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Overview and Motivation

Beware: These notes are incomplete and subject to change! If you’re reading ahead of lectures,
it is very likely that there are mistakes. Use with care and please inform me of typos/mistakes.
Comments are also welcome.

A first course in calculus studies univariate calculus. Univariate means that one studies functions
that give a rule from the real line R to itself, i.e. one has a function f that takes a point/variable
x ∈ R to f(x) ∈ R, whilst the calculus part means that one studies limits, derivatives and integrals of
such functions. This course studies the generalisation of these concepts to vector-valued multivariable
functions. In plain terms, this means that the functions one studies depend on more than one variable
and can produce values which cannot be expressed as a single number but only as a ordered list of
numbers. More precisely, a vector-valued multivariable function is a map/rule f which takes n inputs,
(x1, ..., xn), with xi ∈ R for i = 1, ..., n and outputs m real numbers (y1, ..., ym). In this course, the
multivariable functions studied will typically have m,n ≤ 3. For example, one could define f by

(x, y) 7→ f(x, y) = x2 + y2. (1)

A natural question to ask is why one would want to study such things. Essentially this is motivated
by the physical world. Multivariable calculus has applications everywhere in physics, mathematics,
economics and engineering to name only a few. Below are some examples:

• Physical positions require more than one number: Putting string theories aside, we perceive 3
dimensions (plus time, so in reality 4). You can move forwards/backwards, left/right and up/down.
Suppose you wanted to specify a place to meet someone in Manhattan (or on Earth in general),
you need 2 bits of information: a street and an avenue or you need to tell them how far North and
how far West (a longitude and a latitude). For example, (40◦48′2′′N, 73◦57′43′′W ) is Columbia
University. Suppose further you wanted to meet them on the fifth floor of a building then you
need a third number. You might even want to add a time giving a fourth number.

• Many quantities change in space and time: If you wanted to arrive at the above place by a
certain time you need to know at what velocity you need to travel. Velocity is a directed rate of
change of distance over time, i.e. you need a direction (which is more than one number) and a
speed. Therefore, studying geometry in 2 and 3 dimensions and rates of change (i.e. derivatives)
is important to understand physical problems.

• Physical objects have 2 or 3-dimensional extent: understanding areas/volumes of objects or
how quantities leave a areas/volume (say energy of a water wave leaving a circular disk) requires
integration in 2 and 3 dimensions.

• Partial differential equations: You may/may have come across ‘partial differential equations’
which allow one to study many physical systems such as electrodynamics, fluid mechanics, differ-
ential game theory and gravity (both Newtonian and Einstein’s theory of general relativity). In
aiming to study such equations one requires a good working knowledge of multivariable calculus.
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Notation

The following is a list of notation that is used in lectures and these notes:

• {...}: denotes a set or a collection of elements, usually numbers, i.e. {1, 3, 7,
√
2}, {1, 2, 3, 4, ...}.

One can have a set with a condition, this is written with a colon as follows:

{elements : condition}. (2)

For example

{x ∈ R : x > 0} (3)

is the set of positive reals.

•
{
can denote a set of equations you usually want solve simultaneuously, i.e.{

ax+ by + cz + d = 0

ex+ fy + gz + h = 0.
(4)

• R: the set/collection of real numbers, i.e. (inprecisely) the set or collection of all numbers which have
an infinite decimal expansion. Examples would be 1, 2, −7, π = 3.1415...,

√
2 and (uncountably)

many more.

• ∈: belongs to, i.e. a ∈ R, a belongs to the reals.

• A ⊆ B: denotes that A is a ‘subset’ of B meaning that all elements of A are contained in B. For
example, if A = {1, 2, 3} and B = {1, 2, 3, 4} then A ⊆ B. Note that A and B can be equal, i.e. in
the above example A = {1, 2, 3, 4} is a subset of B.

• (a, b) is the open interval from a to b, i.e. it is the set of all real numbers between a and b, excluding
a and b.

• (a, b] is a half-open interval from a to b, i.e. it is the set of all real numbers between a and b,
excluding a but containing b.

• [a, b) is a half-open interval from a to b, i.e. it is the set of all real numbers between a and b,
including a but excluding b.

• [a, b] is the closed interval from a to b, i.e. it is the set of all real numbers between a and b, including
a and b.

• A × B is called the Cartesian product of A and B, it is the set of pairs (a, b) such that a ∈ A and
b ∈ B. In set notation:

{(a, b) : a ∈ A, b ∈ B} (5)

• R2: denotes the Cartesian product R × R, i.e. it is the set of ordered pairs of real numbers, (a, b),
with a, b ∈ R. Notationally, this is written,

R2 = {(a, b) : a ∈ R, b ∈ R}, (6)

where the colon : denotes ‘such that’ or equivalently that a condition follows.

• R3: denotes the Cartesian product R×R×R, i.e. the set of ordered triples of real numbers, (a, b, c),
with a, b, c ∈ R. Notationally, this is written as follows:

R3 = {(a, b, c) : a, b, c ∈ R}, (7)
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• Rn for n ≥ 1: denotes the n-fold Cartesian product R × ... × R, i.e. the set of ordered n-tuples of
real numbers, (x1, ..., xn), with xi ∈ R for all i = 1, ..., n. Notationally, this is written as follows:

Rn = {(x1, ..., xn) : xi ∈ R for all i = 1, ..., n}. (8)

• S1R: denotes a circle of radius R. This has equation x2 + y2 = R2. Notationally, this is written as
follows:

S1R = {(x, y) ∈ R2 : x2 + y2 = R2}. (9)

• S2R: denotes a sphere of radius R. This has equation x2+ y2+ z2 = R2. Notationally, this is written
as follows:

S2R = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2}. (10)

• f : A → B: denotes a function taking inputs from a set A (called its domain) and outputing elements
of B (called its codomain).

•
∑

i: denotes a sum, i.e.
∑n

i=1 ai = a1 + a2 + ...+ an.

• ±,∓: denotes + or − compactly, i.e. ±1 means plus or minus 1, f±(x) = ±
√
1− x2 means two

functions defined simultaneously f+(x) = +
√
1− x2, f−(x) = −

√
1− x2. This notation can be

used in more elaborate ways:

f±(x) = a∓ b± cx7 (11)

which translated to

f+(x) = a− b+ cx7 f−(x) = a+ b− cx7. (12)

• =⇒ : implies, i.e. A =⇒ B for example x2 = a =⇒ x = ±a.

• .
=: definition via an equality, i.e. define a function f(x)

.
= ..... For example f±(x)

.
= ±

√
1− x2

defines two functions f+ f− by the right-hand side with their respective signs.

• 7→: Arrow notation defines the rule of a function inline, without requiring a name to be given to the
function. For example (x, y) 7→ x2 − y2 should be read take (x, y) in the domain and map them to
x2 − y2 in the codomain R.

• γ: usually a line or a curve.
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1 Coordinate Systems on the Plane and 3D Space

When you think of the real numbers R you probably, quite involintarily, think of an infinite straight line
with each point representing an infinite decimal expansion:

3.1415...
×

0
◦

1
×

2
×

This lecture is about how draw pairs or triples of numbers, which requires a coordinate system.

A coordinate system is a one-to-one assignment of a coordinate, which is an ordered list of n num-
bers (often called an n-tuple) to points on a surface or space. In plain terms a coordinate system is a
way of labelling points on a surface or space with numbers. The notion of one-to-one just means that one
assigns distinct elements to distinct elements: here one assigns a distinct coordinate to a distinct point on
the surface or space. The reason for this is you want to uniquely label your points.

In this course, the number n will be 2 or 3 and the surface or space will be the 2-dimensional Euclidean
plane, or 3-dimensional Euclidean space. These are often called just ‘the plane’ or ‘3D space’ respectively.

Remark 1.1. The reader should be aware that there are notions of 2D or 3D spaces that are not Euclidean.
For example, the surface of a ball, also called a sphere, is a two dimensional space (a given point on the
surface of a sphere can be specified by two numbers) that is not Euclidean.

1.1 Coordinate Systems on the Plane

1.1.1 Cartesian Coordinates

On the plane

R2 = R× R = {(x, y) : x ∈ R, y ∈ R}, (13)

one can set up Cartesian coordinates (due to French mathematician René Descartes). There is not much
to do here: if p ∈ R2 then Cartesian coordinates simply its ordered pair (a, b).

Just as the real numbers R can be visualised as points on a straight infinite line, the plane can
be visualised with points on a flat two-dimensional surface with infinite extent. To draw the Cartesian
coordinate system, one picks an a point for o = (0, 0) the origin and sets up two perpendicular axes or
lines which intersect at (0, 0): conventionally one horizontally, called the x-axis and one vertically, called
the y-axis. One identifies each of these lines with the real numbers R such that the real numbers labelling
the x-axis increase to the right and the real numbers labelling the y-axis increase upwards. This is easiest
to visualise with a picture:

o 1 2−1−2

1

2

−1

−2

x

y

o a

b

x

y

(a, b)
×
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Given a point in the above diagram its Cartesian coordinates be determined by the following procedure
(shown in the right hand figure of the above diagram):

1. Draw a line perpendicular to the x-axis through p and another line perpendicular to the y-axis
through p.

2. a is given by the point at which line perpendicular to the x-axis meets the x-axis.

3. b is given by the point at which line perpendicular to the y-axis meets the y-axis.

It is very easy to describe straight lines in Cartesian coordinates, for example the straight line determined
by the equation y = 2x− 1:

o 1 2−1−2

1

2

−1

−2

x

y

Round shapes are slightly tricker. The unit circle is the subset of R2:

S1 .
= {(x, y) ∈ R2 : x2 + y2 = 1}. (14)

This is drawn below:

o 1 2−1−2

1

2

−1

−2

x

y

Polar coordinates on R2 give a cleaner description of round shapes.

1.1.2 Polar Coordinates

Polar coordinates provide a one-to-one map from (0,∞)× [0, 2π) tow R2 \{p} where p is usually chosen to
be the origin o in Cartesian coordinates, i.e. (0, 0).1 Concretely, one takes the origin in R2 and the positive
part of the x-axis, i.e. the set {(x, y) : x ∈ (0,∞), y = 0}. This is often called the polar axis. Now to

1For those unfamiliar with set notation R2 \ {p} this means R2 without the point p.
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construct the polar coordinates of a point q ∈ R2 one take the distance r from the origin o to q and the
anticlockwise angle between the polar axis and the line/ray from o to q. So the coordinate r ∈ (0,∞) and
θ ∈ [0, 2π). Again, this is best visualised with a figure as follows:

o 1 2

1

2

θ = 0

θ = π/2

θ = π

θ = 3π/2

θ = π
4

θ = 7π/4θ = 5π
4

θ = 3π/4

1

2

r

θ

o a

b

x

y

(r, θ)
×

Remark 1.2. Whilst these comments may seem pedantic there are technical situations where they can be
important. In general you will not have to worry about them but it is good to be aware.

1. Notice that polar coordinates here have been defined on R2 \ (0, 0). This is because the point (0, 0)
can be represented in many different ways as (0, θ) for all θ ∈ [0, 2π). This is non-unique and
therefore we don’t have a one-to-one correspondence between a polar coordinate and the origin. One
can either ignore this and ‘represent o as (0, θ)’ or one could state that (r, θ) = (0, 0) is the origin.
Both of these solutions are mostly fine (especially when integrating) but have problems when you
want to take limits at the origin such as the ones that arise in taking derivatives.

2. Related to point 1 is values of θ outside of [0, 2π). Note that any other length 2π interval is fine;
you can pick your favourite. The reason for the restriction is to have a unique θ coordinate for each
point in R2 \ {(0, 0)}.

Intuitively. one can image revolving around the origin any number of times and assigning a that θ
value to represent the θ coordinate of a point. Say r = 1 then θ = π

2 can be represented by θ = 5π/2
or θ = 9π/2 or θ = −3π/2 etc. However, one runs into the same non-uniqueness issue as 1 if you
allow this. So either one restricts θ to an interval of 2π length or periodically identifies θ, i.e. one
declares θ is equivalent to θ + 2nπ for n ∈ Z (the integers). One can represent this in notation as
θ ∼ θ + 2nπ for n ∈ Z. In practise what this means is the following: You compute the angle to be
θ̃. Then one finds the n such that θ

.
= θ̃ + 2nπ ∈ [0, 2π). This is the θ coordinate one assigns to

that point.

Relations between Cartesian and Polar Coordinates
To find the Cartesian coordinates give polar coordinates one uses,

x = r cos θ, y = r sin θ. (15)
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These can be inverted to find the polar coordinates from Cartesian coordinates. The resulting formulas are
the following,

r =
√

x2 + y2, θ =



arctan
( y
x

)
x > 0, y ≥ 0

arctan
( y
x

)
+ 2π x > 0, y < 0

arctan
( y
x

)
+ π x < 0

π
2 x = 0, y > 0
3π
2 x = 0, y < 0

undefined x = 0, y = 0.

(16)

The reason for the cases for θ is due to arctan : R → (−π
2 ,

π
2 ).

One can see why these formulas in (15) are true from using SOHCAHTOA plus trig.-identities on the
triangles in the following pictures

θ
x

y

(r, θ)
×

θ
x

y

(r, θ)
×

θ
x

y

(r, θ)
×

θ
x

y

(r, θ)
×

Polar Curves
In Cartesian coordinates one can consider functions that depend on both x and y, i.e. F = F (x, y). For
example,

(x, y) 7→ x2 + y2 − 1. (17)

One can do the same in terms of polar coordinates. Then one writes F (r, θ). One can consider the level
set of a such a function which is the set of points in R2 such that F (r, θ) = 0. One can consider plots of
such a set or the plot of a polar curve.

Example 1.1. Here are some examples of plot of polar curves:

1. r = c where c ∈ (0,∞):
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2. θ = θ0, for θ0 ≤ π/4:

3. r = a| cos θ|,

1.2 Coordinate Systems on 3D Euclidean space

The Euclidean 3-space R3 is the set of all ordered triples of real numbers:

R3 = R× R× R = {(x, y, z) : x ∈ R, y ∈ R, z ∈ R}. (18)

One visualises this as flat 3-dimensional space with infinite extent in all directions. It is often used as the
model for the physical world, i.e. where all physical processes take place.
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1.2.1 Cartesian Coordinates

If p ∈ R3 then Cartesian coordinates simply its ordered triple (a, b, c).

One can draw Cartesian coordinates for R3 in the following way:

1. Pick a point for origin o = (0, 0, 0).

2. Draw three perpendicular axes intersecting at o according to the right-hand rule: label the axis
associated to your thumb ‘z’, the axis associated to your index finger ‘x’ and the axis associated to
your middle finger ‘y’.

3. Identify each of these lines with the real numbers R.

This construction is shown one the left hand side of the following diagram:

o
y

z

x

o
y

z

x

To each pair of axes one can associate a plane or R2. For example the yz-plane is depicted above on
the right. One also has a xy-plane and a xz-plane. One then draws the point (a, b, c) in R3 as follows:

1. one goes a along the x axis.

2. one draws a line parallel to the y-axis in the xy-plane emanating from a and goes directed distance
b along this line. This gives the point (a, b) in the xy-plane.

3. From (a, b) in the xy-plane one goes c along a line parallel to the z-axis through (a, b) in the xy-plane.

As usual this is best visualised in a diagram as follows:

o
y

z

x

a

c

b

·

·

·

×
(a, b, c) ∈ R3

(a, b) ∈ R2
(x,y)

◦
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1.2.2 Cylindrical Coordinates

Another set of coordinates on R3 are cylindrical coordinates, which effectively extend polar coordinates on
the xy-plane all of R3 by using the standard Cartesian z coordinate to complete the triple. More precisely,
p ∈ R3 is assigned cylindrical coordinates as follows:

1. project p to the xy-plane and assign the usual polar coordinates (r, θ) to the projection of p.

2. z is then the directed distance of p from the xy-plane.

3. p is then given the cylindrical coordinates (r, θ, z).

This can be visualised as follows:

y

z

x

×
(r, θ, z)

(r, θ)
◦

r
θ

To convert between cylindrical and Cartesian coordinates one uses the relations (15) and (16) with
z = z.

Remark 1.3. Since polar coordinates on the plane do not cover the origin, cylindrical coordinates for R3

do not cover the z-axis. So one can think of cylindrical coordinates mapping R3 \ {(0, 0, z) : z ∈ R} to
(0,∞)× [0, π)× R.

1.2.3 Spherical Coordinates

Spherical coordinates on R3 are often very convenient for problems with symmetry about a point. They are a
natural generalisation of polar coordinates on the plane. In particular, if one has a p ∈ R3\{(0, 0, z) : z ∈ R}
(the usual remarks about the set {(0, 0, z) : z ∈ R} apply with spherical coordinates) one assigns spherical
coordinates as follows:

1. Let r be the distance from the origin to p. Then one needs two angles (θ, φ) to give a unique
representation of the point.

2. Let θ be the angle between the line segment from the origin o to p and the positive z-axis. Thus
θ ∈ (0, π)

3. Let φ be the angle in the xy-plane of the projection of p to the xy-plane as measured from the
positive x-axis, i.e. the usual polar coordinate. Therefore, φ ∈ [0, 2π).

The point p ∈ R3 then has polar coordinates (r, θ, φ). This can be drawn as follows:
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y

z

x

×
(r, θ, φ)

◦

r

φ

θ

Remark 1.4. It is very common for authors to make the swap the labelling of θ and φ. Stewart for example
uses this convention.

The relationship between Cartesian coordinates an spherical coordinates is

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (19)
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2 Vectors in R2 and R3

One often associates the term vector to a quantity (often physical, i.e. velocity) that has both a magnitude
and direction. This is often depicted with an arrow which has a length that depicts the magnitude of the
vector and which has a orientation depicting the direction. For example:

For example, this could represent ‘displacement’ (a distance one has to travel in a certain direction),
i.e. New York to Providence, approximately xkm ENE. Further, one could travel on to Toronto which you
could represent with an arrow of length ykm from Providence NW. You could then draw a third arrow
which is your final displacement from NY to Toronto which would be the sum of the displacement from
NY-Providence and the displacement from Providence-Toronto:

P

T

NY

This requires a notion of vector addition.

Suppose you’re driving along a straight section of motorway on your way to Providence. For simplicity,
say it runs ENE. So you have some velocity (the directed rate of change of distance over time) that points
ENE and has say a length of 100km/h. Suppose someone breaks in front of you and you have to slow
down to 50km/h. The velocity that results has the same direction but half the magnitude, i.e. the arrow
that one draws would be scaled by 50%:

These notions of scalar multiplication and addition are the key ‘vector operations’ that must satisfy
certain properties. This lecture is about how to make these notions mathematically precise.

One can think about the content of this lecture in the following alternative way: at this stage you’re
happy to add single numbers a + b. How would you add ordered pairs (a, b) + (c, d) of numbers? You’re
also probably happy to multiply numbers. What about multiplying a pair (a, b) by a number c? Very simply
put this lecture is about how to define such operations and what properties these operations have.

2.1 The Algebraic Approach

In lecture 1, R2 and R3 were discussed. Recall that R2, which is the set of all ordered pairs (x, y), and
R3, which is the set of all ordered triples (x, y, z), can be thought of as a plane or as ‘ordinary space’
respectively. To ease notation one often denotes an element of R2 (or R3) with a single boldface letter,
i.e. x = (x, y). Other common notations are an single underlined letter, i.e. x = (x, y).2 One can define
notions of addition and ‘scalar’ multiplication on R2 (or R3) as follows. These give R2 and R3 a ‘vector
space’ structure.

2Often authors do not distinguish at all and simply write x ∈ R2.
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Definition 2.1. The addition of ordered pairs x1 = (x1, y1), x2 = (x2, y2) in R2 is defined by adding
corresponding (Cartesian) coordinates, i.e.

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2). (20)

The resultant ordered pair (x1 + x2, y1 + y2) is denoted x1 + x2.

The scalar multiplication of a ordered pair x = (x, y) ∈ R2 by a number (here called a scalar) λ ∈ R
is defined by multiplying each (Cartesian) coordinate by λ, i.e.

λ(x, y) = (λx, λy). (21)

The resultant ordered pair (λx, λy) is denoted λx.

Analogous statements hold for ordered triples in R3 (in fact this extends to all Rn).

One can prove that the sets R2 and R3 with addition and scalar multiplication defined above satisfy
the following axioms of a vector space3:

(i) Commutativity of addition: u+ v = v + u for all u,v ∈ Rn.

(ii) Associativity of addition and scalar multiplication: (u+ v) +w = u+ (v+w) and (ab)v = a(bv)
for all u,v,w ∈ Rn and a, b ∈ R.

(iii) The existence of an additive identity: there exists 0 ∈ Rn such that v + 0 = v for all v ∈ Rn.

(iv) The existence of an additive inverse: for all x ∈ Rn there exists −x ∈ Rn such that x+(−x) = 0.
For example for R2, −x = (−x,−y).

(v) The existence of a multiplicative identity: there exists 1 ∈ R such that 1v = v for all v ∈ Rn.

(vi) Distributive properties: a(v + u) = av + au and (a+ b)v = av + bv.

