{Spec}(A), \text{ over which } \text{Spec}(B) \xrightarrow{f,f} \text{ has a section. By w-locality, we find a section } B \rightarrow A[\frac{1}{f}]. \quad B \rightarrow \bigoplus A[\frac{1}{f_i}]

\rightarrow A.

Key Lemma: \quad \text{(write on the back or side bound.)}

Let f: A \rightarrow B. Then \exists \begin{array}{c} B \rightarrow B' \quad \text{w.} \\ A \rightarrow A' \end{array}

\item A \rightarrow A' & B \rightarrow B' \text{ are F.f. faithfully flat and ind-étale,}
\item A' & B' \text{ are w-strictly local}
\item A' \rightarrow B' \text{ is w-local, inducing homeomorphism}

\text{Spec}(B')^c \cong \text{Spec}(A')^c.

\text{A and } B \text{ have strictly henselian.
pf of Thm B: Thm A:

\[\begin{align*}
 B & \xrightarrow{\text{ind.-ét}} B' \\
 \text{w.-ét} & \uparrow \quad \uparrow \\
 A & \xrightarrow{\text{ind.-ét}} A' \\
 \text{f.f.} & \quad \text{f.f.}
\end{align*} \]

Conditions imply: \(A' \to B' \) is weakly étale,

\[\forall m \in A', \quad \frac{B'}{mB'} \text{ is weakly étale over } \frac{A'}{mB} \text{, hence ind.-étale, but having a (Thm C) unique closed pt), hence } mB' \text{ is the unique max'l ideal above } m. \]

Consider \(A'_m \to B'_mB' \), it's an isom by \(\square \text{Thm B} \).

As all the max'l ideal in \(B' \) are of the form \(mB' \), we see that \(B' \xrightarrow{\sim} A' \) is also bijection on pts. Hence \(B'_mB' \xleftarrow{\sim} B'_m \), therefore \(A' \cong B' \). \(\square \)

Now back to page 4.

\[\begin{align*}
 B & \to B^z \\
 \uparrow & \quad \uparrow \\
 A & \to A^z
\end{align*} \]

these are w-local, w/ Jacobson ideal cutting out the closed set of closed pts.

Constructing \(A' \& B' \):

\[\begin{align*}
 B^z & \to B^z/J_B = B_0 \\
 \uparrow & \quad \uparrow \\
 A^z & \to A^z/J_A = A_0
\end{align*} \]

Lemma: For \(A_0 \to B_0 \) map of absolutely flat rings, \(\exists \text{ ind.-étale } A_0 \to A_0' \), s.t. \(A_0 \& B_0 \) are w-strictly local, cut out set of closed pts.

pf: \(A_0 = \text{colim } A_f \otimes A_J \), where \(J \) finite subset of \(I := \{ \} \), sf étale \(\Lambda_0 \)-algebra \(\Lambda_0 \).

Do the same construction for \(A_0 \otimes B_0 \).
Lemma 12.4.4. $(\mathbb{A}^2, \mathbb{A})$ is a topos and satisfies all terminal objects.

Proof. No details.

Lemma 12.4.5. $(\mathbb{A}^2_{\mathbb{A}}, \mathbb{A})$ is w-strictly local.

Proof. No details.

A topos is \mathbb{A}-local, no further details.

Construction. $A \to \mathbb{A}_{\mathbb{A}}$ sends countable \mathbb{A}-algebras to A.

This is a functor $A \to \mathbb{A}$ whose domain is indexed by

\mathbb{A}.

Follows from the fact that any \mathbb{A}-algebra A satisfies

$A \to \mathbb{A}_{\mathbb{A}}$.

follows from the fact that \mathbb{A} is an algebra.

A \mathbb{A}-algebra A is unique.

A \mathbb{A}-algebra A is unique.

This is a functor $A \to \mathbb{A}$ whose domain is indexed by

\mathbb{A}.
almost there. Check this satisfies all the conditions except for \(3 \), \(\text{Spec} (B') \to \text{Spec} (A'') \to \text{Spec} (A'') \text{ is not} \ \\
we have no control so far!

Lemma/Construction: Any \(w \)-local map \(f : A'' \to B' \) of \(w \)-local rings admits a canonical factorization \(A'' \to A' \to h : B' \to w \)

1. \(A' \) \(w \)-local
2. \(g \) is a \(w \)-local ind-(Zariski localization)
3. \(h \) is a \(w \)-local map inducing \(\pi_0 (\text{Spec} (B')) = \pi_0 (\text{Spec} (A'')) \)

\(\text{pf.} \) \(\text{Spec} (B') \to \text{Spec} (B') \to \pi_0 (\text{Spec} (B')) \) any map between profinite sets is \(\text{Spec} (A'') \to \pi_0 (\text{Spec} (A'')) \text{ is not} \) \text{pro}-(Zariski localization)

Overview:

\(B \to B' \)
\(A \to A' \)

OK, too tired, I don't wanna say how to get

\(\text{Thm B from Thm C} \)
Lemma. If \(A \to B \) is weakly étale, then \(\text{LL}_{B/A} \cong 0 \).

pf. \(B \otimes B_A \to B \) with \(\ker = \ker^2 \Rightarrow \text{LL}_{B/B \otimes B_A} \cong 0 \).

A \to B \otimes B_A \to B \) gives: \(\text{LL}_{B/A} \cong \text{LL}_{B \otimes B/A} (B \otimes B_A) \). \(\uparrow \) \(\uparrow \)

A \to B \otimes B_A \text{ gives: } \text{LL}_{B/A} \otimes (B \otimes B_A) \cong \text{LL}_{B \otimes B/A} \). \(\uparrow \)

and \(\text{LL}_{B \otimes B/A} \longrightarrow \text{LL}_{B \otimes B_A} \).

\(\quad \text{triangle } \Rightarrow \text{LL}_{B/A} \otimes \cong 0 \)

\(\text{Claim: } A \to B \) local hom. of local rings, weakly étale and \(A \) is sh.

for all \(\varphi \in A \), \(\exists ! \varphi' \in B \) above it w/ \(\kappa(\varphi) = \kappa(\varphi') \).

This implies \(B \otimes B_A \to B \) is bijective on Spec and flat.

Hence kernel = pure\& nilpotent ideal \(= 0 \).

But then \(B \cong B \otimes B_A \), and \(A \to B \), hence \(A \cong B \).

To prove the claim, by Thm \(C \), \(B \otimes \kappa(\varphi) \) is ind-étale over \(\kappa(\varphi) \).

Suppose the claim is wrong, then \(\exists L/\kappa(\varphi) \) alg. sep. field extn.

s.t. \(B \otimes L \) has a nontrivial idempotent.

Now suppose such \(L \) exists, consider \(A' = \text{int'l closure of } A/\varphi \) in \(L \).

\(A' \) being integral \& over \(A \) and domain, must be sh. also.
And $A \to A'$ induces purely inseparable extension on residue fields.

Hence: $B \otimes A'$ is also a local ring.

Lemma/Fact: A' is a normal ring domain w/ fraction field L, and $A' \to B'$ is weakly étale. Then B' is integrally closed in $B' \otimes L$.

We apply this lemma to A', L and $B' = B \otimes A'$.

$\Rightarrow B \otimes A'$ is integrally closed in $B \otimes L$.

\Rightarrow # nontrivial idempotents in $B \otimes L$, as $B \otimes A'$ is a local ring.