So when we think of Rn in this manner (i.e. with the notions of addition and scalar multiplication defined
as above), Rn is a vector space and any element of x ∈ Rn is a vector. The ordered list (x1, x2, ..., xn) is
known as the components of x, i.e. x1 is the first component of the vector x. Additionally, one can define
the difference of two vectors u,v by

u− v = u+ (−v). (22)

Remark 2.1. Stewart uses the notation ⟨x1, x2, ..., xn⟩ to write a vector in its components. This notation
could lead to confusion in other classes (especially if you take a class where no boldface is used to distinguish
vectors from numbers, i.e. x represents vectors rather than x): if one is dealing with R2 then ⟨x1, x2⟩
could mean the ‘inner product’ of two vectors. Moreover, ⟨x1, x2, ..., xn⟩ is common notation for something
known as the ‘span’ of the vectors x1, x2, ..., xn. In this class you can use the notation ⟨⟩ notation if you
like it or () or even [] but just be aware that the first is quite uncommon and used for other things (do not
use {} as this is typically set notation).

One can define lots of additional structure on Rn (as will be covered in lectures 3 and 4). One useful
notation is the length/magnitude/norm of a vector v in R2 or R3:

||v|| .
=


√
v21 + v22 for R2,√
v21 + v22 + v23 for R3,√∑n

i=1 v
2
i for Rn.

(23)

3To define a vector space in a more abstract sense one needs a notion of vector addition and scalar multiplication such
that these axioms are satisfied (see any course on Linear Algebra for more).
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The vector space Rn with the norm defined in equation (23) gives Rn a normed space structure, which
can be defined more abstractly. We call a vector v with norm 1 a unit vector. Any non-zero vector can be
normalised to give a vector v̂ = (v1, v2, v3) of length 1 by dividing by its norm:

v̂ =
v

||v||
. (24)

There are two vectors that are often distinguished in R2:

e1
.
= (1, 0) e2

.
= (0, 1). (25)

These are the standard basis (unit) vectors for R2. Other common notation is i and j. In R3 this generalises
to

e1
.
= (1, 0, 0), e2

.
= (0, 1, 0), e3

.
= (0, 0, 1), (26)

or i, j and k. For Rn with n ≥ 3 this generalises to

e1
.
= (1, 0, ..., 0), e2

.
= (0, 1, ..., 0), . . . en

.
= (0, 0, ..., 1). (27)

With the rules of vector addition laid out above one can express the vector v = (v1, v2, v3) as

v = v1e1 + v2e2 + v3e3 (28)

in the basis e1, e2, e3.

2.2 The Geometric Approach/Drawing Vectors in R2 and R3

As before one can sketch R2 on a piece of paper or blackboard. When we discussed Cartesian coordinates
on R2 we represented an ordered pair x = (x1, x2) with a point on the plane. Instead one can think of x
as an arrow from the origin of R2 to the point (x1, x2) as drawn below:

o

(x1, x2)
×

x

When one thinks of x as an arrow one calls it a vector.

Vector addition in this pictorial sense works as follows. Suppose you have two vectors x = (x1, x2) and
y = (y1, y2) in R2. Vector addition gives you the vector x+y = (x1+ y1, x2+ y2). So you draw an arrow
from 0 to x+ y. In practise what you can do is:

1. Draw the vector x (or y) and move y parallel to itself to place the tail of y (or x) at the tip of x
(or y).

2. x+ y is then the vector that goes from the tail of x (or y) to the tip of y (or x).

Here x+ y (or y + x) is drawn in green:
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x

y

x

y

Note that this figure illustrates the commutativity of vector addition.

Using the definition of the difference of two vectors x and y one can draw x − y using the addition
prescription above:

x

−y

Scalar multiplication of a vector v ∈ R2 by a scalar a ∈ R pictorially is carried out as follows:

1. Take the length of v and multiply it by |a| call this b.

2. If a > 0 then av is the vector of length b in the direction of v.

3. If a < 0 then av is the vector of length b in the opposite direction to v.

For example, pictorially one has:

−x

1
2x

− 1
2x

x 3
2x

All of the above is drawn in R2 but extends readily to R3. So that there is an example of drawing in R3,
lets draw the unit basis vectors i, j and k:
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k

i
j

As defined in section 2.1, all vectors emanate from (0, 0). However, you may be wondering what about
drawing arrows as depicted in the following diagram:

xx

x

x x

p2

o

p3

p1

In this diagram the arrow representing the vector x has been translated without changing its length or
direction. In this course we will say that these arrows (which we will again call vectors) are equivalent to
(or representations of) the original vector (the one emanating from o).

Remark 2.2. (Do not worry about this comment too much.) Strictly speaking, the arrows that are drawn
from any point other than o belong to different copies of Rn (when viewed as a vector space). As defined
in section 2.1, all vectors emanate from (0, 0). However, as represented in blue above one could realign the
origin with p2 = (0, 0) and draw x. In technical terms, which you don’t need to worry about, you are using
something known as the ‘affine structure’ of Rn. You may see this in further courses on linear algebra.

One can often come across various terms associated to such vectors. For example, if a particle moves
from p2 to p3 then it’s displacement vector is x. Sometimes one will denote this with −−→p2p3 instead of x.
The displacement vector −→op1 is often distinguished further and called the position vector of p1. If one is
given the coordinates of the points p3 = (3, 3) and p2 = (2, 1) then the displacement vector is computed
by taking the difference of the position vectors of p2 and p3:

x = −−→p2p3 = (3, 3)− (2, 1) = (1, 2). (29)

This tells us that to reach p3 from p2 one must travel across 1 and up 2. Note that our origin is at p2 in
this case.

2.3 Application: Crossing a River

Considering the following example of a computing velocity vector:

Example 2.1. Suppose a woman launches a boat from the south shore of a straight river that flows directly
west at 4km/h. She wants to land at the point directly across on the opposite shore. If the speed of the
boat (relative to the water) is 8km/h, in what direction should she steer the boat in order to arrive at the
desired landing point?

Lets align the x-axis with the south shore of the river and the y-axis pointing across the river meeting
the x-axis at the launching point. The boats velocity v = 8(cos θ, sin θ). The water velocity is u =
(−4, 0) = −4i. We want the resultant velocity w to be w = ωj for ω > 0.
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v

u

w

θ

So,

w = 4(2 cos θ − 1, 2 sin θ) = (0, ω), (30)

which has solution θ = 2π
3 .
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3 The Scalar Product

On the vector space Rn, one can define even more structure. In particular, one can define a notion of
multiplication of two vectors which called the dot product or scalar product. This is an example of an
inner product on a vector space. Vector spaces with an inner product (known as inner product spaces)
arise everywhere in physics. For example, the mathematical foundations of quantum mechanics are based
on the theory of a particular type of inner product spaces called Hilbert spaces.

3.1 Definition and Properties

Definition 3.1 (Scalar Product). The scalar product or dot product of two vectors u,v ∈ Rn is defined
by

u · v .
=

n∑
i=1

uivi. (31)

Remark 3.1. Common notation for an scalar product is ⟨u,v⟩. You can use either in this course.

Example 3.1. Let’s do an example: Suppose one has u = (2, 5,−1) and v = (−3, 1, 0) then one can
compute using the formula (31) that

⟨u,v⟩ = u · v = 2× (−3) + 5× 1 + (−1)× 0 (32)

= −6 + 5 + 0 = −1. (33)

One can see that the scalar product satisfies the following axioms of an inner product:

1. Symmetry: ⟨u,v⟩ = ⟨v,u⟩ for all u,v ∈ Rn.

2. Linearity in the first argument: ⟨av+ bw,u⟩ = a⟨v,u⟩+ b⟨w,u⟩ for all u,v,w ∈ Rn and a, b ∈ R.

3. Positive semi-definiteness: ⟨u,u⟩ ≥ 0 for all u ∈ Rn with equality if and only if u = 0.

The scalar product (and indeed any inner product) satisfies the following additional properties:

1. Linearity in the second argument: ⟨u, av + bw⟩ = a⟨u,v⟩ + b⟨u,w⟩ for all u,v,w ∈ Rn and
a, b ∈ R.

2. ⟨0,u⟩ = ⟨u,0⟩ = 0.

Let’s check the positive semi-definiteness property (you should check the rest of the above properties):

Proof. One can compute with formula (31) that

⟨u,u⟩ =
n∑

i=1

uiui =

n∑
i=1

u2i . (34)

So since u2i ≥ 0, ⟨u,u⟩ ≥ 0. If ui = 0 for all i = 1, 2, ..., n, then ⟨u,u⟩ = 0 from the right-hand side
of (34). On the other hand, if ⟨u,u⟩ = 0 then, by the right-hand side of equation (34),

∑
i u

2
i = 0 which

implies u2i = 0 for all i = 1, 2, ..., n. This implies ui = 0 for all i = 1, ..., n. If a vectors components vanish
then it is the zero vector.

Note that the right-hand side of equation (34) is ||u||2 where || · || is the norm defined in equation (23).
So,

||u|| =
√
⟨u,u⟩, (35)

which is well-defined because ⟨u,u⟩ ≥ 0.

Remark 3.2. This is a general property of an inner product: an inner product induces a norm on a vector
space.
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This allows one to prove the following proposition:

Proposition 3.1 (Polarisation Identity). For u,v ∈ Rn,

⟨u,v⟩ = 1

2

(
||u+ v||2 − ||u||2 − |||v||2

)
. (36)

Proof. Expand ||u+ v||2 using equation (35) as

||u+ v||2 = ⟨u+ v,u+ v⟩. (37)

Using linearity in both arguments

||u+ v||2 = ⟨u,u⟩+ ⟨v,v⟩+ ⟨u,v⟩+ ⟨v,u⟩. (38)

Using equation (35) and symmetry of the scalar product one has

||u+ v||2 = ||u||2 + ||v||2 + 2⟨u,v⟩. (39)

Rearranging gives the result.

Another useful notion associated to the scalar product is orthogonality of vectors:

Definition 3.2 (Orthogonal Vectors). Two vectors u,v in Rn are said to be orthogonal if

⟨u,v⟩ = 0. (40)

3.2 Angles

The angle between vectors can be related to their scalar product as follows:

Proposition 3.2. Let u,v be vectors in Rn then

⟨u,v⟩ = ||u||||v|| cos θ, (41)

where θ ∈ [0, π] is the angle between u,v.

Proof. Lets prove this in R3. As usual its helpful to draw a picture:

u

v

θ

u− v

One now has a triangle with sides of length ||u||, ||v|| and ||u− v||. The law of cosines gives

||u− v||2 = ||u||2 + ||v||2 − 2||u||||v|| cos θ. (42)

Replacing v with −v in the polarisation identity gives

⟨u,v⟩ = 1

2

(
||u||2 + |||v||2 − ||u− v||2

)
. (43)

Substituting ||u− v||2 from equation (42) gives the result.
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Remark 3.3. The same proof works in R2. In fact this is the essential argument since any two vectors can
be thought to lie in a plane in Rn.

Corollary 3.1. If u,v ̸= 0 then the angle between u,v ̸= 0 is given by

cos θ =
⟨u,v⟩

||u||||v||
= ⟨û, v̂⟩. (44)

If ⟨û, v̂⟩ > 0 then θ ∈ [0, π2 ) with θ = 0 when v = cu with c > 0. If ⟨û, v̂⟩ < 0 then θ ∈ (π2 , π] with
θ = π when v = cu with c < 0. If ⟨û, v̂⟩ = 0 then θ = π

2 which means our terminology of orthogonality
makes sense!

The following is are two very useful inequalities:

Proposition 3.3 (Cauchy-Schwarz Inequality). Let u,v be vectors in Rn then

|⟨u,v⟩| ≤ ||u||||v||. (45)

Proof. By proposition 3.2 one has

|⟨u,v⟩| = ||u||||v||| cos θ|. (46)

Now | cos θ| ≤ 1, so

|⟨u,v⟩| ≤ ||u||||v||. (47)

Proposition 3.4 (Triangle Inequality). Let u,v be vectors in Rn then

||u+ v|| ≤ ||u||+ ||v||. (48)

Proof. See the problem sheet.

3.3 Projections

In some cases you may wish to know how much some vector points along another vector. This leads to
the definition of projection.

Definition 3.3 (Projection). Let u,v ∈ Rn. Then the projection (or vector projection) of u onto v is
given by

projv(u) = Πv(u)
.
= ⟨v̂,u⟩v̂. (49)

The component (or scalar projection) of u along v is given by

compv(u)
.
= ⟨v̂,u⟩. (50)

Notice that

compv(u) = ||u|| cos θ (51)

where θ is the angle between u and v as drawn in the following diagram (the dotted blue arrow is the
projection of u onto v):

u

θ v

Rv = span(v)

Therefore, projection is doing what we want, i.e. it tells you how much some vector points along another
vector.
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4 The Cross Product

The cross product is a very special operation defined only for vectors in R3. Its usefulness is in the fact
that if one is given two vectors u, v, the cross product of these vectors is orthogonal to both u and v.

Definition 4.1 (Cross Product). Let u,v ∈ R3 then the cross product or vector product of u and v is

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). (52)

You may be wondering how does one remember this formula. There are a few options. The first is
with determinants.4

Definition 4.2 (Determinant of 2× 2 Matrix). The determinant of a 2× 2 matrix,

A =

(
a b
c d

)
, (53)

is

det(A) =

∣∣∣∣∣a b
c d

∣∣∣∣∣ .
= ad− bc. (54)

Remark 4.1. The determinant operation is effectively to multiply across diagonals and then subtract.

One can extend this definition to 3× 3 matrices with the following:

Definition 4.3 (Determinant of 3× 3 Matrix). The determinant of a 3× 3 matrix,

A =

a b c
d e f
g h i

 , (55)

is

det(A) =

∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣ .
= a

∣∣∣∣∣e f
h i

∣∣∣∣∣− b

∣∣∣∣∣d f
g i

∣∣∣∣∣+ c

∣∣∣∣∣d e
g h

∣∣∣∣∣. (56)

The matrices

M1,1
.
=

(
e f
h i

)
, M1,2

.
=

(
d f
g i

)
, M1,3

.
=

(
d e
g h

)
, (57)

are called the minors and result from removing the first row and the jth (j = 1, 2, 3 respectively as the
notation suggests) column of the matrix A.

Remark 4.2. One can generalise further to n× n matrices but there is no need in this course.

The following is a method to remember/derive the formula for the cross product:

1. Write u and v in terms of the standard basis vectors i, j and k, i.e.

u = u1i+ u2j+ u3k, (58)

v = v1i+ v2j+ v3k. (59)

2. Construct the following matrix:

C =

 i j k
u1 u2 u3
v1 v2 v3

 (60)

and treat i, j,k as elements of a matrix, not vectors.

4Determinants crop up in linear algebra. For example a famous result is that if a square matrix has non-zero determinant
then it is invertible.
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3. Then u×v = det(C). In otherwords, we can now rewrite the formula for the cross product in terms
of the determinant of the 3× 3 matrix C:

u× v =

∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣. (61)

Explicitly,

u× v =

∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣ = i

∣∣∣∣∣u2 u3
v2 v3

∣∣∣∣∣− j

∣∣∣∣∣u1 u3
v1 v3

∣∣∣∣∣+ k

∣∣∣∣∣u1 u2
v1 v2

∣∣∣∣∣ (62)

= (u2v3 − u3v2)i− (u1v3 − v1u3)j+ (u1v2 − u2v1)k, (63)

which is precisely formula (52) when written in the standard basis.

The following alternative is non-examinable but may be of interest to some. One can write the
components of the cross product with a succinct formula:

(u× v)i =
3∑

j=1

3∑
k=1

εijkujvk (64)

where εijk is known as the (3-dimensional) Levi-Civita symbol which is defined as

εijk =

{
(−1)p if i ̸= j ̸= k

0 otherwise
(65)

where p is the number of pairwise interchanges of indices necessary to unscramble i, j, k to 1, 2, 3. So,

ε123 = 1, ε231 = 1, ε312 = 1 (66)

ε213 = −1, ε132 = −1, ε321 = −1, (67)

whilst all other selection of indices vanish (ε11j = 0 etc). Lets compute (u× v)1. So,

(u× v)1 =

3∑
j=1

3∑
k=1

ε1jkujvk. (68)

Now the only non-zero options for ε1jk are ε123 = 1 and ε132 = −1. Therefore, the double sum in (68)
only has two terms:

(u× v)1 = ε123u2v3 + ε132u3v2 (69)

= u2v3 − u3v2, (70)

which if you compare to formula (52) is the correct result for (u× v)1.

4.1 Properties

Proposition 4.1. Let u,v ∈ R3 then the cross product u× v of u and v is orthogonal to both u and v.

Proof. Lets compute directly the scalar product

⟨u× v,u⟩ = (u2v3 − u3v2)u1 + (u3v1 − u1v3)u2 + (u1v2 − u2v1)u3. (71)

Upon expanding the first and the fourth term cancel. Likewise, the second and the fifth term cancel and
the third and the last term cancel. Computing ⟨u× v,v⟩ is completely analogous.
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Proof (Non-examinable). The formula (64) gives a slick proof that u and v are orthogonal to u × v.
The scalar product of v and u× v in components is

⟨v,u× v⟩ =
∑
i

vi(u× v)i =
3∑

i,j,k=1

εijkujvivk. (72)

Observe that εijk is totally antisymmetric. In particular, εijk = −εkji. Therefore,

⟨v,u× v⟩ = 1

2

3∑
i,j,k=1

εijkujvivk −
1

2

3∑
i,j,k=1

εkjiujvivk. (73)

You can now relabel the indices i ↔ k since these both occur on v and they are summed over to find:

⟨v,u× v⟩ = 1

2

3∑
i,j,k=1

εijkujvivk −
1

2

3∑
i,j,k=1

εijkujvkvi = 0. (74)

Example 4.1. Lets do some examples for some practise:

(a) Compute the cross product of the standard basis vectors:

i× j =

∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣ = k, j× k =

∣∣∣∣∣
i j k
0 1 0
0 0 1

∣∣∣∣∣ = i, k× i =

∣∣∣∣∣
i j k
0 0 1
1 0 0

∣∣∣∣∣ = j. (75)

(b) The cross product of any vector with itself vanishes:

u× u =

∣∣∣∣∣
i j k
u1 u2 u3
u1 u2 u3

∣∣∣∣∣ = i(u2u3 − u3u2)− j(u1u3 − u3u1) + k(u1u2 − u1u2) = 0. (76)

(c) Let u = (1,−1, 5) and v = (2, 1,−2). The cross product of u and v is

u× v =

∣∣∣∣∣
i j k
1 −1 5
2 1 −2

∣∣∣∣∣ = (2− 5)i− (−2− 10)j+ (1 + 2)k = −3i+ 12j+ 3k. (77)

Proposition 4.2 (Properties of ×). Let u,v,w ∈ R3 and a ∈ R. The cross product satisfies the following
properties:

(a) u× u = 0.

(b) Anticommutative: u× v = −v × u.

(c) Distributive over vector addition: u× (v +w) = u× v + u×w.

(d) Compatible with scalar multiplication: (au)× v = a(u× v) = u× (av).

(e) The scalar triple product ⟨u, (v ×w)⟩ satisfies ⟨u, (v ×w)⟩ = ⟨(u× v),w⟩.

(f) The vector triple product u× (v ×w) satisfies u× (v ×w) = ⟨u,w⟩v − ⟨u,v⟩w.
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Proof. Property a) is proved above in example 4.1. Most are left to you to check yourself. Here is a proof
of property f). After computing v ×w one has

u× (v ×w) = (u1i+ u2j+ u3k)× (i(v2w3 − v3w2)− j(v1w3 − v3w1) + k(v1w2 − w1v2)) (78)

By using the distributive property, the anticommutivity property in conjunction with the distributive property
and property a) one has

u× (v ×w) = −i× ju1(v1w3 − v3w1) + i× ku1(v1w2 − w1v2) (79)

+ j× iu2(v2w3 − v3w2) + j× ku2(v1w2 − w1v2))

+ k× iu3(v2w3 − v3w2)− k× ju3(v1w3 − v3w1).

Using the formulas from example 4.1 part a) and the anticommutative property one has

u× (v ×w) = −ku1(v1w3 − v3w1)− ju1(v1w2 − w1v2) (80)

− ku2(v2w3 − v3w2) + iu2(v1w2 − w1v2)

+ ju3(v2w3 − v3w2) + iu3(v1w3 − v3w1).

Suggestively collecting terms gives:

u× (v ×w) = u1v1(−kw3 − w2j) + u1w1(v3k+ v2j) (81)

+ u2v2(−kw3 − iw1) + u2w2(v3k+ v1i)

+ u3w3(v2j+ v1i) + u3v3(−w2j− w1i).

This can be rewritten as

u× (v ×w) = u1v1(−w + iw1) + u1w1(v − v1i) (82)

+ u2v2(−w + jw2) + u2w2(v − jw2)

+ u3w3(v − kv3) + u3v3(−w + kw3)

= (u1w1 + u2w2 + u3w3)v − (u1v1 + u2v2 + u3v3)w. (83)

Remark 4.3. Note that the associative property from ordinary multiplication does not hold for the cross
product, i.e.

(u× v)×w ̸= u× (v ×w). (84)

For example, i× i = 0 so (i× i)× j = 0 but i× j = k so i× (i× j) = −j. Note that proposition 4.2 and
example 4.1 have been used.

Remark 4.4. You can check (and you should check) that computing the scalar triple product ⟨u, (v×w)⟩
is equivalent to computing the determinant of the following matrix:

M
.
=

u1 u2 u3
v1 v2 v3
w1 w2 w3

 . (85)

4.2 Geometric Properties of Cross Product

Proposition 4.3. Let θ denote the angle between u and v. The norm/length of the vector u× v is then
given by

||u× v|| = ||u||||v|| sin θ. (86)
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Proof. One can show by a direct computation that

||u× v||2 = ||u||2||v||2 − |⟨u,v⟩|2. (87)

From proposition 3.2 one has

||u× v|| = ||u||||v||(1− cos2 θ) = ||u||||v|| sin2 θ. (88)

The angle θ is the angle between the two vectors, so θ ∈ [0, π] and therefore, sin θ ≥ 0. Therefore, its
square root is well defined on the reals. Additionally, the norm of a vector is a positive quantity. Therefore,
we take the positive branch of the square root to complete the proof.

Corollary 4.1. Let u, v be two non-zero vectors. u, v are parallel if and only if u× v = 0.

Proof. The vectors u, v are parallel if and only if θ = 0 or θ = π. In either case sin θ = 0. Therefore, by
proposition 4.3, u, v are parallel if and only if ||u×v|| = 0. From the properties of the norm ||u×v|| = 0
if and only if u× v = 0.

How should you visualise of cross product geometrically? Suppose you have two vectors u and v in
R3. Then u × v is a vector that points perpendicular to the plane through (spanned by) u and v. It’s
direction is determined by the right-hand rule. Curl the fingers of your right hand in the direction of the
smallest angle from u to v. The vector u× v is then in the direction of your thumb. This drawn below:

u

u× v

θ
v
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5 Equations of Lines and Planes

5.1 Review: Lines in R2

Suppose one has a straight line, denoted γ, in the plane R2 as drawn in red below:

How do you go about describing this mathematically? First of all it’s a subset of R2, i.e. it’s a collection of
points in the plane. You can determine it uniquely with two points (x0, y0) and (x1, y1), i.e. the straight
line passing through these points is unique. From this you can compute the lines gradient

m =
y1 − y0
x1 − x0

(89)

which is how much you go up for how much you go across. Then equation of a line is

y − y0 = m(x− x0), (90)

which is simply a relation between the x and y coordinates of the points on the line. So γ is the subset:

γ =
{
(x, y) ∈ R2 : y − y0 = m(x− x0)

}
. (91)

There is an alternative, one could also describe the line with a point and a direction (which would be
a vector in R2). This is what we are going to do to study lines in 3D space R3 but the same works in R2

and indeed Rn.

5.2 Lines in R3

A line γ in R3 is specified by a point p0 ∈ R3 that γ passes through and a direction for γ. This direction
can be described by any vector v parallel to the line.

The setup is the following: Let x0 be the position vector of some p0 on γ and x be the position vector
of another arbitrary point p on γ. Let u be the vector that points from p0 to p, i.e. u = −→p0p. Finally, let
v be any vector that is parallel to u. This is drawn below:

xx0

×
×p0

p

v

γ

u

So from the discussion in lecture 2 one has that the position vector x is given by

x = x0 + u. (92)
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Now, since u is parallel to v, one can express u = λv for λ ∈ R. Hence, be written as equation (92) can
be written as

x = x0 + λv, (93)

which is the vector equation of the line. Notice that x has dependence on the parameter λ; for each λ
one has a the position vector of a point on γ. So the tip of the position vector traces out γ as λ varies.
One can highlight these ideas by writing

x(λ) = x0 + λv. (94)

Additionally, one can write the above equation in components

(x, y, z) = (x0 + λv1, y0 + λv2, z0 + λv3). (95)

This gives the set of parametric equations for the line γ:

x = x0 + λv1, y = y0 + λv2, z = z0 + λv3. (96)

Note that v ̸= 0 otherwise one has a point in R3. So at least one of v1, v2, v3 is non-vanishing. Suppose
it is v1 then one can solve for λ,

λ =
x− x0
v1

(97)

and replace λ in (96) to give

y − y0 =
x− x0
v1

v2, z − z0 =
x− x0
v1

v3. (98)

Remark 5.1. One should compare to equation (90), the equation for a line in R2. Note that if one was
dealing with lines in the plane then one would simply have

y − y0 =
v2
v1

(x− x0) (99)

and no z-equation. So we have precisely equation (90) with the gradient m = v2
v1
.

If v2 = 0 = v3 then the line one is describing is parallel to the x-axis. Suppose additionally, v2 ̸= 0 and
v3 = 0 then one can

y − y0
v2

=
x− x0
v1

, z = z0, (100)

which describes a line in the plane z = z0. Finally if v2 ̸= 0 and v3 ̸= 0 then one can see

y − y0
v2

=
x− x0
v1

=
z − z0
v3

, (101)

which is sometimes called the symmetric equation for γ.

In practise if you are asked to determine the equation of a straight line in R3 from two points p0 =
(x0, y0, z0) and p1 = (x1, y1, z1) you would compute the following:

1. The position vectors of p0 and p1 are x0 = (x0, y0, z0) and x1 = (x1, y1, z1) respectively.

2. The vector u = x1 − x0 is parallel to the line.

3. Therefore,

x(λ) = x0 + λu (102)

is the equation of the line or alternatively, using u = x1 − x0,

x(λ) = (1− λ)x0 + λx1. (103)
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Notice that x(1) = (x1, y1, z1) and x(0) = (x0, y0, z0). So if one limits the values that λ can take one has
a description of a line segment, i.e. the line segment from p0 to p1 is given by

x(λ) = (1− λ)x0 + λx1, 0 ≤ λ ≤ 1. (104)

Lets do an example:

Example 5.1. Let γ1 be the line passing through the point (1,−2, 4) with parallel vector v = (1, 3,−1).
Let γ2 be the line passing through the points (2, 4, 1) and (0, 3,−3).

1. Determine their vector equations and parametric equations.

2. Determine where they intersect the xy-plane.

3. Show that they do not intersect and are not parallel.

1. Denote the position vector (1,−2, 4) as x0,1. So denoting the position vector of an arbitrary point p
along γ1 as r1, the vector equation for γ1 is

r1(λ1) = x0,1 + λ1v, (105)

which can be written as

r1(λ1) = (1 + λ1,−2 + 3λ1, 4− λ1). (106)

So its parametric equations can be read off as

x = 1 + λ1, y = −2 + 3λ1, z = 4− λ1. (107)

Now one has the position vectors x1,2 = (2, 4, 1) and x0,2 = (0, 3,−3). So denoting the position vector of
an arbitrary point p along γ2 as r2 and using equation (103) one has

r2(λ2) = (1− λ2)x0,2 + λ2x1,2 = (2λ2, 3 + λ2, 4λ2 − 3). (108)

So the parametric equations for γ2 are

x = 2λ2, y = 3 + λ2, z = 4λ2 − 3. (109)

2. To determine where γ1 intersects the xy-plane one checks what value of λ1 gives z = 0. From above,
this means λ1 = 4. Therefore, γ1 intersects the xy-plane at (5, 10, 0). For γ2 one has λ2 =

3
4 and (32 ,

15
4 , 0).

3. To be parallel v and u = x1,2 − x0,2 = (2, 1, 4) would have to be proportional: one should be able to
solve

(1, 3,−1) + a(2, 1, 4) = 0 (110)

for a, which gives a contradiction. To see this explicitly, note that if they were to intersect one should be
able to find λ1 and λ2 such that

2λ2 = 1 + λ1, 3 + λ2 = −2 + 3λ1, 4λ2 − 3 = 4− λ1. (111)

Solving the first gives

λ1 = 2λ2 − 1 (112)

which can be used to eliminate λ2 in the second and third equations to give:

λ2 =
8

5
, λ2 =

4

3
(113)

which is inconsistent and therefore, the lines do not intersect.
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5.3 Planes

Suppose you have a plane in R3. How do you describe such and object mathematically? You want to
specify a point which is in the plane and how the plane sits in 3D space relative to that point. Two
non-parallel vectors which lie in the plane would suffice to specify the ‘direction’ of the plane:

n

u

v

Alternatively, one could work out the planes normal vector, n, which is a vector orthogonal to the
plane (drawn in orange above). Therefore, any vector v lying in the plane satisfies

⟨n,v⟩ = 0. (114)

In other words, what this equation is encoding is the 2D space of vectors orthogonal to the normal vector,
which is precisely the plane you want to describe.

Given any two points p0 and p in the plane with position vectors x0 = (x0, y0, z0) and x = (x, y, z)
respectively. Then v = x− x0 lies in the plane. So,

⟨n,x− x0⟩ = 0, (115)

which is often called the equation of the plane. This is drawn below

n

x0

x

You can write equation (115) using the definition of the scalar product. Suppose n = (n1, n2, n3),
x = (x, y, z) and x0 = (x0, y0, z0). Then, equation (115) becomes

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0. (116)

Remark 5.2. Stewart likes to call (115) the vector equation of a plane and (116) the scalar equation of
the plane. This seems a bit nonsensical. First, (115) is just compact notation for (116). Secondly, the
object one computes in equation (115) is the scalar product, which is a number (in particular 0) not a
vector!
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Remark 5.3. The general form of equation (116) is

ax+ by + cz + d = 0 (117)

where we’ve written (a, b, c) = (n1, n2, n3) and d = −(n1x0 + n2y0 + n3z0). One can view this as the
general equation for a plane provided one of a, b, c is non-vanishing: Suppose a ̸= 0 (the same argument
works with b or c non-vanishing). Then,

a
(
x+

d

a

)
+ b(y − 0) + c(z − 0) = 0 (118)

which can be rewritten as

⟨n,x− x0⟩ = 0 (119)

with n = (a, b, c) and x0 = (−d/a, 0, 0).

Remark 5.4. It is very common for the normal vector to be ‘normalised’ to be a unit vector, n̂.

Two planes are parallel if their normal vectors are parallel. If the two planes are not parallel then they
intersect in a straight line and the angle between the planes is defined as the acute angle between their
normal. In particular, if one has two planes with normals n1 and n2 respectively then the angle between
the planes is

θ = arccos
(
|⟨n̂1, n̂2⟩|

)
(120)

Finally, one can consider the distance of a point p ∈ R3 to a plane. Let p0 be some point in the plane and
let x0 be its position vector. Additionally, let x be the position vector of p. The displacement vector from
p0 to p is then v = x− x0. Then the distance from p to the plane is the absolute value of the component
of v onto n:

d = |compnv| = |⟨n̂,v⟩|. (121)

Example 5.2. Let’s do a prototypical practise problem to illustrate all these ideas:

1. Suppose u = (−1, 1, 1), v = (7,−4,−5) lie in the plane which passes through (1, 0, 0). Find its
normal and therefore it’s equation.

2. Find the equation of the plane which passes through the points (−1, 1, 1), (1,−2, 2), (4,−3, 0).

3. Find the angle between these planes and equation of the line of intersection of the planes.

To do 1 we need to find a normal. For this we simply need to compute the cross product of u and v to
find a vector orthogonal to u and v:

n1 = u× v =

∣∣∣∣∣
 i j k
−1 1 1
7 −4 −5

∣∣∣∣∣ = −i+ 2j− 3k. (122)

Therefore, denoting x0 = (1, 0, 0) one has

⟨n1,x− x0⟩ = 0, (123)

which can be expanded as

−(x− 1) + 2y − 3z = 0 ⇐⇒ x− 2y + 3z = 1. (124)

For 2 one can do the following. From the position vectors of the points (−1, 1, 1), (1,−2, 2), (4,−3, 0)
one can construct two vectors in the plane:

u = (5,−4,−1), v = (2,−3, 1). (125)
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Their cross product gives,

n2 = (−7,−7,−7). (126)

Therefore, if x0 = (−1, 1, 1) the equation of the plane is:

−7(x+ 1)− 7(y − 1)− 7(z − 1) = 0 ⇐⇒ x+ y + z = 1. (127)

The angle between the planes is

cos θ =
| − 1 + 2− 3|√

42
=

2√
42

=⇒ θ = arccos(2/
√
42) (128)

To find the line of intersection you need a point on the line an a vector along that line. Set z = 0 in both
plane equations gives:

x+ y = 1, x− 2y = 1 =⇒ y = 0, x = 1. (129)

So the point (1, 0, 0) lies on the line. Now note that the vector along the line must lie in both planes, i.e.
it’s perpendicular to both normals. Therefore, one can determine it by computing the cross product of the
normals:

w = n1 × n2 = (5,−2,−3). (130)

Therefore,

x = (1, 0, 0) + tw. (131)
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6 Curves, Conic Sections, Generalised Cylinders and Quardric Surfaces

In last lecture we studied straight lines in R3. This lecture is about how to write down a mathematical
description of lines that are not straight in R2, i.e. ones that curve in the plane. The first half will cover
how to write curves in terms of a parameter and the second half will look at conics. The term conic refers
to a particular collection of curves that result from intersecting a plane with a cone: the options are an
ellipse (including a circle), a parabola and a hyperbola as drawn below.

γ

Parabola

Circle
Hyperbola

6.1 Curves in terms of a Parameter in R2

In this section we will study how to write down an equation or set of equations for lines that are not
straight, i.e. ones that curve, like γ above. Depending on the curve one can sometimes express y as a
function of x, i.e. y = f(x). Then what we’ve drawn above is the graph of f(x):

Graph(f) = {(x, f(x)) : x ∈ I}, (132)

where I is some interval in R. Therefore, the curve γ above would be precisely this set: the graph of f(x).

In many instances curves cannot be represented as the graph of a single function. For example, even
something as simple as a unit circle,

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, (133)

cannot be represented as the graph of a single function. In particular, one requires two functions5:

y = f±(x) = ±
√
1− x2. (134)

One can also abandon trying to relate the x and y coordinates that the curve γ passes through by a
function. Instead one can treat x and y independently and allow them to depend on a parameter, λ. This
involves writing

x = f(λ), y = g(λ). (135)

The equations in (135) are then known as parametric equations of the curve γ. Then γ would be the set

γ = {(x, y) = (f(λ), g(λ))}. (136)

The parameter λ may take values in all of the real numbers R or just some interval I of the real numbers.

Returning to the circle example. A circle of radius R centred at (a, b) can be represented with the
parametric equations

x = a+R sin(λ), y = b+R cos(λ), λ ∈ [0, 2π). (137)

5You may wonder when a curve can be expressed as more than one function locally. This is covered by the implicit function
theorem.
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One can sanity check this,

(x− a)2 + (y − b)2 = R2 sin2 λ+R2 cos2 λ = R2, (138)

which is the equation of a circle of radius R centred at (a, b).

Remark 6.1. Sometimes the parameter has physical meaning, sometimes it does not. For example, if one
was modelling the curve traced out by a particle on a plane then the parameter one could use is time, i.e.
λ = t.

Remark 6.2. In the circle example the sanity check computation is an example of eliminating the parameter,
λ. Be warned that it is not always possible to eliminate the parameter.

Let’s do an example:

Example 6.1. Consider the curve γ defined by

γ = {(x, y) : x = cos(λ), y = sin(2λ))}. (139)

It’s useful to plot x and y as functions of λ to help you visualise the curve. This done on the left with γ
on the right:

λ
y = sin(2λ)

x = cos(λ)

γ

6.2 The Parabola

Suppose you take a line in R2 and a point p that does not lie on the line:

·p

× ××
××

××

The curve that lies equidistant from the point and the line is a parabola. The line here is given a special
name: the directrix. The point p is called the focus. The point denoted with a orange cross in the above
diagram is called the vertex.

Let’s work out a simple formula for the parabola by placing the vertex at the origin of our Cartesian
coordinates on R2:

·p
× (x, y)

b

d

y

x
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From pythagoras, one has

d2 = (b− y)2 + x2. (140)

Also, by the definition of the parabola, |b+ y| = d. Therefore, equating and rearranging gives

y =
1

4b
x2. (141)

So, this is the equation of a parabola with focus at (0, b) and directrix at y = −b.

Remark 6.3. The sign of b controls whether the parabola points up or down, i.e. b > 0 then y ≥ 0, so
the parabola points up, b < 0 then y ≤ 0, so the parabola points down.

As is evident from its drawing the parabola is symmetric with repect to x 7→ −x.

In general, a upright parabola with vertex at (a, c) and focus at (a, c+ b) has formula

y =
1

4b
(x− a)2 + c. (142)

6.3 The Ellipse

Take a circle and stretch it, you have an ellipse. The standard equation for an ellipse of height 2b > 0 and
width 2a > 0 centred at (x0, y0) is

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1. (143)

Note that for a = b this is the equation of a circle of radius a2 centred at (x0, y0). For simplicity, let’s
assume that (x0, y0) = (0, 0) and that a ≥ b. Then there are two distinguished points called foci f± at
(±c, 0) with

c =
√
a2 − b2. (144)

Let p be some point on the ellipse at (x, y), with x > 0, y > 0. Then the distance from the foci f+ at
(c, 0) to p is

d(p, f+) =
√
(c− x)2 + y2. (145)

Similarly, the distance from the foci f− at (−c, 0) to p is

d(p, f−) =
√
(x+ c)2 + y2. (146)

Let’s compute d = d(p, f+) + d(p, f−). Squaring gives

1

2
d2 = x2 + c2 + y2 +

√
(c− x)2 + y2

√
(c+ x)2 + y2. (147)

Solving for the square-root terms and squaring gives:

((c− x)2 + y2)((c+ x)2 + y2)− (
1

2
d2 − x2 − c2 − y2)2 = 0, (148)

which, using c2 = a2 − b2 and the equation (143) reduces to the polynomial:

(4a2 − d2)(4b2x2 + a2(d2 − 4x2))

4a2
= 0. (149)
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This holds for all x ∈ (−a, a). Hence, the only way this is possible is if

d = 2a. (150)

This means that the defining feature of an ellipse is that the sum of the distances from each foci to a given
point has to be constant (here equal to 2a).

The line through the foci is called the (semi)-major axis and the line perpendicular to this is called
the (semi)-minor axis. The ellipse and the above discussion is drawn below:

y

x
2a

2b

××
c−c

×
(x, y)

Remark 6.4. The parametric equations defining the ellipse centred (x0, y0) = (0, 0) with a ≥ b are

(x, y) = (a cos(λ), b sin(λ)), λ ∈ [0, 2π). (151)

6.4 The Hyperbola

Recall that defining feature of an ellipse is that the sum of the distances from each foci to a given point
has to be constant. The hyperbolas defining feature is that the difference of the distances from each foci
to a given point has to be constant, i.e if one returns for the above computation

d(p, f+)− d(p, f−) = ±a. (152)

If one lets c =
√
a2 + b2 then the equation for a hyperbola with foci at (±c, 0) is

x2

a2
− y2

b2
= 1. (153)

When y = 0 then x = ±a. These are the vertices of the hyperbola. Also, observe

x2 = a2 +
a2

b2
y2 ≥ a2 =⇒ x ≥ a or x ≤ −a. (154)

These are two branches of the hyperbola. Finally, note that there is no y-intercept since y2 = −b2 < 0.

The hyperbola in equation (153) has two asymptotes:

y = ± b

a
x. (155)

One can reverse the roles of x and y by sending x/a to y/b and visa versa to obtain the equation

y2

b2
− x2

a2
= 1, (156)

which has the same asymptotes and is known as the conjugate hyperbola. This is drawn below:
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y

x
2a

2a

y = b
ax

y = − b
ax

××
c−c

×
(x, y)

Note that the parametric form of the equation for the hyperbola is

x = ±a cosh(λ), y = b sinh(λ). (157)

6.5 Generalised Cylinders

Up to a rotation and a translation a cylinder of radius R is the set of points in R3:

{(x, y, z) : x2 + y2 = R2}. (158)

This is drawn below as:

One can think of this is the Cartesian product of the circle times a line:

S1R × R, (159)

where S1R denotes the circle of radius R. In other words, its the surface that results from taking the circle
and take all lines that pass through the circle and are parallel to a given line:

One can use this type of construction to consider more general objects called generalised cylinders
(Stewart simply calls these cylinders but we will make the distinction). More precisely, a generalised cylinder
cylinder is defined as a surface consisting of all the points on all the lines which are parallel to a given line
and which pass through a fixed plane curve in a plane not parallel to the given line.

A cylindric section is the intersection of the cylinder with a plane. If we orientate the generalised
cylinder such that the lines of the cylinder are parallel to one of the axes (say the z axis). Then the
cylindric section that results from intersecting the generalised cylinder with the coordinate planes (or any
parallel plane to the a coordinate plane) is called the cross-section or trace.
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Example 6.2. Consider the parabola P = {(x, y) ∈ R2 : y = x2}. Now take its Cartesian product with R
to give

P× R = {(x, y, z) ∈ R3 : y = x2}. (160)

This is a parabolic cylinder, which we can draw as

Example 6.3. Consider the hyperbola H = {(x, y) ∈ R2 : x2 − y2 = 1}. Now take its Cartesian product
with R to give

H× R = {(x, y, z) ∈ R3 : x2 − y2 = 1}. (161)

This is a hyperbolic cylinder, which we can draw as

Example 6.4. Consider the ellipse E = {(x, y) ∈ R2 : x2

2 + y2 = 1}. Now take its Cartesian product with
R to give

E× R = {(x, y, z) ∈ R3 :
x2

2
+ y2 = 1}. (162)

This is an elliptic cylinder, which we can draw as
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6.6 Quadric Surfaces

A quadric surface, Q, is a set of points in R3 which satisfy an equation of the following form:

P (x, y, z)
.
= Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0, (163)

where A, ..., J are constants, i.e. Q is the zero set of a quadratic equation in 3 variables.6 By a rotation or
translation one can always bring the equation of the quadric into one of the two following ‘standard forms’:

Ax2 +By2 + Cz2 +D = 0, Ax2 +By2 + Cz = 0, (164)

whereA,B,C,D are not necessarily those above. Compare these equations to the quadratic/ellipse/hyperbola
equations:

y = ax2,
x2

a2
+

y2

b2
= 1,

x2

a2
− y2

b2
= 1. (165)

One can consider these quadrics a generalisation of the conic sections.

In this course we are going to content ourselves with looking at the standard quadrics. These are listed
below:

Ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1

Cone x2

a2
+ y2

b2
= z2

c2

Elliptic Paraboloid x2

a2
+ y2

b2
= z

c

Hyperboloid of One Sheet x2

a2
+ y2

b2
− z2

c2
= 1

Hyperboloid of Two Sheets x2

a2
+ y2

b2
− z2

c2
= −1

Hyperbolic Paraboloid x2

a2
− y2

b2
= z

c

We will come back to ploting these when we consider multivariable functions.

6In Rn, Q is the zero set of a quadratic equation in n variables.
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7 Vector-Valued Functions and Curves in Space

A function (or sometimes called a map) is a rule/assignment of each element of one set X to one element
of another set Y . This is denoted f : X → Y . The set X is often called the functions domain and Y
is called the codomain. Often you will see these denoted X = dom(f) and Y = codom(f). The term
range can be slightly ambiguous since some people use range to refer to the codomain of a function whilst
others use it to mean the image, denoted im(f), of a function which is the set of all possible values in the
codomain reached by f :

im(f)
.
= {f(x) : x ∈ dom(f)}. (166)

Note that the image may not be the whole codomain as demonstrated by this picture:

A

B

C

D

E

f

1

2

3

4

5

Here the dom(f) = {A,B,C,D,E}, the im(f) = {1, 2, 4} and codom(f) = {1, 2, 3, 4, 5}. A functions
domain can be specified as part of the definition of a function.

Thus far, you have probably studied functions that map some subset of the real line to another subset
of the real line, i.e. dom(f) ⊆ R and im(f) ⊆ R. Such functions typically have a natural domain or
domain of definition,

{x ∈ R : f(x) ∈ R}, (167)

which is the set of x on which the function is well-defined. In this course, unless otherwise stated, a
functions domain will be its natural domain. Here are some examples of functions with various domains
and the corresponding images:

f(x) = x2 dom(f) = R im(f) = [0,∞) (168)

f(x) = x2 dom(f) = [2, 3] im(f) = [4, 9] (169)

f(x) =
1

x
dom(f) = (−∞, 0) ∪ (0,∞) im(f) = (−∞, 0) ∪ (0,∞) (170)

f(x) =

{
1
x x ̸= 0

0 x = 0
dom(f) = R im(f) = R. (171)

In this lecture we will study vector-valued functions. These are functions whose image is a subset
of Rn, i.e. the function outputs a vector with real valued components. For now we will consider functions
that have a domain which is a subset of R.7 These functions take as an input some real number x ∈ dom(f)
and output a vector:

f(x) = (f1(x), f2(x), f3(x)) = f1(x)i+ f2(x)j+ f3(x)k. (172)

Note that f1, f2, f3 are called the component functions of f .

Example 7.1. Consider the vector-valued function

f(x) =
(1
x
, x2, sin(x)

)
. (173)

Then its domain is R \ {0} and its image is R \ {0} × R× [−1, 1].
7Later we will consider functions whose domain is a subset of Rm, i.e multivariable functions.
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7.1 Review of Limits for Real-Valued Functions

Recall the definition of limits for functions of single variables

Definition 7.1 (Limits of Scalar Functions). Let f be a function defined on some open interval I = (a, b),
except possibly at some point c ∈ I. Then one says that the limit of f as x tends to c is L ∈ R if for all
ϵ > 0, there exists a δ > 0 such that if 0 < |x− c| < δ and x ∈ I implies |f(x)− L| < ϵ. In this case one
writes

lim
x→c

f(x) = L. (174)

What this definition is saying is that L is the limit of f at c if f(x) gets closer and closer to L as x is gets
closer and closer to c.

Recall also the definition of one-sided limits:

Definition 7.2 (One-Sided Limits). Let f be a function defined on some open interval I = (a, b), except
possibly at some point c ∈ I. Then one says that the limit from below of f as x tends to c is L− ∈ R if
for all ϵ > 0, there exists a δ > 0 such that if c− δ < x < c then |f(x)− L−| < ϵ. In this case one writes

lim
x→c−

f(x) = L−. (175)

Similarly, one says that the limit from above of f as x tends to c is L+ ∈ R if for all ϵ > 0, there exists
a δ > 0 such that if c < x < c+ δ then |f(x)− L+| < ϵ. In this case one writes

lim
x→c+

f(x) = L+. (176)

Recall the useful fact that the limit of definition 7.3 exists if and only if both one sided limits exist and
are equal, i.e.

lim
x→c

f(x) = L ⇐⇒ lim
x→c−

f(x) = L− = L+ = lim
x→c+

f(x). (177)

This is often a good way to show the limit does not exist.

Example 7.2. Define the sign : R → R function

sign(x) =


1 x > 0

0 x = 0

−1 x < 0

. (178)

Then limx→0+ sign(x) = 1, limx→0− sign(x) = −1. So, limx→0 sign(x) does not exist.

What are other ways limits fail to exist? One can have a function that increasingly rapidly oscillates
the closer you get to c and therefore it does not approach a fixed number. Such a function would be

f(x) = sin
(π
x

)
, (179)

which oscillates between 1 and −1 increasingly rapidly as x → 0. This is plotted below:
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To see directly that the limit does not exist consider the sequences xn = 1
2n and x′n = 1

2n+ 1
2

. Then

f(xn) = 0 ∀n f(x′n) = 1 ∀n. (180)

Therefore, limn→∞ f(xn) = 0 and limn→∞ f(x′n) = 1 but xn → 0 and x′n → 0, i.e. one has a contradic-
tion to ϵ = 1/2 since |f(x′n)| = 1 > 1/2 but n can always be chosen to satisfy |x′n| < δ for any δ > 0.

Additionally, a limits fail can to exist if the function diverges, i.e. the function values grow arbitrarily
large. For example the function

f(x) =
1

x
. (181)

One can introduce the notion of an infinite limit in this case (note we do not think of the limit as existing
in this case since ±∞ is not a number, it is a symbol to denote that a function becomes unbounded):

Definition 7.3 (Infinite Limit of Single Variable Function). Let f be a function defined on some open
interval I = (a, b), except possibly at some point c ∈ I. Then one says that the limit of f as x tends to c
is ∞ (−∞) if for all M > 0, there exists a δ > 0 such that if 0 < |x− c| < δ then f(x) > M (f(x) < −M
resp.). In this case one writes

lim
x→c

f(x) = ∞
(
lim
x→c

f(x) = −∞ resp.
)

(182)

Remark 7.1. One can generalise the definition of infinite limit to one-sided limits.

Recall some properties of limits:

Proposition 7.1 (Limit Properties). Suppose f and g are defined on I = (a, b), except possibly at some
point c ∈ I. Further suppose,

lim
x→c

f(x), lim
x→c

g(x) (183)

exist and k ∈ R. Then

1. limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x).

2. limx→c(f(x)− g(x)) = limx→c f(x)− limx→c g(x).

3. limx→c(kf(x)) = k limx→c f(x).

4. limx→c(f(x)g(x)) = limx→c f(x) · limx→c g(x).

5. limx→c(f(x)/g(x)) = limx→c f(x)/limx→c g(x) if limx→c g(x) ̸= 0.

Proof. You can find a proof of these statements can be found in Stewart.

Finally let’s note some helpful theorems and tips for finding limits. The first is l’Hôpital’s rule which is
applicable in the ‘0/0’ or the ‘∞/∞’ situation:

Theorem 7.1 (L’Hôpital’s Rule). Let I an open interval and a ∈ I. Suppose f and g are differentiable
and g′(x) ̸= 0 on I except possibly at a. Further suppose,

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0 (184)

or

lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞. (185)

Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
(186)

if the limit on the right-hand side exists.
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Example 7.3. Evaluate the limit

lim
x→0

sin(x)

x
. (187)

Using l’Hôpital’s rule one has

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= 1. (188)

Another useful theorem is the ‘Squeeze Theorem’:

Theorem 7.2 (Squeeze Theorem). Let I an open interval and a ∈ I. Suppose f , g and h are functions
defined on I except possibly at a. Suppose, f(x) ≤ g(x) ≤ h(x) when x ̸= a and

lim
x→a

f(x) = L = lim
x→a

h(x). (189)

Then,

lim
x→a

g(x) = L. (190)

Example 7.4. Show that

lim
t→0

t2 sin
(1
t

)
= 0. (191)

Above we noted that lim sin
(
1
t

)
does not exist. So one can’t just use the product of limits rule. However,

for all t ̸= 0, sin(1t ) is bounded above by 1 and below by −1. So, for all t ̸= 0,

−t2 ≤ t2 sin
(1
t

)
≤ t2. (192)

Applying the squeeze theorem gives the result.

7.2 Review of Continuity for Real-Valued Functions

Lastly here is a brief review of continuity:

Definition 7.4 (Continuity). Let f be a function defined on some an open interval I = (a, b) of the real
line R. Then one says that f is continuous at c ∈ I if

lim
x→c

f(x) = f(c). (193)

The function f : I → R is continuous if it is continuous at every c ∈ I.

Note that this definition assumes that c ∈ dom(f), i.e. f(c) exists. Additionally it assumes that the
limit on the left-hand side exists and is equal to f(c).8

Example 7.5. Take the function f(x) = x, this has that limx→a x = a and f(a) = a. Therefore, it is
continuous at a ∈ R. In fact f : R → R is continuous.

On the other hand take:

f(x) =

{
0 x ∈ (−∞, 0]

1 x = (0,∞).
(194)

Then f(0) = 0 by definition but limx→0+ f(x) = 1 and limx→0− f(x) = 0. So f is not continuous at 0.
However, it is continuous everywhere else.

8One can unpack this in ϵ − δ form, as follows: Let I = (a, b) ⊆ R and c ∈ I. Let f : I → R. Then we say that f is
continuous at c if, for all ϵ > 0, there exists a δ > 0 such that for all y ∈ I with |y − c| < δ, we have |f(y)− f(c)| < ϵ.
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Finally let’s note that the following proposition:

Proposition 7.2. The following functions are continuous on all of R: et, sin, cos and polynomial functions.
The function ln(x) is continuous on for x > 0 and a rational function

R(x) =
P (x)

Q(x)
(195)

is continuous on the set of values for which Q(x) ̸= 0.

Example 7.6. Where is

f(x)
.
=

t2 ln(t)

t− 1
(196)

continuous?

It’s continuous where its defined: ln restricts this to t > 0 and 1
t−1 restricts this to t ̸= 1. So, its continuous

on (0, 1) ∪ (1,∞).

7.3 Vector-Valued Functions

One can give two definitions of limits for vector valued functions. Let’s start with the ϵ− δ definition:

Definition 7.5 (Limit of a Vector-Valued Function). Let f be a function defined on some open interval
I = (a, b), except possibly at some point c ∈ I. Then one says that the limit of f as x tends to c is L ∈ Rn

if for all ϵ > 0, there exists a δ > 0 such that if 0 < |x− c| < δ and x ∈ I implies ||f(x)−L|| < ϵ. In this
case one writes

lim
x→c

f(x) = L. (197)

Alternatively,

Definition 7.6 (Limit of a Vector-Valued Function). Let f be a function defined on some open interval
I = (a, b), except possibly at some point c ∈ I. Then the limit of f as x tends to c is defined as

lim
x→c

f(x) =
(
lim
x→c

f1(x), lim
x→c

f2(x), lim
x→c

f3(x)
)
, (198)

provided the limits of the component functions exist.

Both of these are natural extensions of the definition of limits for scalar valued functions and are equiv-
alent, which you should try to prove.

Continuity generalises naturally:

Definition 7.7 (Continuity). Let f be a vector-valued function defined on an interval I = (a, b) of the real
line R. Then one says that f is continuous at c ∈ I if

lim
x→c

f(x) = f(c). (199)

The function f : I → R is continuous if it is continuous at every c ∈ I.

7.4 Application: Curves in Space

Suppose r is a continuous vector-valued function with domain I = (a, b) and let t ∈ I. The set of points
(x, y, z) where

x = r1(t), y = r2(t), z = r3(t) (200)

is a curve in R3. The equations in (200) are known as the parametric equations and t is called the parameter.
You can think of of this curve being traced out by the tip of a vector from the origin to (r1(t), r2(t), r3(t)).
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Example 7.7. Let’s sketch the curve

r(t) = cos(t)i+ sin(t)j+ tk. (201)

In the xy-plane the motion is circular since

x2 + y2 = cos2(t) + sin2(t) = 1. (202)

However, the z component means that the one moves upwards with circular motion, i.e. one has a helix:
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8 Derivatives and Integration of Vector-Valued Functions

8.1 Differentiation

Recall that the idea behind differentiability is the ‘rate of change’ of a function with respect to its variable(s).
For functions of a single variable one has the following definition:

Definition 8.1 (Derivative). A function f of a single variable x is differentiable at a ∈ R if

lim
h→0

f(a+ h)− f(a)

h
(203)

exists. In this case, we define the derivative of f at a, denoted f ′(a) or df/dx(a), as

f ′(a)
.
= lim

h→0

f(a+ h)− f(a)

h
or

df

dx
(a)

.
= lim

h→0

f(a+ h)− f(a)

h
(204)

One can extend this naturally to vector-valued functions:

Definition 8.2 (Derivative of a Vector-Valued Function). A vector-valued function f of a single variable x
is differentiable at a ∈ R if

lim
h→0

f(a+ h)− f(a)

h
, (205)

exists. In this case, we define the derivative of f at a, denoted f ′(a) or df
dx(a), as

f ′(a)
.
= lim

h→0

f(a+ h)− f(a)

h
or

df

dx
(a)

.
= lim

h→0

f(a+ h)− f(a)

h
. (206)

Recall that the limit of a vector-valued function can be defined through the limits of its components.
Therefore, a vector-valued function is differentiable if and only if its components are differentiable, i.e. if
f = (f1, f2, f3) and f1, f2, f3 are differentiable then

df

dx
(a) =

(
lim
h→0

f1(a+ h)− f1(a)

h
, lim
h→0

f2(a+ h)− f2(a)

h
, lim
h→0

f3(a+ h)− f3(a)

h

)
, (207)

which is the same as
df

dx
(a) =

(df1
dx

(a),
df2
dx

(a),
df3
dx

(a)
)
=

df1
dx

(a)i+
df2
dx

(a)j+
df3
dx

(a)k. (208)

How do we visualise this this definition? Suppose we consider the curve γ defined by a vector-valued
function f(t):

γ = {x = (x, y, z) ∈ R3 : x = f(t), t ∈ (a, b)}. (209)

Let p be the point with position vector f(a) and q be the point with position vector f(a+ h). Then,

g(h, a)
.
=

1

h

(
f(a+ h)− f(a)

)
, (210)

is a vector that points in the direction of the displacement vector −→pq. As h → 0, g(h, a) tends to a vector
that is tangent to the curve defined by f at p. Therefore, f ′(t) is often called the tangent vector to the
curve defined by f . As usual this is best draw as below:

z

y

x

γ×

×
g(h, a)

f ′(a)
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Remark 8.1. Just as for scalar functions the nth-derivative of a vector-valued function (if it exists) is the
derivative of the (n− 1)th derivative (if it exists), i.e. the second derivative f ′′ = (f ′)′.

Example 8.1. Let r(t) = (7t3, (1− 1
2 t)e

t, cosh(t)).

1. Find the derivative of r(t).

2. Find the unit tangent vector at the point with at t = 0.

One can differentiate each component in turn

r′(t) =
(
21t2,

1

2
(1− t)et, sinh(t)

)
. (211)

The tangent vector at the point with at t = 0 is r′(0) = (0, 12 , 0). The unit is r̂′(0) = (0, 1, 0).

Proposition 8.1. Let c be a scalar and let h be a real valued function. Suppose the vector-valued functions
f and g are differentiable in some interval (a, b). Then one has

1. d
dx(f(x) + g(x)) = d

dx f(x) +
d
dxg(x).

2. d
dx(cf(x)) = c d

dx f(x).

3. d
dx(h(x)f(x)) = f(x)dhdx(x) + h(x) d

dx f(x).

4. d
dx⟨f(x),g(x)⟩ = ⟨ d

dx f(x),g(x)⟩+ ⟨f(x), d
dxg(x)⟩.

5. d
dx(f(x)× g(x)) = d

dx f(x)× g(x) + f(x)× d
dxg(x) for f and g with image in R3.

6. the chain rule: d
dx f(h(x)) =

df
dh(h(x))

dh
dx(x).

Proof. The proof of all these statements follows from writing the vector-valued function in terms of com-
ponents and using the above properties for real-valued functions.

Proposition 8.2. Suppose r(t) has constant norm for all t, then d
dtr(t) is orthogonal to r(t) for all t.

Proof. If ||r(t)|| = k for k ∈ R then

⟨r(t), r(t)⟩ = ||r(t)||2 = k2. (212)

Therefore, using proposition 8.1 one has

⟨r′(t), r(t)⟩+ ⟨r(t), r′(t)⟩ = 0. (213)

The symmetry of the scalar product then gives

2⟨r′(t), r(t)⟩ = 0, (214)

or in other words r and r′ are orthogonal.

8.2 Integration

Definition 8.3. Let f(t) = (f1(t), f2(t), f3(t)) where f1(t), f2(t) and f3(t) are continuous real valued
functions on the interval [a, b]. Then we define the integral of f as the vector∫ b

a
f(x)dx =

(∫ b

a
f1(x)dx

)
i+

(∫ b

a
f2(x)dx

)
j+

(∫ b

a
f3(x)dx

)
k. (215)

We now extend the fundamental theorem of calculus to vector-valued functions:
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Theorem 8.1. Let f : [a, b] → Rn be continuous. For x ∈ [a, b] define the antiderivative

F(x)
.
=

∫ x

a
f(x′)dx′. (216)

Then F is continuous on [a, b] and differentiable with F′(x) = f(x) for every x ∈ (a, b).

Remark 8.2. Note that

F(b)− F(a) =

∫ b

a
f(x′)dx′. (217)

Remark 8.3. Often we will use the notation
∫
f(x)dx for an indefinite integral.

Example 8.2. Let r(t) = (7t3, (1− 1
2 t)e

t, cosh(t)).

1. Find the indefinite integral of r(t).

2. Find the definite integral from 0 to 1.

The indefinite integral is computed component-wise but one now must add a vector of constants c =
(c1, c2, c3):

F(x) =
7

4
x4i+

(3
2
− 1

2
t
)
etj+ sinh(t)k+ c, (218)

where we’ve used integration by part on (1− 1/2t)et. The definite integral is

F(1)− F(0) =
7

4
i+

(
e− 3

2

)
j+ sinh(1)k. (219)

8.3 Application: Motion in R3

Suppose r is a continuous vector-valued function with domain I = (a, b) and let t ∈ I. Suppose r models
the motion of a particle in space, i.e. its position vector. If r(t) is differentiable, the particles velocity at
t, v(t), is the first derivative of r, i.e.

v(t) = r′(t). (220)

The particles speed is the norm of its velocity,

s(t) = ||v(t)||. (221)

If r(t) is twice differentiable, the particles acceleration at t, a(t), is the second derivative of r, i.e.

a(t) = v′(t). (222)

Let’s do some examples:

Example 8.3. The helix:

r(t) = cos(t)i+ sin(t)j+ tk. (223)

Let’s compute v(t) and a(t):

v(t) = r′(t) = − sin(t)i+ cos(t)j+ k, (224)

a(t) = r′′(t) = − cos(t)i− sin(t)j. (225)

Example 8.4. Suppose a particle has acceleration vector

a(t) = (3t,−2t, 1), (226)

with initial velocity v(0) = i+ j− k and position r(0) = (0, 1, 0). Find its velocity as a function of t.
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9 Multivariable Functions I: Introduction and Limits

9.1 Introduction to Multivariable Functions

In lecture 7, we discussed domains, codomains and images of functions. We want to consider ‘multivariable
functions’, i.e. functions that take more than one input.

Definition 9.1. Let D be a subset of Rn then a (real-valued) multivariable function f is a rule that assigns
to each ordered n-tuple (x1, ..., xn) a real number denoted f(x1, ..., xn). In other words, the domain of f ,
dom(f) = D, is a subset of Rn and the image of im(f) is a subset of R. In notation,

f : D → R. (227)

For us we are going to restrict n ≤ 3, i.e. functions of two variables f(x, y) and functions of three
variables f(x, y, z). Note that we are not going to allow for vector-valued multivariable functions, i.e.
functions with domain in Rn and codomain Rm for m > 1. All functions will map to a subset of the real
numbers (m = 1). Let’s do some examples:

Example 9.1. Define f : D ⊆ R2 → R by

f(x, y) = x2 + y2. (228)

One could pick D = [1, 2]× [1, 10]. However, its domain of definition is R2.

Example 9.2. Define f : D ⊆ R2 → R by

f(x, y) =
1

x2 + y2
. (229)

This function is well-defined as long as its denominator does not vanish, i.e. as long as x ̸= y ̸= 0. So its
domain of definition is R2 \ {(0, 0)}.

Example 9.3. Define f : D ⊆ R2 → R by

f(x, y) =
1

x2 − y2
. (230)

This function is well-defined as long as its denominator does not vanish, i.e. as long as x2 − y2 ̸= 0. One
can factorise to find the set of ill-definition:

(x− y)(x+ y) = 0 ⇐⇒ x = y, x = −y. (231)

So its domain of definition is

{(x, y, z) ∈ R3 : x ̸= y, x ̸= −y}. (232)

Example 9.4. Define f : D ⊆ R2 → R by

f(x, y) = log(x− y). (233)

The natural logarithm is well-defined for it’s argument in (0,∞). Therefore, for f(x, y) to be well-defined
x− y > 0. So, its domain of definition is

{(x, y, z) ∈ R3 : x− y > 0}. (234)

Example 9.5. Define f : D ⊆ R3 → R by

f(x, y, z) =

√
y

z
e−x2

. (235)

The exponential function and −x2 are well-defined on all of R. The only issues appearing is when z = 0
and when y < 0 (due to the square-root). So its domain of definition is the set

{(x, y, z) ∈ R3 : y ≥ 0} \ {(x, y, 0)} (236)

(i.e. R3 without a the z = 0 plane and restricted to y ≥ 0).
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There are two groups of functions that are very common:

Definition 9.2 (Polynomial/Rational Functions). A polynomial function of n-variables (x1, ..., xn) is a
(finite) sum of terms of the form

cxm1
1 ...xmn

n , (237)

for m1, ...,mn ∈ N0 (the natural numbers including zero, N0 = {0, 1, 2, 3, 4, ...}).

A rational function is a ratio of two polynomials.

Example 9.6. Two examples of polynomials of two variables are

P (x, y) = x5 − y2 + 7, Q(x, y) = x7y3 + y5 + xy − 3y − 1. (238)

An example of a rational function would be the ratio of P and Q,

R(x, y) =
P (x, y)

Q(x, y)
=

x5 − y2 + 7

x7y3 + y5 + xy − 3y − 1
. (239)

9.2 Drawing Multivariable Functions: Graphs

To visualise and draw functions we need to extend the idea of graphs:

Definition 9.3. Let f : dom(f) ⊆ Rn → R and denote x = (x1, ..., xn) then the graph of f , Graph(f),
is the set

{(x1, ..., xn+1) ∈ Rn+1 : xn+1 = f(x),x ∈ dom(f)} = {(x, f(x)) : x ∈ dom(f)}. (240)

Note that this is a subset of Rn+1, which in general is not within our capability to visualise. However,
if n ≤ 2 this is possible, i.e. functions of two variables are still within our capability to visualise. These
sets can be drawn as surfaces in R3. Again, lets do some examples

Example 9.7. Sketch the graph of the function f(x, y) = 1− 7x− y.

The graph of f is

Graph(f) = {(x, y, f(x, y)) : (x, y) ∈ dom(f)}. (241)

The domain of definition for f is (x, y) ∈ R2. The graph is determined by z = 1 − 7x − y, which is the
equation of a plane. Let’s find three points on this plane:

z = 0 = y =⇒ x =
1

7
(242)

z = 0 = x =⇒ y = 1 (243)

x = 0 = y =⇒ z = 1 (244)

Therefore, we have three points in R3 in the plane:

x1 = (1/7, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1). (245)

The plot of the graph is then:
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Let’s look at some of the standard quadrics from lecture 6. Note that sometimes one cannot write
them as the graph of a single function but two functions will suffice if necessary.

Example 9.8. Sketch the graph of the functions f±(x, y) = ±
√

1− x2 − y2

10 .

The graph of f± is

Graph(f±) = {(x, y, f±(x, y)) : (x, y) ∈ dom(f±)}. (246)

The domain of definition for f± is {(x, y) ∈ R2 : 1 − x2 − y2

10 ≥ 0}, which is the interior (including the
boundary) of the ellipse:

x2 +
y2

10
= 1. (247)

The graph of f± is determined by z = ±
√
1− x2 − y2

10 . Let’s find some points on this surface:

x = 1 =⇒ y = 0, z = 0 (248)

y =
√
10 =⇒ x = 0, z = 0 (249)

z = 0 =⇒ x2 +
y2

10
= 1 (250)

x = 0 = y =⇒ z = ±1. (251)

Take z = f± = k± = const. with 0 < k+ < 1, −1 < k− < 0 then,

x2

1− k2±
+

y2

10(1− k2±)
= 1, (252)

which is the equation of an ellipse. So, for k+ increasing from 0 to 1 we have a smaller and smaller ellipse
at each z = k+. Similarly, for k− decreasing from 0 to −1 we have a smaller and smaller ellipse at each
z = k−. The plot of the combined graphs of f± is then:
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This is an ellipsoid.

Example 9.9. Sketch the graph of the functions f(x, y) = x2 + y2

10 .

The graph of f is

Graph(f) = {(x, y, f(x, y)) : (x, y) ∈ dom(f)}. (253)

The domain of definition for f is R2. The graph of f is determined by z = x2 + y2

10 . Note that z ≥ 0 and
at z = 0 x = 0 = y. Take z = f = k = const. with 0 < k, then,

x2

k
+

y2

10k
= 1, (254)

which is the equation of an ellipse. So, for k increasing from 0 we have a larger and larger ellipse at each
z = k.

If we take y = k then

z =
k2

10
+ x2 (255)

which is the equation of a parabola with variable x. Similarly, if x = k then

z = k2 +
y2

10
(256)

which is also a parabola in y. The plot of the graphs of f is then:

This is an elliptic paraboloid.
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Remark 9.1. The process employed above of considering z = k, y = k, x = k means we are looking at
intersections of the surface with planes parallel to the coordinate planes xy, zx and yz. The curves that
result from such intersections are called cross-sections.

Example 9.10. Sketch the graph of the function f(x, y) = x2 − y2

10 .

The graph of f is

Graph(f) = {(x, y, f(x, y)) : (x, y) ∈ dom(f)}. (257)

The domain of definition for f is R2. The graph of f is determined by z = x2− y2

10 . Take z = f = k = const.
with 0 < k, then,

x2

k
− y2

10k
= 1, (258)

which is the equation of a hyperbola. Take z = f = k = const. with 0 > k, then,

y2

10|k|
− x2

|k|
= 1, (259)

which is also the equation of the conjugate hyperbola. So, for k increasing from 0 we have hyperbola at
each z = k and for k decreasing from 0 we have the conjugate hyperbola at each z = k. If one looks at
x = k and y = k one will find parabola. The plot of the graphs of f is then:

This is an hyperbolic paraboloid.

Example 9.11. Sketch the graph of the functions f±(x, y) = ±
√

−1 + x2 + y2

2 ..

This is an hyperbola of one sheet.
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Example 9.12. Sketch the graph of the functions f±(x, y) = ±
√

1 + x2 + y2

2 .

This is an hyperbola of two sheets.

Example 9.13. Sketch the graph of the functions f±(x, y) = ±
√

x2 + y2

2 .

This is a (elliptic) cone.

9.3 Drawing Multivariable Functions: Level Sets/Surfaces/Curves

So far we have been ploting graphs of functions. There is an alternative: level sets or curves. You’ve
probably encountered such drawings in maps: contour/topographic maps are drawings of level curves of
some region on Earth. Here is the topographic map of K2 (left) vs the plot/picture of its graph (right):



9.3 Drawing Multivariable Functions: Level Sets/Surfaces/Curves 56

The topographic map marks different contant height levels on the map with the grey lines: these are
the level sets or level curves.

Definition 9.4. The level sets of a function f of n-variables (x1, ..., xn) are the sets

{(x1, ..., xn) : f(x1, ..., xn) = k} (260)

for k constant. If f is a function of two variables we call these level curves. If f is a function of three
variables we call these level surfaces.

Example 9.14. Sketch the level curves of the function f(x, y) = x2

4 + y2.

We look at the curves x2

4 + y2 = k for k constant. For solution k ≥ 0 so, these are ellipses, which are
plotted as follows:

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Lets view k as a z coordinate then f(x, y) = k can be rewritten as

x2

4
+ y2 − z = 0 (261)

which is the equation of a elliptic paraboloid. One can view the contour plot in the plane as a projection of
the curves resulting from intersection the elliptic paraboloid with planes {z = k}, i.e. the z cross-sections.
This is drawn below:
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Example 9.15. The following is a computer generated sketch of the level curves of the function f(x, y) =
− 50x

x2+y2+1
with the corresponding surface plot of (x, y, f(x, y)):

-10 -5 0 5 10

-10

-5

0

5

10

Example 9.16. The following is a computer generated sketch of the level curves of the function f(x, y) =
cos(x) + cos(y) with the corresponding surface plot of (x, y, f(x, y)):

-10 -5 0 5 10

-10

-5

0

5

10

Example 9.17. A simple example in 3D would be the level surfaces of

f(x, y, z) =
x2

4
+ y2 + z2. (262)

We cannot visualise the graph {(x, y, z, f(x, y, z))} since this requires 4-dimensions. However we can look
at f(x, y, z) = k for k constant. This gives,

x2

4k
+

y2

k
+

z2

k
= 1 (263)

for k > 0 (which is nessecary otherwise x = y = z = 0). This gives concentric ellipsoids:
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9.4 Limits of Multivariable Functions

We want to talk about how functions behave as their variables approach certain values. We need to
generalise our notion of limit:

Definition 9.5. Let f : dom(f) → R be a function and dom(f) include all points arbitrarily close to
a = (a1, ..., an), i.e. for any ϵ̃ > 0, there exists a x = (x1, ..., xn) ∈ dom(f) such that ||x − a|| < ϵ̃. We
say that the limit of f as x goes to a is L if for all ϵ > 0, there exists a δ > 0 such that if

0 < ||x− a|| < δ (264)

and x ∈ dom(f) then

|f(x)− L| < ϵ (265)

In notation, one writes

lim
x→a

f(x) = L (266)

What this says is that given a small interval around L, I = (L− ϵ, L+ ϵ), then one can find a small (open)
ball/disk of radius δ centered at a,

Bδ(a)
.
= {x ∈ Rn : ||x− a|| < δ}, (267)

which f maps into I (except possibly a). This is pictured for R2 below:

x

y

R

Bδ(a)

dom(f)

×·a
δ

( )
L L+ ϵL− ϵ

f
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When we discussed limits for a function f of single variables we recalled that for the limit limx→a f(x)
to exist the above and below limits must exist. There we were constrained to a line to approach the
point for which we wanted to investigate the limit of f . In this situation the analogous statement is that
approaching a on any curve should give the same limit. Be careful, this does not mean that if the
limits agree on every line through a point then that is the limit, it must also agree on a parabolic curve, a
hyperbolic curve or any weird path you may choose (as long as it lies in the domain of definition). This is
illustrated below:

x

y

dom(f)

×a

Picking various paths can be very useful for showing that limits do not exist.

9.4.1 Limits Not Existing

Example 9.18. Show that

lim
x→0

x2 − y2

x2 + y2
(268)

does not exist.

Take a path along the x-axis, i.e. set y = 0, x ̸= 0, then

lim
x→0

x2 − y2

x2 + y2
= 1, (269)

along the x-axis. Take a path along the y-axis, i.e. set x = 0, y ̸= 0, then

lim
x→0

x2 − y2

x2 + y2
= −1, (270)

along the y-axis. This is a contradiction.

Example 9.19. Show that

lim
x→0

xy

x2 + y2
(271)

does not exist.

Take a path along the x-axis, i.e. set y = 0, x ̸= 0, then

lim
x→0

xy

x2 + y2
= 0, (272)

along the x-axis. Take a path along the y-axis, i.e. set x = 0, y ̸= 0, then

lim
x→0

xy

x2 + y2
= 0, (273)
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along the y-axis. So far, there is no contradiction. We can now look at other lines through (0, 0).

Take a path along the the line y = x then

lim
x→0

xy

x2 + y2
=

1

2
, (274)

along the y = x line. This gives us a contradiction.

Example 9.20. Show that

lim
x→(1,1)

y − x

1− y + ln(x)
(275)

does not exist.

First take the path along y = x then

lim
x→(1,1)

y − x

1− y + ln(x)
= lim

x→1

0

1− x+ ln(x)
= 0. (276)

Consider now the path y = 1, then

lim
x→(1,1)

y − x

1− y + ln(x)
= lim

x→1

1− x

ln(x)
= lim

x→1

d
dx(1− x)
d
dx ln(x)

= lim
x→1

(−x) = −1, (277)

where the second equality is by L’Hôpital’s rule. This gives the desired contradiction.

9.5 Properties of Limits

Proposition 9.1 (Limit Properties). Suppose f and g are defined on D ⊆ Rn, except possibly at some
point a ∈ D. Further suppose,

lim
x→a

f(x), lim
x→a

g(x) (278)

exist and k ∈ R. Then

1. limx→a(f(x) + g(x)) = limx→a f(x) + limx→a g(x).

2. limx→a(f(x)− g(x)) = limx→a f(x)− limx→a g(x).

3. limx→a(kf(x)) = k limx→a f(x).

4. limx→a(f(x)g(x)) = limx→a f(x) · limx→a g(x).

5. limx→a(f(x)/g(x)) = limx→a f(x)/limx→a g(x) if limx→a g(x) ̸= 0.

Under the (somewhat obvious) conclusions that, for x,a ∈ Rn,

lim
x→a

xi = ai, lim
x→a

c = c, (279)

one can see that limit laws imply that limit of any polynomial P can be evaluated by direct substitution:

lim
x→a

P (x) = P (a). (280)

Similarly, limit laws imply that limit of any rational function R = P/Q can be evaluated by direct substitution
with the caveat that the point x = a must be in the domain of definition of R, i.e. Q cannot have a root
there. Let’s do some examples:
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Example 9.21. Evaluate

lim
(x,y)→(−2,3)

3x2y + 1

x3y2 − 2x
, (281)

if it exists.

So, x3y2 − 2x evalutated at (−2, 3) gives −68 ̸= 0. Therefore, x = (−2, 3) is in the domain of the
definition of the rational function. Hence, the limit exists and is

lim
(x,y)→(−2,3)

3x2y + 1

x3y2 − 2x
= −37

68
(282)

Example 9.22. Evaluate

lim
(x,y)→(0,0)

3x2y

x2 + y2
, (283)

if it exists.

Consider y = mx for m ∈ R. Then

3x2y

x2 + y2
=

3mx

(1 +m2)
→ 0 (284)

as x → 0. So on any line the limit through the origin is (0, 0). Along the parabolas y = x2 and x = y2

one has

3x2y

x2 + y2
=

3x2

2
→ 0,

3x2y

x2 + y2
=

3y3

(1 + y2)
→ 0 (285)

as x → 0 and y → 0 respectively.

Let’s attempt to prove the limit exists and is 0. Let’s give ourselves an ϵ > 0. What we need to show
is that there is a δ > 0 such that if ||x− 0|| < δ then |3x2y/x2+y2 − 0| < ϵ. First note that

||x− 0|| =
√

x2 + y2 (286)

Now, ∣∣∣ 3x2y

x2 + y2
− 0

∣∣∣ = 3x2|y|
x2 + y2

≤ 3|y| = 3
√
y2 ≤ 3

√
x2 + y2. (287)

Take δ < ϵ
3 then 3

√
x2 + y2 < ϵ, which then gives,∣∣∣ 3x2y

x2 + y2
− 0

∣∣∣ ≤ 3
√

x2 + y2 < ϵ. (288)

This show that limx→0 3x2y/x2+y2 = 0.
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10 Multivariable Functions II: Continuity, Partial Derivatives and PDE

10.1 Continuity

Now that we have generalised the notion of limits to multivariable functions. We can define what we mean
for a multivariable function to be continuous at some point a = (a1, ..., an).

Definition 10.1 (Continuity). Let f be a function defined on some subset D of Rn. Then one says that
f is continuous at a ∈ D if

lim
x→a

f(x) = f(a). (289)

The function f : D → R is continuous on D if it is continuous at every a ∈ D.

In plain terms continuity means that if the point x changes by a little bit, then f(x) changes by a little
bit. This means that a surface that is the graph of a continuous function has no hole or break.

Remark 10.1. When dealing with continuity of multivariable functions one should keep in mind propo-
sition 7.2, with the relevant caveats. For example, that polynomials of many variables are continuous
everywhere on Rn and rational functions are continuous on their domain of definition.

Let’s do some examples:

Example 10.1. Where is

f1(x, y) =
x2 + y2

x2 − y2
(290)

continuous? What about the function

f2(x, y) =

{
0 if y = ±x
x2+y2

x2−y2
otherwise

? (291)

The function f1 is continuous where it is defined since it is a rational function. Therefore, its continuous
everywhere on R2 except where y = ±x.

Now f2 is f1 except with a modified definition along y = ±x. Note that taking the limit along x = 0
gives

lim
y→0

(−1) = −1, (292)

which contradicts the definition of continuity since f(0) = 0. We need to check the lines y = ±x too.
This means considering lim(x,y)→(c,±c) f2(x, y) for c constant. Consider y = ±c, then

lim
(x,y)→(c,±c)

f2(x, y) = lim
x→c

x2 + c2

x2 − c2
= lim

x→c

x2 + c2

(x− c)(x+ c)
= ∞, (293)

which again contradicts continuity as f(0) = 0 ̸= ∞. Therefore, f2 is continuous everywhere on R2 except
where y = ±x.

Example 10.2. Let

f(x, y) =

{
0 if (x, y) = (0, 0)
x2y3

2x2+y2
otherwise.

(294)

Where is f continuous?
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10.2 Differentiation of Multivariable Functions: Partial Derivatives

Suppose we have a function of two variables f(x, y). We could fix y = b, consider f(x, a) as a function of
the single variable x and look at the process that defined the derivative for f(x, b) at a

lim
h→0

f(a+ h, b)− f(a, b)

h
. (295)

If this limit exists we have a type of derivative of a multivariable function known as the partial derivative
of f with respect to x at (a, b). One writes:

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
. (296)

Similarly,

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
. (297)

would be the partial derivative of f with respect to y at (a, b) if the limit on the right-hand side exists. In
general, one has the following definition for partial derivatives:

Definition 10.2. Let f be a function of n-variables, U be a subset of dom(f). Suppose a ∈ U . The
partial derivative of f with respect to the ith-variable xi at a is defined as

∂f

∂xi
(a) = lim

h→0

f(a1, ..., ai + h, ..., an)− f(a1, ..., ai, ..., an)

h
(298)

if the limit on the right-hand side exists.

One could let a vary in U . If the limits exist then one obtains functions of x, i.e. partial derivative
functions. These are often denoted many notations listed below:

• Leibniz: ∂f
∂xi

, ∂xif and ∂if , where the latter is often used by lazy relativists.

• fxi

• Euler: Dif .

Example 10.3. Find the partial derivative functions of

1. f(x, y) = xnym for m,n ≥ 1.

2. f(x, y) = ym

xn for m ≥ 1, n ≥ 1 and x ̸= 0.

3. f(x, y, z) = ln(xyz) for xyz > 0.

4. f(x, y, z) = ln(x+ y + z) for x+ y + z > 0.

5. f(r, θ) = r cos θ + sin θ.

6. f(x, y) = arctan(y/x) for x ̸= 0.

7. For z3 = 1− 6xyz − x3 − y3, find ∂xz.

• ∂x(x
nym) = nxn−1ym and ∂y(x

nym) = mxnym−1.

• ∂x
ym

xn = −n ym

xn+1 and ∂y
ym

xn = mym−1

xn .

• ∂x ln(xyz) =
1
x , ∂y ln(xyz) =

1
y and ∂z ln(xyz) =

1
z .

• ∂xi ln(x+ y + z) = 1
x+y+z for xi = 1, 2, 3.

• ∂r(r cos θ + sin θ) = cos θ, ∂θ(r cos θ + sin θ) = cos θ − r sin θ.

• ∂x arctan(y/x) = − y
x2+y2

and ∂x arctan(y/x) =
x

x2+y2
.

• ∂xz
3 = 3z2∂xz = −6yz − 3x2. Therefore, ∂xz = −6yz−3x2

3z2
.
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10.3 Higher Derivatives

Let f be a function of two variables and that the partial derivatives of f , ∂xf and ∂yf , exist in some region
D of R2. We can at this point treat ∂xf and ∂yf as functions on D and compute their partial derivatives
(if limit above exists). In other words we can consider,

∂x∂xf = ∂2
xf = (fx)x = fxx = D1D1f =

∂

∂x

(∂f
∂x

)
=

∂2f

∂x2
(299)

∂y∂yf = ∂2
yf = (fy)y = fyy = D2D2f =

∂

∂y

(∂f
∂y

)
=

∂2f

∂y2
(300)

∂x∂yf = ∂2
xyf = (fy)x = fyx = D1D2f =

∂

∂x

(∂f
∂y

)
=

∂2f

∂x∂y
(301)

∂y∂xf = ∂2
yxf = (fx)y = fxy = D2D1f =

∂

∂y

(∂f
∂x

)
=

∂2f

∂y∂x
(302)

Note that we have separated the cases ∂y∂xf and ∂x∂yf . The former means differentiate with respect to
x first and then with respect to y, whilst the latter means differentiate with respect to y first and then
with respect to x. These may not be equal; we will state a theorem below about when these operations
commute below. First let’s do an example:

Example 10.4. Let

f(x, y)
.
= x7 − x2y3 + yx+ 2. (303)

Then,

∂x∂yf = −6xy2 + 1 = ∂y∂xf. (304)

Example 10.5. Let

f(x, y)
.
=

{
0 x = 0
xy(x2−y2)
x2+y2

x ̸= 0
(305)

For x ̸= 0, via the quotient rule, we have

∂xf =
y(x2 − y2) + xy(2x)

x2 + y2
− xy(x2 − y2)(2x)

(x2 + y2)2
=

x4y + 4x2y3 − y5

(x2 + y2)2
. (306)

and

∂yf =
y(x2 − y2) + xy(2x)

x2 + y2
− xy(x2 − y2)(2x)

(x2 + y2)2
= −y4x+ 4y2x3 − x5

(x2 + y2)2
. (307)

For x = 0, we have

∂xf(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0

h
= 0. (308)

Similarly, we have

∂xf(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0

h
= 0. (309)

Lets look at ∂x∂yf(0, 0) and ∂y∂xf(0, 0):

∂x∂yf = lim
h→0

∂yf(h, 0)− ∂yf(0, 0)

h
= lim

h→0

h− 0

h
= 1 (310)

and

∂y∂xf = lim
h→0

∂xf(0, h)− ∂yf(0, 0)

h
= lim

h→0

−h− 0

h
= −1. (311)

Therefore, ∂y∂xf ̸= ∂x∂yf .
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This last example illustrates the failure of the following theorem:

Theorem 10.1. Let D be some disk in R2 containing (a, b). Suppose f : D → R. If ∂x∂yf and ∂y∂xf
exists and are continuous on D, then ‘partial derivatives commute’:

∂x∂yf(a, b) = ∂y∂xf(a, b). (312)

Remark 10.2. This theorem generalises to more derivatives and to functions of more variables. For
example,

∂x∂y∂zf = ∂y∂z∂x∂zf = ∂z∂x∂yf = ∂y∂x∂zf = ∂x∂z∂yf = ∂z∂y∂xf (313)

if these functions are continuous.

10.4 Partial Differential Equations

A partial differential equation (PDE) is a relation between partial derivatives of a multivariable function
f(x1, ..., xn). For example,

∂xf = ∂yf, ∂x∂yf = 0, f∂zf = 2(∂xf)
2. (314)

Here f would be ‘the unknown’ of the equation for which (in an ideal world) we’d like to solve for. Be
warned this is not always possible; a solution may not even exist. If it does exist, it may not be unique.

Some famous examples of PDE are listed below (the last four examples are simply included for
interest, you’re not expected to fully understand the notation or all comments related to them):

• Laplace’s equation:

∆u
.
= ∂2

xu+ ∂2
yu = 0, ∆u

.
= ∂2

xu+ ∂2
y + ∂2

zu = 0, ∆u
.
= ∂2

x1
u+ ...+ ∂2

xn
u = 0 (315)

This first is Laplace’s equation in 2-dimensions, the second in 3-dimensions and the last in n-
dimensions. Note that in 1-dimension it u(x) must satisfy

∆u = ∂2
xu =

d2u

dx2
= 0 =⇒ u = ax+ b (316)

for a, b constants in R. The ∆ often gets called ‘the Laplacian’. Solutions to this equation are
called harmonic functions, which crop up everywhere in physics. For example, in gravitation, fluid
dynamics, heat conduction, electrostatics.

Lets look at u(x, y)
.
= ln(x2 + y2) for Laplace’s equation in 2-dimensions. Now,

∂2
xu = −2(x2 − y2)

(x2 + y2)2
, ∂2

yu =
2(x2 − y2)

(x2 + y2)2
=⇒ ∂2

xu+ ∂2
yu = 0. (317)

So u(x, y) is a harmonic function and is plotted below:

This function could describe the electric potential due to a line of unit charge entire z-axis.
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• The heat equation:

∂tu−∆u = 0 (318)

As the name suggests this equation describes how heat is conducted or diffused through a given
material. Solutions are called caloric functions. Note that, if u is independent of time, we have
Laplace’s equation, i.e. if the temperature distribution in some material is not evolving it must be a
harmonic function.

Let’s look at u(t, x)
.
= e−κ2t sin(κx) for the heat equation with the 1-dimensional Laplacian. We

have,

∂tu = −κ2u, ∂2
xu = −κ2u =⇒ ∂tu− ∂2

xu = 0. (319)

So, u(t, x) is a caloric function and is plotted below:

• The wave equation:

□Ψ
.
= −∂2

tΨ+∆Ψ = 0. (320)

Suppose we take ∆Ψ as the 1-dimensional Laplacian of Ψ(t, x). Lets look at the function Ψ(t, x)
.
=

sin(x− t). Computing partial derivatives gives

∂2
tΨ = − sin(x− t), ∂2

xΨ = − sin(x− t) =⇒ −∂2
tΨ+ ∂2

xΨ = 0. (321)

The function Ψ(t, x)
.
= sin(x− t) is plotted below:

This is wave type behaviour, hence the name for the equation. This function Ψ could be the a sound
wave, a light wave, an ocean wave etc.
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• Maxwell’s equations for electromagnetism. In the absence of charges and currents these have the
form:

divE = 0 = divB (322)

curlE = −∂tB (323)

curlB = ∂tE. (324)

Here E and B are vectors in R3 representing the electric field and magnetic fields respectively. One
can show that these equations imply that

−∂2
tE+∆E = 0, (325)

−∂2
tB+∆B = 0. (326)

In otherwords, the electric and magnetic fields satisfy the wave equation and therefore, admit wave-
type solutions. This is often why it is said that light (which is electromagnetic radiation) is a wave.

• The vaccuum Einstein equation for general relativity,

Ric(g) = 0, (327)

which can be written in the form

□g(gij) = N(g, ∂g). (328)

Here, □g is an altered version of the □ for the wave equation above. Additionally, gij can be thought
of as a collection of functions gij(x0, x1, x2, x3) with 1 ≤ i, j ≤ 4 and N(g, ∂g) denotes a term that
involves gij and ∂gij/∂xk and no higher derivatives.

The functions gij can be thought of as encoding the gravitational field. There are gij that model
the gravitational fields of stars, black holes, galaxies, the universe...

When the gravitational field is ‘weak’ the term N(g, ∂g) can be neglected and □g replaced with the
wave equation □. The functions gij then satisfy the wave equation, which gave rise to Einsteins
famous prediction of gravitational waves in 1916. Direct experimental confirmation of their existence
was produced 2016 by the LIGO observations.

• The Navier-Stokes equation for fluid dynamics.

∂tv + (v · ∇)v = −1

ρ
∇p+ ν∆v + f . (329)

Here, v is the velocity of the fluid. It is a vector in R3 that depends on time, t and space, x. The
function p is the pressure of the fluid and ν is something known as the viscosity (related to thickness
of the fluid), f is some external force. There is a 1 million dollar prize to be awarded to the person
who resolves an open problem about the existence of solutions (in some catagory) to this equation.
This is one of 7 Millennium Prize Problems put forward by the Clay Mathematics Institute.

• The Black–Scholes equation in mathematical finance:

∂tV +
1

2
σ2S2∂2

SV + rS∂SV − rV = 0. (330)

Here, V is the price of an option (which is right–or ‘option’–to buy a stock at a given predetermined
price) as a function of stock price S and time t. The constant r is the risk-free interest rate, and σ
is the volatility of the stock. For example, you could have a friend that potentially wants to buy your
car at the price of 20k. They could ask you to sell them the right (or option) to buy your car in the
next month for 500. This could vary in time dependent on how desperate your friend is for the car
or how much you like your car.

The field of analysis of PDE has been and continues to be a very active field of research in mathematics
currently.
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11 Tangent Planes and Linear Approximations

This section is concerned with the local properties of multivariable functions. In particular, how to partial
derivatives characterise the behaviour of a multivariable function close to a particular point.

11.1 Tangent Planes

For a function of a single variable f(x), df/dx is interpreted a rate of change with respect to x. Similarly, for
a multivariable function f(x1, ..., xn), partial derivatives of f can be interpreted as rates of change when
all but one variable is fixed. Effectively, this means we’re looking at rates of change in certain directions.
For example, suppose we have a function f of two variables (x, y). Further suppose the partial derivatives
of f exists at (a, b), i.e. ∂xf(a, b) and ∂yf(a, b) exist.

The surface {(x, y, z) : z = f(x, y)} near (a, b) is plotted below in cyan.

Note that y = b is a plane in R3 which intersects the surface in a curve, denoted in the diagram with γ1.
This curve has the equation g(x) = f(x, b) and therefore it’s gradient at x = a is

dg

dx
(a) = ∂xf(a, b). (331)

So, there is a line tangent to the curve γ1 with gradient m1 = ∂xf(a, b) in the plane determined by y = b,
i.e.

z = m1(x− a) + f(a, b), (332)

in {(x, y, z) : y = b}. Supposing that m1 ̸= 0, i.e. ∂xf(a, b) ̸= 0 then the symmetric equation of the line
is

z − f(a, b)

∂xf(a, b)
=

(x− a)

1
, y = b. (333)

We can put this into the form for the vector equation of a line as:

x(λ) = (a, b, f(a, b)) + λv1, (334)

with v1 = (1, 0, ∂xf(a, b)). This is plotted in black above γ1. Similarly, x = a is a plane in R3 which
intersects the surface in a curve, denoted in the diagram with γ2. This curve has the equation h(y) = f(a, y)
and therefore it’s gradient at y = b is

dh

dy
(b) = ∂yf(a, b). (335)
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So, there is a line tangent to the curve γ2 with gradient m2 = ∂yf(a, b) in the plane determined by x = a,
i.e.

z = m2(y − b) + f(a, b), (336)

We can put this into the form for the vector equation of a line as:

x(λ) = (a, b, f(a, b)) + λv2. (337)

with v2 = (0, 1, ∂yf(a, b)). This is plotted in black above γ2.

What’s so special about curves resulting from intersecting with planes parallel to the zy and zx-planes?
Well, both nothing and something.

• Nothing: We could have any curve on the surface through (a, b, f(a, b)) and look at its tangent line
at (a, b, f(a, b)), if that line exists, which leads to the something...

• Something: The only stipulation about the curves resulting from {x = a} and {y = b} intersection
was that the partial derivatives existed.

This latter point means that the curves that result from cross-sections x = a and y = b cannot break at
(a, b), i.e. be discontinuous, or have corners like y = |x| (which is continuous but not differentiable at
x = 0) plotted below:

-1.0 -0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

y

So, the stipulation that ∂xf(a, b) and ∂yf(a, b) exist, for the curves resulting from {x = a} and {y = b}
intersection, means that the tangent line is well-defined. In the case of other curves, the tangent line may
not be well defined. Consider the function,

f(x, y)
.
=


xy√
x2+y2

, (x, y) ̸= (0, 0)

0 (x, y) = (0, 0).
(338)

This is plotted below:
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Now one can check that

∂xf(0, 0) = 0 = ∂yf(0, 0), (339)

Hence, the partial derivatives exist at (0, 0), and, therefore, the tangent lines to (0, 0, 0) in the i and j
directions exist. However, consider the curve in orange above, which is given by y = x. Therefore,(

x, x, f(x, x) =
|x|√
2

)
, (340)

defines a curve in the surface. This has no tangent line at x = 0 since |x| is not differentiable at x = 0.
What’s gone wrong here? Well, note that

∂xf =
y3

(x2 + y2)
3
2

, ∂yf =
x3

(x2 + y2)
3
2

(341)

for (x, y) ̸= (0, 0). Lets focus on ∂xf(x, y). Take x = 0, then

∂xf(0, y) =
y3

(y2)
3
2

=
y3

|y|3
=

{
1 y > 0

−1 y < 0.
(342)

Therefore, lim(x,y)→(0,0) ∂xf(x, y) does not exist. In particular, ∂xf(x, y) is not continuous at (0, 0).

This example illustrates the following fact: if the partial derivatives are continuous, then all the tangent
lines exist. So when the partial derivatives are continuous, these tangent lines form the tangent plane at
(a, b, f(a, b)), which we will define as the plane which contains the two tangent lines resulting from the
intersection with {x = a} and {y = b}, i.e. the plane containing the point x0 = (a, b, f(a, b)) with normal

n = v1 × v2 = (−∂xf(a, b),−∂yf(a, b), 1) (343)

This is plotted below:

Recall that our equation for the plane was

⟨n,x− x0⟩ = 0. (344)

Expanding gives

∂xf(a, b)(x− a) + ∂yf(a, b)(y − b)− (z − f(a, b)) = 0, (345)

which is the equation of the tangent plane at (a, b, f(a, b)).

Let’s do an example:
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Example 11.1. Take the ellipsoid

x2

4
+

y2

16
+

z2

49
= 1. (346)

Recall that we can solve for z in terms of two functions

z = f±(x, y) = ±7

√
1− x2

4
− y2

16
. (347)

Lets find the tangent plane at (1, 1, 74
√
11). To easy notation let f = f+ and let’s find ∂xf and ∂yf :

∂xf = − 7x

4
√

1− x2

4 − y2

16

, ∂yf = − 7y

16
√
1− x2

4 − y2

16

. (348)

So,

∂xf(1, 1) = − 7√
11

, ∂yf(1, 1) = − 7

4
√
11

. (349)

Therefore, the equation of the plane at (1, 1, 74
√
11) tangent to the ellipsoid is

7√
11

(x− 1) +
7

4
√
11

(y − 1) +
(
z − 7

4

√
11
)
= 0. (350)

11.2 Linear Approximations of Multivariable Functions

Definition 11.1. A function f from D (a region in Rn) to R is called linear if

f(x) = b+ a1x1 + ...+ anxn, (351)

where x = (x1, ..., xn) and ai are real constants for 1 ≤ i ≤ n .

Suppose we have a single variable function f(x) which has derivative f ′(a) near some point x = a.
This could look something like the following:
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Here we have the function f(x) = x7 − 7x5 + x and the line in orange is the tangent line at (1/2, 37/128).
Clearly when we have a global plot of the graph this line doesn’t approximate f(x) at all well. However,
as we ‘zoom’ in on the graph (i.e. we look locally) the tangent line approximates the function better and
better. See the right-hand diagram. Therefore, one would expect that we can approximate the function
near a point by the tangent line at that point.

This is the intuition behind linear approximation but let’s make this a bit more precise. Consider the
definition of the derivative

df

dx
(a) = lim

h→0

f(a+ h)− f(a)

h
(352)

and suppose the limit on the right-hand side exists. Let h = x− a then this can be rewritten as

df

dx
(a) = lim

x→a

f(x)− f(a)

x− a
. (353)

From the definition of the limit one knows that for all ϵ > 0 that there exists a δ > 0 such that if
0 < |x− a| < δ then ∣∣∣f(x)− f(a)

x− a
− df

dx
(a)

∣∣∣ < ϵ. (354)

For x close to a (ϵ small and δ small), this means that

f(x)− f(a)

x− a
=

df

dx
(a) + ϵ(x) (355)

where ϵ(x) → 0 as x → a. Rearranging gives

f(x) = f(a) +
df

dx
(a)(x− a) +R(x) (356)

where R(x) = ϵ(x)(x− a), called the remainder, goes to 0 faster than x− a as x → a. This means that
for x close to a one can indeed approximate f(x) as

f(x) ≈ L(x)
.
= f(a) +

df

dx
(a)(x− a). (357)

The function L(x) is a linear function on R and is known as the linear approximation of f(x) at a. Notice
that for functions of one variable, the linear approximation only exists if f ′(a) exists, i.e. the tangent line
exists at x = a. In this case it is always a valid approximation.

For a function f of two variables the intuition is similar: if f has continuous partial derivatives, the
tangent plane at a point (a, b, f(a, b)) with equation (from (345))

z = f(a, b) + (∂xf)(a, b)(x− a) + (∂yf)(a, b)(y − b) (358)

is well-defined since it contains all tangent lines to the surface at (a, b, f(a, b)). In this case, the tangent
plane becomes a good approximation of the function near (a, b, f(a, b)) see the following diagram:
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This means that in analogy with the argument about tangent lines for functions of a single variable we can
approximate f(x, y) using (358), i.e.

f(x, y) ≈ L(x, y)
.
= f(a, b) + ∂xf(a, b)(x− a) + ∂yf(a, b)(y − b). (359)

The function L(x, y) is known as the linear approximation of f(x, y) at (a, b). It is important to stress
that even though one can write down the linear approximation in equation (359) when the partial derivatives
exist, it is not always a ‘good’ approximation. It is a valid approximation when the partial derivatives are
continuous at (a, b).

One can generalise the linear approximation to a function f of n-variables x = (x1, ..., xn). In this
case, the linear approximation f at a = (a1, ..., an) is

L(x) = f(a) + (∂x1f)(a)(x1 − a1) + ...+ (∂xnf)(a)(xn − an). (360)

This is a valid approximation for x close to a when the partial derivatives ∂xif are continuous at a for
1 ≤ i ≤ n.

Example 11.2. Lets find the linear approximation of f(x, y) = 1+y
1+x at (1, 3).

Lets compute the first partial derivatives for x > −1

∂xf = − 1 + y

(1 + x)2
, ∂yf =

1

1 + x
. (361)

Note that the partial derivatives in equation (361) are both rational functions and, therefore, continuous
on their domain of definition. In particular at (1, 3). Hence, the tangent plane at (1, 3) is well-defined and
the linear approximation is valid as shown by the following plot:

At (1, 3),

∂xf(1, 3) = −1, ∂yf(1, 3) =
1

2
. (362)

Therefore, the linear approximation of f(x, y) at (1, 3) is

L(x, y) = f(1, 3) + ∂xf(1, 3)(x− 1) + ∂yf(1, 3)(y − 3) = 2− (x− 1) +
1

2
(y − 3). (363)

Example 11.3. Lets find the linear approximation of f(x, y) = xexy at (1, 0).

Note that f(x, y) is well defined on all R2 and therefore, we can freely compute the partial derivatives

∂xf = (1 + xy)exy, ∂yf = x2exy (364)

which are continuous everywhere on R2 since these functions are products of polynomials and the expo-
nential. Therefore, the linear approximation is good at (1, 0):

L(x, y) = f(1, 0) + ∂xf(1, 0)(x− 1) + ∂yf(1, 0)(y − 1) = 1 + (x− 1) + y = x+ y. (365)
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Let’s illustrate how the linear approximation fails for non-continuous partial derivatives with the following
example:

Example 11.4. Consider again the function,

f(x, y)
.
=


xy√
x2+y2

, (x, y) ̸= (0, 0)

0 (x, y) = (0, 0).
(366)

This is plotted below:

As above

∂xf =

0 x = (0, 0)
y3

(x2+y2)
3
2

x ̸= (0, 0)
(367)

∂yf =

0 x = (0, 0)
x3

(x2+y2)
3
2

x ̸= (0, 0)
(368)

Since the partial derivatives exist at (0, 0) we can use equation (359) to write down a linear approximation
for f(x, y) at (0, 0):

L(x, y) = f(0, 0) + ∂xf(0, 0)(x− 0) + ∂yf(0, 0)(y − 0) = 0. (369)

However, recall also that the partial derivatives are not continuous and therefore, the tangent plane was
not well defined. One can see this from the following plot:
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12 Differentiability for Multivariable Functions

This section is about what it means for a multivariable to be differentiable, not just partial differentiable.

12.1 Motivation and Definition

Lets try to reverse engineer the computation above where we derived the linear approximation for a func-
tion f(x) of a single variable from the definition of differentiability. In other words, let’s derive another
condition that a function of two variables must satisfy for the linear approximation to be valid. This will
lead us to a definition of what it means for a function of many variables to be differentiable, not just partial
differentiable.

To this end, suppose x = a + h1 and y = b + h2 for h1, h2 small. So, we have h1 = x − a and
h2 = y − b. To ease notation define

h = (h1, h2), (370)

which has the property ||h|| → 0 as (x, y) → (a, b). Suppose that the linear approximation in equation (359)
is valid for (x, y) close to (a, b). Therefore, one has

f(a+ h1, b+ h2) = f(a, b) + ∂xf(a, b)h1 + ∂yf(a, b)h2 +R(h1, h2) (371)

where our remainder R(h1, h2) = R(x− a, y − b) goes to zero faster than h1 or h2, i.e.

f(a+ h1, b+ h2) = f(a, b) + ∂xf(a, b)h1 + ∂yf(a, b)h2 + ε(h1, h2)||h|| (372)

where ε(h1, h2) → 0 as ||h|| → 0. Therefore,

|f(a+ h1, b+ h2)− f(a, b)− ⟨∇f(a, b),h⟩|
||h||

≤ |ε(h1, h2)|. (373)

where we’ve introduced the vector of partial derivatives

∇f
.
= (∂xf, ∂yf) = ∂xf i+ ∂yf j, (374)

which is called the gradient of f .

Remark 12.1. In Rn,

∇f
.
= (∂x1f, ∂x2f, ..., ∂xnf) = ∂x1fe1 + ∂x2fe2 + ...+ ∂xnfen. (375)

One makes the following definition about differentiability for multivariable functions,

Definition 12.1 (Differentiability). Let f : Rn → R. The function f is said to be differentiable at x0 ∈ Rn

if there exists a v ∈ Rn such that

lim
h→0

|f(x0 + h)− f(x0)− ⟨v,h⟩|
||h||

= 0. (376)

The condition that a multivariable function is differentiable at (a, b) implies that the linear approxi-
mation of a the function at (a, b) is valid, just like the single variable case! Note that previously we said
that the linear approximation at (a, b) was valid/good if the partial derivatives of the function at (a, b)
were continuous. Therefore, we expect some relation between (continuous) partial differentiability and
differentiability.
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12.2 Relation to Partial Differentiability

If f is differentiable at x0 then this implies all partial derivatives exist at x0 and v = ∇f since one can
look at h = (h, 0) and h = (0, h) respectively for ∂xf and ∂yf . Explicitly, suppose

lim
h→0

|f(x0 + h)− f(x0)− ⟨v,h⟩|
||h||

= 0. (377)

then since this is a multivariable limit, the limit along all paths through h = 0 must exist and be equal.
Therefore, the limit along the path h = (h, 0) must exist and be equal to zero:

lim
h→0

|f(x0 + h, y0)− f(x0, y0)− v1h|
|h|

= 0. (378)

We can rewrite this as

lim
h→0

∣∣∣f(x0 + h, y0)− f(x0, y0)

h
− v1

∣∣∣ = 0. (379)

Unpacking the definition of the limit this says that for any number ϵ > 0 there exists another number δ > 0
such that if 0 < |h− 0| < δ then∣∣∣∣∣∣f(x0 + h, y0)− f(x0, y0)

h
− v1

∣∣∣− 0
∣∣∣ < ϵ (380)

or equivalently ∣∣∣f(x0 + h, y0)− f(x0, y0)

h
− v1

∣∣∣ < ϵ. (381)

This says that

lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
= v1, (382)

i.e. the limit on the left-hand side exists and is v1. At this point recall that the limit on the left-hand side
is the definition of ∂xf(x0, y0):

∂xf(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
. (383)

Therefore, ∂xf(x0, y0) exists and v1 = ∂xf(x0, y0). A similar argument shows that ∂xf(x0, y0) and
v2 = ∂xf(x0, y0).

The converse is not true: all partial derivatives can exist but f may not be differentiable. For example

Example 12.1. Let f : R2 → R be defined by

f(x, y)
.
=

{
y3

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0).
(384)

One can check that the gradient at (0, 0) is

∇f |(0,0) = (0, 1). (385)

If f is differentiable then the limit of

g(h)
.
=

|f(h)− f(0)− ⟨v,h⟩|
||h||

(386)

should vanish as h → 0 for v = ∇f(0, 0). One can compute that

g(h) =

∣∣ h3
2

h2
1+h2

2
− h2

∣∣√
h21 + h22

=

∣∣h2∣∣h21
(h21 + h22)

3
2

. (387)

Take h2 = h1 then

g(h1, h1) =
|h1|3

2
√
2|h1|3

=
1

2
√
2
̸= 0. (388)
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So, we’ve argued that for the linear approximation to be valid our function must be differentiable
and we’ve showed that partial differentiability does not imply differentiability. So what use is partial
differentiability then? Well, as you might expect, if the partial derivatives are continuous then partial
differentiability implies differentiability. We simply state the following theorem, which is probably the most
useful theorem to know regarding differentiability of multivariable functions:

Theorem 12.1. If the partial derivatives ∂xf and ∂yf exist near (a, b) and are continuous at (a, b), then
f is differentiable at (a, b).

Remark 12.2. In practise you’re unlikely to ever prove that a function is differentiable directly using
definition 12.1. You will use theorem 12.1.

We will not prove theorem 12.1 in general but we will illustrate it with an example:

Example 12.2. Show that f(x, y) = 1+y
1+x is differentiable at (1, 3).

So the partial derivatives are for x > −1

∂xf = − 1 + y

(1 + x)2
, ∂yf =

1

1 + x
. (389)

Note that these partial derivatives are continuous on their domains of definition since they are rational
functions. Further (1, 3) is in the domain of definition so the partial derivatives are continuous at (1, 3),
hence the function is differentiable at (1, 3) by theorem 12.1.

Let’s show directly that f is differentiable at (1, 3). For f to be differentiable at (1, 3),

lim
h→0

|f(1 + h1, 3 + h2)− f(1, 3)− ⟨v,h⟩|
||h||

= 0 (390)

for v = ∇f(1, 3). Evalutating the partial derivatives at (1, 3) gives:

∂xf(1, 3) = −1, ∂yf(1, 3) =
1

2
=⇒ ∇f = (−1, 1/2). (391)

Define for notational simplicity:

g(h)
.
=

|f(1 + h1, 3 + h2)− f(1, 3)− ⟨∇f(1, 3),h⟩|
||h||

. (392)

Evaluating:

g(h) =

∣∣4+h2
2+h1

− 2 + h1 − 1
2h2

∣∣√
h21 + h22

=
|h1|

∣∣h1 − 1
2h2

∣∣
|2 + h1|

√
h21 + h22

. (393)

For any ϵ > 0, we want to show that there is a δ > 0 such that if ||h|| < δ then

|g(h)| < ϵ. (394)

So, note that (the triangle inequality on R tells us)∣∣∣h1 − 1

2
h2

∣∣∣ ≤ |h1|+
1

2
|h2|. (395)

Now |h1|, |h2| ≤ ||h||, so ∣∣∣h1 − 1

2
h2

∣∣∣ ≤ 3

2
||h||. (396)

Hence,

|g(h)| ≤ |h1|
|2 + h1|

. (397)
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You can see that this goes to zero for h1 → 0 in the region

{(h1, h2) ∈ R2 : h2 > −2}. (398)

We have that |h1| ≤ ||h||, so pick δ = min(1, ϵ), therefore,

|h1| < ||h|| < min(ϵ, 1) ≤ 1. (399)

So,

|2 + h1| > |2− |h1|| ≥ 1 =⇒ 1

|2 + h1|
<

1

|2− |h1||
≤ 1. (400)

Therefore,

|g(h)| ≤ |h1|
|2 + h1|

< |h1| < min(ϵ, 1) ≤ ϵ. (401)
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13 The Chain Rule

The chain rule provides a way to differentiate a composite function. You are probably familiar with this for
functions of a single variable. This section is about how to generalise this to multivariable functions.

13.1 Single Variable Functions

Suppose f is a differentiable function of a single variable x and suppose x = g(t) for a variable t and g is
differentiable. Then f is the composite function f(g(t)) or (f ◦ g)(t). To differentiate with respect to t
one uses the chain rule:

df

dt
=

df

dg

dg

dt
,

df

dt
=

df

dx

dx

dt
,

df

dt
=

df

dx

dg

dt
(402)

or if you want to be explicit in your arguments

df

dt

∣∣∣
t=a

=
df

dx
(g(a))

dx

dt
(a). (403)

Example 13.1. Suppose f(x) = 3x2 and x = g(t) = 2t2 − 1. Find df
dt .

We compute using the chain rule

df

dt
=

df

dx

dx

dt
= (6x)(4t) = 24t(2t2 − 1). (404)

Example 13.2. Suppose f(x) = e7x and x = g(t) = 1
7 ln(t) for t > 0. Find df

dt .

We compute using the chain rule

df

dt
=

df

dx

dx

dt
= (7e7x)

( 1

7t

)
= 1. (405)

13.2 Multivariable Functions: A First Step

Suppose we have a differentiable function of two variables, f : D → R where D is a subset of R2. So f
takes (x, y) and evalutates f(x, y). Suppose x = g(t) and y = h(t) are differentiable, so that one has a
single variable function in reality. How does one compute df/dt?

Proposition 13.1. Let f be a differentiable function of two variables (x, y) such that x = g(t) and y = h(t)
and g and h are differentiable. Then

df

dt
= ∂xf

dx

dt
+ ∂yf

dy

dt
,

df

dt
= ∂gf

dg

dt
+ ∂hf

dh

dt
. (406)

or if you wish to be explicit in your arguments

df

dt

∣∣∣
t=a

= ∂xf(g(a), h(a))
dx

dt
(a) + ∂yf(g(a), h(a))

dy

dt
(a). (407)

Example 13.3. Let

f(x, y) = xy (408)

with x = sin(t) and y = cos(t). We can compute

df

dt
= (y)(cos t) + (x)(− sin(t)) = cos2(t)− sin2(t). (409)
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Example 13.4. Let

f(x, y) = x2y + 3xy4 (410)

with x = sin(2t) and y = cos(t). Find df
dt (t = 0). We can compute

df

dt
= (2xy + 3y4)(2 cos(2t)) + (x2 + 12xy3)(−sin(t)). (411)

Let’s be lazy and not simplify. We can just find (x(0), y(0)) = (0, 1) to give

df

dt

∣∣∣
t=0

= 6. (412)

13.3 Multivariable Functions: Adding Complexity

One could complicate things further and have x = g(s, t) and y = h(s, t). In this case we have the
following chain rule for the partial derivatives of f :

Proposition 13.2. Let f be a differentiable function of two variables (x, y) such that x = g(s, t) and
y = h(s, t) and g and h are differentiable. Then

∂f

ds
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
,

∂f

dt
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
, (413)

or if you want to be explicit in arguments

∂f

ds

∣∣∣
(s,t)=(a,b)

=
∂f

∂x

∣∣∣
(g(a),h(b))

∂x

∂s

∣∣∣
(a,b)

+
∂f

∂y

∣∣∣
(g(a),h(b))

∂y

∂s

∣∣∣
(a,b)

. (414)

Example 13.5. Suppose F (x, y) = xy and x = st and y = ln(st) with st > 0 then

∂sF = yt+
x

st
t = yt+

x

s
= t ln(st) + t, ∂tF = s ln(st) + s (415)

Example 13.6. Let f(x, y) = ex sin(y) and x = st2, y = s2t.

∂sf = ex sin(y)t2 + ex cos(y)2st = est
2
t2 sin(s2t) + 2est

2
st sin(s2t) (416)

∂tf = 2stex sin(y) + s2ex cos(y) = 2stest
2
sin(s2t) + s2et

2s cos(s2t). (417)

Example 13.7. Let R(s, t) = G(u(s, t), v(s, t)) and

u(1, 2) = 5, v(1, 2) = 7 (418)

∂su(1, 2) = 4, ∂tu(1, 2) = −3 (419)

∂sv(1, 2) = 2, ∂tv(1, 2) = 6 (420)

∂uG(5, 7) = 9, ∂vG(5, 7) = −2. (421)

Compute ∂sR(1, 2) and ∂tR(1, 2).

13.4 Multivariable Functions: Generality

Let’s do the general case:

Proposition 13.3. Let f be a differentiable function of n-variables x1, ..., xn. Suppose that x1, ..., xn are
given by differentiable functions of m-variables y1, ..., ym, i.e. xi = gi(y1, ..., ym). Then

∂f

∂yi
=

n∑
k=1

∂f

∂xk

∂xk
∂yi

,
∂f

∂yi
=

n∑
k=1

∂f

∂gk

∂gk
∂yi

, (422)

for all i = 1, ...,m.
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Example 13.8. Suppose u(x, y, z) = x4y + y2z3, where x = rset and y = rs2e−t and z = r2s sin(t).
Find ∂su at (r, s, t) = (2, 1, 0).

Using the chain rule one has

∂su = ∂xu∂sx+ ∂yu∂sy + ∂zu∂sz (423)

= 4x3yret + (x4 + 2yz3)2rse−t + 3yz2r2 sin(t). (424)

Evaluating at (r, s, t) = (2, 1, 0) or equivalently (x, y, z) = (2, 2, 0) one has

∂su(2, 1, 0) = 192. (425)

Example 13.9. Suppose u(t, r) = sin(t − kr) for a constant k, r = ||x|| where x = (x, y, z) and t = t.
Compute:

k2∂2
t u− ∂2

zu− ∂2
yu− ∂2

xu. (426)

Computing directly gives

∂zu = ∂tu∂zt+ ∂ru∂zr = −k cos(t− kr)
z

||x||
. (427)

Taking a second derivative using the product rule gives

∂2
zu = −k(∂z cos(t− kr))

z

||x||
− k cos(t− kr)∂z

( z

||x||

)
. (428)

Using the chain rule for multivariable functions on the first term and the chain rule for functions of a single
variable on the second term gives,

∂2
zu = − k2z2

||x||2
+

k(z2 − ||x||2) cos(t− kr)

||x||3
(429)

The function is symmetric under z ↔ x and z ↔ y, so

∂2
xu = − k2x2

||x||2
+

k(x2 − ||x||2) cos(t− kr)

||x||3
(430)

∂2
yu = − k2y2

||x||2
+

k(y2 − ||x||2) cos(t− kr)

||x||3
. (431)

Additionally,

∂2
t u = − sin(t− kr). (432)

Therefore,

k2∂2
t u− ∂2

zu− ∂2
yu− ∂2

xu = 0. (433)

13.5 Implicit Functions

One cannot always solve F (x, y) = 0 for y. We then view F as an implicit definition of y as a function of
x, i.e.

F (x, y(x)) = 0. (434)

How do we find dy
dx?
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Proposition 13.4. Let y be an implicitly defined function of x by

F (x, y) = 0. (435)

Suppose F and y are differentiable and ∂yF ̸= 0 then

dy

dx
= −∂xF

∂yF
. (436)

Proof. Writing F (x, y(x)) = 0 and using the chain rule gives

dF

dx
= 0 = ∂xF + ∂yF

dy

dx
. (437)

This generalises to the case where z is an implicitly defined function of (x, y) through

F (x, y, z) = 0. (438)

Suppose F and z are differentiable and ∂zF ̸= 0 then

∂z

∂x
= −∂xF

∂zF
,

∂z

∂y
= −∂yF

∂zF
. (439)

Example 13.10. Suppose F (x, y, z) = x3 + y3 + z3 + 6xyz − 1 = 0. Find ∂xz and ∂yz.

∂xF = 3x2 + 6yz, ∂yF = 3y2 + 6yz, ∂zF = 6xy + 3z2. (440)

Therefore,

∂xz = −x2 + 2yz

2xy + z2
, ∂xy = −y2 + 2xz

2xy + z2
. (441)
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14 Directional Derivatives and the Gradient Vector

As the name suggests directional derivatives are derivatives of a function f in a direction specified by a
vector u.

14.1 Introduction and Definition

Suppse f is a function of two variables (x, y) and u = (u1, u2) is a unit vector in the xy-plane. The
surface defined by the equation z = f(x, y) is plotted below:

Let p be a point on this surface with Cartesian coordinates x0 = (a, b, f(a, b)). Consider intersecting
the surface with the plane containing x0, u and k (the unit vector in the z-direction), i.e. the plane with
equation,

⟨n,x− x0⟩, n = u× k. (442)

This produces a curve γ lying in the surface defined by z = f(x, y) along which u points. Let q be a
points on this curve with Cartesian coordinates (c, d, f(c, d)). The projections of p and q to the xy-plane
have Cartesian coordinates (a, b) and (c, d) respectively. The displacement vector v (the black arrow on
the above diagram) from the projection of p to the projection of q is proportional to u by a positive scalar
multiple, i.e.

v = hu = (hu1, hu2). (443)

Consider the new function

g(h) =
f(a+ hu1, b+ hu2)− f(a, b)

h
. (444)

This ratio is the change in height in z as you move along γ over the change in length in the xy-plane.
Taking the limit of g as h → 0 gives the rate of change of f in the direction of u. We make the following
definition:

Definition 14.1. Let f be a function of two vartiables (x, y). Then the directional derivative of f at (a, b)
in the direction of the unit vector u = (u1, u2) is

Duf(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
, (445)

if the limit on the right-hand side exists.

Remark 14.1. This generalises to n-variables

Duf(a1, ..., an) = lim
h→0

f(a1 + hu1, a2 + hu2, ..., an + hun)− f(a1, a2, ..., an)

h
, (446)



14.2 The Relation Between Directional Derivatives and the Gradient Vector 84

Example 14.1. Note that even all directional derivatives existing does not imply differentiablility. For
example, let

f(x, y)
.
=

{
x3

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0).
(447)

Now,

Duf(0, 0) = lim
h→0

f(hu1, hu2)− f(0, 0)

h
= lim

h→0

(hu1)
3

h[(hu1)2 + (hu2)2]
=

u31
u21 + u22

. (448)

So all directional derivatives exist at (0, 0). In particular, by take u = (1, 0) and u = (0, 1), one finds
∇f = (1, 0).

So, to check the differentiablility of f one has to check the following limit vanishes:

lim
h→0

|f(h1, h2)− f(0, 0)− ⟨∇f(0, 0),h⟩|
||h||

= lim
h→0

|h1|h22
(h21 + h22)

3
2

. (449)

Take h1 = mh2 then

|h1|h22
(h21 + h22)

3
2

=
|m||h2|3

((m2 + 1)h22)
3
2

=
|m|

(m2 + 1)
3
2

̸= 0. (450)

Therefore, the limit in definition differentiablility does not vanish and hence, f is not differentiable.

14.2 The Relation Between Directional Derivatives and the Gradient Vector

If f is differentiable then we have a nice relation to the gradient vector above:

Proposition 14.1. Suppose f is a differentiable function of n-variables (x1, ..., xn) and u is a unit vector
in Rn. Then all directional derivatives exist and

Duf = ⟨∇f,u⟩. (451)

Proof. (Non-Examinable) We will prove this in R2. If f is differentiable one has

lim
h→0

|f(a1 + h1, a2 + h2)− f(a1, a2)− ⟨∇f,h⟩|
||h||

= 0. (452)

Set h = hu where u is unit. Then one has

lim
h→0

∣∣∣f(a1 + hu1, a2 + hu2)− f(a1, a2)

h
− ⟨∇f,u⟩

∣∣∣ = 0, (453)

since ||h|| = h||u|| = h. Now this say that for all ϵ > 0, there exists a δ > 0 such that if |h− 0| < δ then∣∣∣∣∣∣f(a1 + hu1, a2 + hu2)− f(a1, a2)

h
− ⟨∇f,u⟩

∣∣∣− 0
∣∣∣ < ϵ, (454)

which is equivalent to ∣∣∣f(a1 + hu1, a2 + hu2)− f(a1, a2)

h
− ⟨∇f,u⟩

∣∣∣ < ϵ, (455)

which by definition says that

lim
h→0

f(a1 + hu1, a2 + hu2)− f(a1, a2)

h
= ⟨∇f,u⟩. (456)
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Example 14.2. Find the directional derivative of the function f(x, y) = x3 − 3xy + 4y2 in the direction
u = (1, 12). Evaluate Dûf(1, 2).

Let’s now compute the partial derivatives:

∂xf = 3x2 − 3y (457)

∂yf = −3x+ 8y. (458)

These are continuous and therefore f is differentiable.

Since f is differentiable one has from proposition 14.1,

Dûf = ⟨∇f, û⟩ (459)

So let’s make u a unit vector. Its length is ||u|| =
√
5
2 . Therefore, û = (2/

√
5, 1/

√
5) and

Dûf = ⟨(3x2 − 3y,−3x+ 8y), (2/
√
5, 1/

√
5)⟩ = 2/

√
5(3x2 − 3y) + 1/

√
5(−3x+ 8y) (460)

=
6√
5
x2 − 3√

5
x+

2√
5
y. (461)

Evaluating at (1, 2) gives

Duf(1, 2) =
7√
5
. (462)

14.3 Properties of the Gradient Vector

We have already seen one interesting property of the gradient vector. Namely for differentiable functions,

Duf = ⟨∇f,u⟩. (463)

Another interesting property follows from considering level sets/curves/surfaces. Suppose we consider
a level curve γ of a continuous function of two variables f(x, y), i.e. we look at

{(x, y) ∈ R2 : f(x, y) = k, k = const}. (464)

The level curve γ can expressed as a continuous vector-valued function r(t) = (x = r1(t), y = r2(t)). So
we have

g(t) = f(r1(t), r2(t)) = k. (465)

We note that dg/dt = 0 and suppose ∂f
∂x and ∂f

∂y exist. We now compute df(r1(t),r2(t)/dt using the chain rule:

0 =
∂f

∂x

dr1
dt

+
∂f

∂y

dr2
dt

= ⟨∇f, r′(t)⟩. (466)

The vector r′(t) is tangent to the curve γ. Hence ∇f must be orthogonal to γ, i.e. the gradient vector
is orthogonal to the level curves. Note that this generalised to level surfaces and general level sets.

The final interesting property of the gradient vector that we will mention here is that ∇f(x) points
in the direction of maximum rate of increase of f at x, and that maximum rate of change is ||∇f(x)||.
Precisely:

Proposition 14.2. Suppose f is a differentiable of n-variables. The maximum value of the directional
derivative Duf(x) is ||∇f(x)|| and it occurs when the unit vector u is in the same direction as ∇f .

Proof. From propositions 14.1 and 3.2 one has

Duf = ⟨∇f,u⟩ = ||u||||∇f || cos θ = ||∇f || cos θ. (467)

The left-hand side is maximised when θ = 0. Hence, Duf has maximimum ||∇f || and this occurs when
θ = 0, i.e. when u and ∇f are in the same direction.
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15 Extrema: Maxima and Minima

15.1 Review of Single Variables

Here we briefly recall the notions associated to extrema of functions of a single variable.

Definition 15.1 (Maxima/Minima/Extrema). Let f : D → R where D is a subset of R. We have the
following notions of maxima and minima (collectively known as extrema):

• The point a ∈ D is said to be a local maximum for f if there exists an ϵ > 0 such that f(x) ≤ f(a)
for all x ∈ (a− ϵ, a+ ϵ).

• The point a ∈ D is said to be a local minimum for f if there exists an ϵ > 0 such that f(x) ≥ f(a)
for all x ∈ (a− ϵ, a+ ϵ).

• The point a ∈ D is said to be a global maximum for f if f(x) ≤ f(a) for all x ∈ D.

• The point a ∈ D is said to be a global minimum for f if f(x) ≥ f(a) for all x ∈ D.

One can place the word strict in front of these notions if the inequality is strict.

This definition is illustrated with the following picture:

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
x

-2

-1

1

2

3
f (x)

Here we have a function on the interval D = [−5
4 , 2].

• The point in purple is a local max.

• The point in cyan is a local min.

• The point in orange is a global max.

• The point in green is a global min.

Recall also the following definition:

Definition 15.2 (Critical/Stationary Point). Let dom(f) be a subset of R. A stationary point of a function
f : dom(f) → R is a number a ∈ R such that f ′(a) = 0. A critical point a ∈ R of f is a stationary point
or a point where f ′(a) does not exist.

Example 15.1. Let

f(x) =

−1
8x x < 0(
x− 1

2

)3
+ 1

8 x ≥ 0.
(468)

This is plotted below:
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This function is continuous on R: observe that limx→0 f(x) = 0 = f(0). For x ̸= 0, the functions
derivative is the following

f ′(x) =

−1
8 x < 0

3
(
x− 1

2

)2
x > 0.

(469)

Therefore is has a stationary point at x = 1
2 (plotted in green). For x = 0 then

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

(h− 1
2)

3 + 1
8 − 0

h
=

3

4
. (470)

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

−1
8h− 0

h
= −1

8
. (471)

Therefore, f ′(0) doesn’t exist, which means its a critical point, shown in cyan in the figure above.

15.1.1 Local Extrema

The following theorem of Fermat gives a nessecary condition for finding a local min/max for differentiable
functions via stationary points:

Theorem 15.1 (Interior Extremum Theorem). Suppose f has a local minimum or maximum at a. If f is
differentiable at a then f ′(a) = 0, i.e. a is a stationary point.

This can be used to attempt to identify local maximums and minimums for functions that are differen-
tiable. You should think that it narrows down the points we need to examine as potential local min/max.
For example,

Example 15.2. Let f(x) = x3 − 2x2 + 4. The function f is differentiable everywhere with

f ′(x) = 3x2 − 4x. (472)

To find the stationary points we consider 3x2 − 4x = 0, which gives the stationary points x = 0, x = 4
3 .

What this doesn’t tell us is whether the stationary points are local maximum/minimums or something
else. There are a few ways to check, the most common is the second derivative test:

Proposition 15.1 (Second Derivative Test). Suppose f ′′ is continuous near a. If a is a stationary point

• and f ′′(a) > 0, then f has a local min at a.

• and f ′′(a) < 0, then f has a local max at a.

• and if f ′′(a) = 0, then the test is inconclusive.
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Let’s return to our example

Example 15.3. Let f(x) = x3 − 2x2 + 4. We’ve found

f ′(x) = 3x2 − 4x. (473)

You can compute that

f ′′(x) = 6x− 4, (474)

which is continuous. So, evaluting at the stationary points x = 0, x = 4
3 gives

f ′′(0) = −4 < 0 =⇒ (0, f(0)) is a max. (475)

f ′′(
4

3
) = 4 > 0 =⇒ (

4

3
, f(

4

3
)) is a min.. (476)

What’s so inconclusive about the case f ′′(0) = 0? Here’s a little bit of context:

Definition 15.3. Suppose f is a function of a single variable x which is twice differentiable with continuous
second derivative on its domain dom(f). A point a ∈ dom(f) is said to be a point of inflection of f ′′(x)
changes sign at a, i.e. f ′′(a) = 0, f ′′(x) > 0 (f ′′(x) < 0) for x < a and f ′′(x) < 0 (f ′′(x) > 0) for x > a.

Example 15.4. Let’s look at three examples:

1. Let

f(x) = (x− 1

2
)3. (477)

Then

f ′(x) = 3(x− 1

2
)2, f ′′(x) = 6(x− 1

2
). (478)

So, f ′(x) = 0 implies x = 1
2 is a stationary point, with f ′′(12) = 0. This is in fact a point of inflection

(and not a maxima or minima) as shown in the following plot:

x

-3

-2

-1

1

2

3

f (x)

2. Let

f(x) = (x− 1

2
)4. (479)

Then

f ′(x) = 4(x− 1

2
)3, f ′′(x) = 12(x− 1

2
)2. (480)

So, f ′(x) = 0 implies x = 1
2 is a stationary point, with f ′′(12) = 0. However this is not a point of

inflection since f ′′(x) ≥ 0 for all x. In fact x = 1
2 is a minima:
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3. Finally, a point where f ′′ = 0 does not need to be a stationary point. For example, take

f(x) = − sin(x). (481)

This gives

f ′(x) = − cos(x), f ′′(x) = sin(x). (482)

We have f ′′(nπ) = 0 for n integer and f ′′(x) changes sign at nπ, i.e. nπ is a point of inflection.
However, f ′(nπ) = −1(±1)n ̸= 0. So, it is not a stationary point and certainly not a maxima or
minima of − sin(x).

15.1.2 Global Extrema

The following theorem characterises when one can find an absolute maxima or minima for a function:

Theorem 15.2 (Extreme Value Theorem). Suppose f : [a, b] → R is continuous. Then f attains an
absolute maximum f(c) and absolute minimum f(d) for some c, d ∈ [a, b].

Remark 15.1. Relax closedness of the interval or continuity and this theorem is not true.

To go from local maximum/minimums to absolute maximum/minimums of a continuous function f on
a closed interval [a, b] we have the following method:

• Find the critical points of f in (a, b) by considering f ′: call them c1, ..., cm ∈ R and evaluate f at
c1, ..., cm, i.e. compute f(c1), ..., f(cm).

• Evaluate f(a) and f(b).

• The absolute maximum of f on [a, b] is then

max(f(a), f(b), f(c1), ..., f(cm)). (483)

• The absolute minimum of f on [a, b] is then

min(f(a), f(b), f(c1), ..., f(cm)). (484)

Example 15.5. Take f(x) = |x| on [−1, 1]. One has the following derivative

f ′(x) =


1 x > 0

−1 x < 0

undefined x = 0.

(485)

Hence, there are no stationary points but there is a critical point at x = 0, for which f(0) = 0. We can
evaluate at the end points f(−1) = 1 = f(1). Therefore, the absolute max of f is

max(1, 0) = 1, (486)

and the absolute min of f is

max(1, 0) = 0. (487)
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15.2 Local Extrema of Functions of Two Variables

We can generalise our notion of local max/min to 2-variables. Effectively, a local max is a point a in R2

such that f(a) is greater than f as any point ‘near’ a. Similarly, a local min is a point a in R2 such that
f(a) is less than f as any point ‘near’ a. We formalise this as follows:

Definition 15.4 (Local Maxima/Minima). Let f : D → R where D is a subset of R2. We have the
following notions of maxima and minima:

• The point a ∈ D is said to be a local maximum for f if there exists an ϵ > 0 such that f(x) ≤ f(a)
for all x ∈ {x ∈ R2 : ||x− a|| < ϵ}.

• The point a ∈ D is said to be a local minimum for f if there exists an ϵ > 0 such that f(x) ≥ f(a)
for all x ∈ {x ∈ R2 : ||x− a|| < ϵ}.

One can place the word strict in front of these notions if the inequality is strict.

The notions of critical and stationary points generalise as:

Definition 15.5 (Critical/Stationary Point). Let dom(f) be a subset of R2. A stationary point of a
function f : dom(f) → R is a point a ∈ R such that ∂xf(a) = 0 and ∂yf(a) = 0. A critical point a ∈ R2

of f is a stationary point or a point where ∂xf(a) and/or ∂yf(a) does not exist.

We have the generalisation of theorem 15.1:

Theorem 15.3. Suppose f has a local max/min at (a, b) and ∂xf(a, b) and ∂yf(a, b) exist. Then (a, b)
is a stationary point.

Proof. If f has a local max/min at (a, b) then g(x) = f(x, b) has a local max/min at a. By theorem 15.1
g′(a) = 0, which implies ∂xf(a, b) = 0. Similarly, if f has a local max/min at (a, b) then h(y) = f(a, y)
has a local max/min at b then by theorem 15.1 h′(b) = 0, which implies ∂yf(a, b) = 0.

The generalisation of the second derivative test for single variable functions is

Proposition 15.2. Suppose the second partial derivatives of f are continuous on a disk with center (a, b),
and suppose that (a, b) is a stationary point of f . Further, let

D(a, b) =

∣∣∣∣ ( ∂2
xf(a, b) ∂2

xyf(a, b)

∂2
xyf(a, b) ∂2

yf(a, b)

) ∣∣∣∣ = ∂2
xf(a, b)∂

2
yf(a, b)− [∂2

xyf(a, b)]
2. (488)

The we have the following cases:

• If D(a, b) > 0 and ∂2
xf(a, b) > 0, then f(a, b) is a local min.

• If D(a, b) > 0 and ∂2
xf(a, b) < 0, then f(a, b) is a local max.

• If D(a, b) < 0, then f(a, b) is a saddle point.

• If D(a, b) = 0, then the test is inconclusive.

Example 15.6. Suppose f(x, y) = axy − bx2 − cy2 with a ̸= 0 and b, c > 0. This function has partial
derivatives

∂xf = ay − 2bx, ∂yf = ax− 2cy. (489)

To find the stationary points we look for ∂xf = 0 and ∂yf = 0. One can solve the first of these for x = a
2by

which gives (a2
2b

− 2c
)
y = 0. (490)

So either a2 − 4bc = 0 or y = 0. So one has two cases:



15.2 Local Extrema of Functions of Two Variables 91

1. If a2 − 4bc ̸= 0 then (x, y) = (0, 0) is a stationary point.

2. If a2 − 4bc = 0 then (x, y) = ( a
2by, y) is a line of stationary points.

Let’s find the second deritivatives:

∂2
xf = −2b, ∂2

yf = −2c, ∂2
xyf = a. (491)

So

D = ∂2
xf∂

2
yf − (∂2

xyf)
2 = 4bc− a2. (492)

Let’s compute our cases:

1. If a2 − 4bc < 0 then (x, y) = (0, 0) is a stationary point, D(0, 0) > 0 and ∂2
xf(0, 0) < 0 so we have

a maximum at (0, 0) by the second derivative test.

2. If a2 − 4bc > 0 then (x, y) = (0, 0) is a stationary point, D(0, 0) < 0, so we have a saddle point at
(0, 0) by the second derivative test.

3. If a2 − 4bc = 0 then (x, y) = ( a
2by, y) is a line of stationary points, but the second derivative test is

inconclusive. One can show that this is a line of maximums.

Here is the plots of the three cases (1,2,3 from left to right):

Example 15.7. Let

f(x, y) =
x2 + y2 + xy − 1

2x

x2 + y2
. (493)

Note that its domain of definition is {(x, y) : x, y ̸= 0}. To look for stationary points in its domain we
compute:

∂xf =
(2y − 1)(y2 − x2)

(x2 + y2)2
, ∂yf =

x(x2 + y − y2)

(x2 + y2)2
(494)

So,

∂xf = 0 =⇒ y =
1

2
y = ±x. (495)

Therefore,

∂yf(x,
1

2
) =

4x

1 + x2
, =⇒ x = 0 (496)

and

∂yf(x,±x) =
x(x2 ± x− x2)

2x2
= ± 1

4x2
̸= 0. (497)
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So, (x, y) = (0, 12) is a stationary point of f .

Lets check its second derivative

∂2
xf =

x(2y − 1)(x2 − 3y2)

(x2 + y2)3
, ∂2

yf =
x3(1− 6y) + xy2(2y − 3)

(x2 + y2)3
, (498)

and

∂2
xyf = −x4 + 3x2(1− 2y)y + (y − 1)y3

(x2 + y2)3
. (499)

So,

D
(
0,

1

2

)
= −4 < 0. (500)

Therefore, (x, y) = (0, 12) is a saddle point.

Example 15.8. Suppose

f(x, y) = arctan(xy). (501)

Note the following trick if you forget the derivative of arctan. Let w(z) = arctan(z). Therefore, from the
chain rule

z = tan(w(z)) =⇒ 1 =
dz

dz
=

d tan(w)

dw

dw

dz
. (502)

Now,9

tan(w) =
sin(w)

cos(w)
. (503)

So, from the product rule

d

dw
tan(w) =

d
dw sin(w)

cos(w)
+ sin(w)

d

dw

1

cos(w)
= 1 +

sin2(w)

cos2(w)
= 1 + tan2(w). (504)

Therefore,

dz

dz
= 1 = (1 + tan2(z))

dw

dz
=⇒ dw

dz
=

1

1 + z2
. (505)

So,

d

dz
arctan(z) =

1

1 + z2
. (506)

So, returning to the maxima and minima of arctan(xy) we can search for stationary points by consid-
ering

∂xf =
y

1 + (xy)2
, ∂yf =

x

1 + (xy)2
(507)

using the chain rule. The only stationary point is (x, y) = (0, 0) and there are no critical points. Let’s
attempt the second derivative test,

∂2
xf = − 2y3x

(1 + (xy)2)2
, ∂2

yf = − 2x3y

(1 + (xy)2)2
, ∂2

xyf =
1− x2y2

(1 + x2y2)2
. (508)

So,

D(0, 0) = −1 < 0. (509)

Therefore, we have a saddle point at (x, y) = (0, 0).
9I remember this with a very stupid rule: tan = sheep

cows
because you could happily stack a sheep on a cow since it’s smaller

but a cow would crush the sheep.
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15.3 Global Extrema of Functions of Two Variables

Definition 15.6 (Global Maxima/Minima). Let f : D → R where D is a subset of R2. We have the
following notions of maxima and minima:

• The point a ∈ D is said to be a global maximum for f if f(x) ≤ f(a) for all x ∈ D.

• The point a ∈ D is said to be a global minimum for f if f(x) ≥ f(a) for all x ∈ D..

One can place the word strict in front of these notions if the inequality is strict.

What happens to the extreme value theorem 15.2 for function of two variables. We need a notion of
closedness for sets in R2 to replace the closed interval [a, b]. Effectively, what one requires is that the set
in R2 contains all points on its boundary. For example,

would be closed where as,

would be not be closed. For this course you can associated the term closed with contains all boundary
points.

Non-Examinable: If you’re interested in making this precise read on. The relevant definition to capture
the idea of boundary points is this:

Definition 15.7. Let S be a set in R2, x ∈ R2 is a limit point of S if for all ϵ > 0 there exists y ∈ S
such that

y ∈ {(x, y) ∈ R2 : ||x− y|| < ϵ}. (510)

The following would be a limit points of S

×

×
×

×

The following would not be a limit point of S:

×

×

×

×

We then characterise closedness with the condition that all boundary points must be included:
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Definition 15.8. A set S is closed if S contains all its limit points.

Something slightly problematic is that R as a subset of R2 (i.e. the x-axis say) is closed. The property
we need to capture from the extreme value theorem for single variable functions is the fact we were using
an interval, which is finite or ‘bounded’.

Definition 15.9. Let S be a set in R2. The set S is bounded if S is contained in a disk/ball of radius
R < ∞:

BR = {(x, y) ∈ R2 : x2 + y2 ≤ R2}. (511)

Theorem 15.4. If f is continuous on a closed and bounded set D in R2, then f attains an absolute
maximum value f(x1, y1) and an absolute minimum f(x2, y2) at some points (x1, y1) and (x2, y2) in D.

Why is this theorem important you may ask? Well, if we have a continuous function on a closed and
bounded set D we know that the global max/min are attained. If the set was not closed or bounded
the function could approach a maximum but never attain it. So we know the function attains its global
max/min in the set D. At this point we know the local max/min are contained in the stationary points
of the function, if those lie in D then these are good candidates for global max/min. We have two other
places to check: 1. the critical points, since the function can have odd behaviour there (think |x| has a
minimum at x = 0 but not stationary points), 2. the boundary, the value on the boundary could be greater
than all these points.

So, to go from local maximum/minimums to absolute maximum/minimums of a continuous function
f on a closed and bounded set D we have the following method:

• Find the critical points of f in D by considering ∂xf, ∂yf : call them c1, ..., cm ∈ R2 and evaluate f
at c1, ..., cm, i.e. compute f(c1), ..., f(cm).

• Evaluate f on the boundary of D.

• The absolute maximum of f on D is then the maximum value from steps 1 and 2.

• The absolute minimum of f on D is then the minimum value from steps 1 and 2.

Example 15.9. Find the absolute maximum and minimum values of the function

f(x, y) = −x2 + 7xy + 1 + 3y (512)

on the square {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

Note that we have a polynomial, so we have continuity everywhere. Let’s find the critical points:

∂xf = −2x+ 7y, ∂yf = 7x+ 3. (513)

Therefore, x = −3
7 for ∂yf = 0 and y = − 6

49 for ∂xf = 0. Now one can evaluate f(−3
7 ,−

6
49) =

40
49 .

Let’s evaluate on the boundary which is given by the four sets

{(x, y) ∈ R2 : x = 1 and − 1 ≤ y ≤ 1} (514)

{(x, y) ∈ R2 : x = −1 and − 1 ≤ y ≤ 1} (515)

{(x, y) ∈ R2 : y = 1 and − 1 ≤ x ≤ 1} (516)

{(x, y) ∈ R2 : y = −1 and − 1 ≤ x ≤ 1}. (517)

1. x = 1 then f(1, y) = 10y, which is an increasing function from −10 at y = −1 to 10 at y = 1.

2. x = −1 then f(−1, y) = −4y, which is an decreasing function from 4 at y = −1 to −4 at y = 1.
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3. y = 1 then f(x, 1) = −x2 + 7x + 4, which is 10 at x = 1 and −4 at x = −1 and has a maximum
of at x = 7

2 > 1 (so is not in our domain).

4. y = −1 then f(x, 1) = −x2 − 7x− 2, which is 4 at x = −1 and −10 at x = 1 and has a maximum
at x = −7

2 < −1 (so is not in our domain).

Therefore, our absolute maximum is 10 at (x, y) = (1, 1) and absolute minimum is −10 at (−1,−1).
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16 Optimization: Lagrange Multipliers

In the previous section 15, we studied maximums and minimums of functions. If the function represents
some physical quantity, say a heat distribution in a room, then the maximum and minimum come with a
physical interpretation also, the point with highest and lowest temperture respectively. You could imagine
that you want to know where these maximums and minimums are in a physical problem to help you with
a decision, i.e. if its a cold day you want to sit at the hottest place in the room. On a less personal level:
suppose you work for a renewable energy company and you want to build a new wind farm. You could
collect data on where the wind speeds around the world. This could be modeled with a function s which
depends on the longditude and lattitude (x, y). Finding the maximum is then important to know where to
place your windmills. However, you may not want to place them anywhere in the world. You could have a
constraint on where they can be coming from where the energy needs to be, the cost of transport of that
energy to the consumer and perhaps where people live. This would be a contrained optimisation problem:
find the maximum (or minimum) of a function with a constraint. This is where the method of Lagrange
multipliers comes into play: find the maximum or minimum of a function f(x, y, z) given a constraint that
g(x, y, z) = k where k is a constant.

16.1 Illustration of the Idea

Let’s think about finding extreme values of a function of two variables f(x, y) given a constraint g(x, y) = k.
So (x, y, f(x, y)) determines a surface in space R3. The constaint is a level curve of g, i.e. a curve in
the plane. We can plot these together in the plane R2, i.e. we can plot the level curve of g along with
a collection of level curves of f , f(x, y) = k1, ..., kn. This is plotted below for f(x, y) = x2

2 + y2 and
g(x, y) = x2 − y2 = 1 and k1 =

1
10 , k2 = 1, k3 =

19
10 , k4 =

14
5 ....

k1 k2

k3

k4

-2 -1 1 2

-2

-1

1

2

We can see here that we’ve rephrased the problem of minimisation under the constraint as: which is
the lowest level curve of f(x, y) which touches the level curve given by the constraint? We can see this is
the level curve of f that is tangent to the level curve g(x, y) = k, i.e. the ellipse that touches the hyoerbola
on the y-axis. You can also see this from the neighbouring picture in 3D.

16.2 Derivation of the Method

It turns out that above is the general principle: the extreme values of f(x, y) under the constraint g(x, y) =
k occur when the level set of f(x, y) is tangent to the level curve g(x, y) = k. This can be argued as
follows. Suppose we want to find the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = k.
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• An extreme point for f(x, y, z) subject to the constraint g(x, y, z) = k must lie of the surface S
defined by g(x, y, z) = k. Let this point be denoted x0 = (x0, y0, z0).

• Suppose we take a curve γ in S with equation r(t) = (r1(t), r2(t), r3(t)) lies on S and at t0, r(t0) =
(x0, y0, z0). So it passes through the extreme point of f subject to the constraint g(x, y, z) = k.

• Denote h(t) = f(r(t)) = f(r1(t), r2(t), r3(t)). Note that since r(t) constrains the inputs of f to the
surface S, then the extreme value of f subject to the constraint g(x, y, z) = k occur at the extreme
values of h, i.e. when the derivative of h vanishes. We know that the extreme value of f subject to
the constraint g(x, y, z) = k occurs at (x0, y0, z0) so

h′(t0) = 0. (518)

• Using the chain rule gives

0 = h′(t0) = ∂xf(x0, y0, z0)r
′
1(t0) + ∂yf(x0, y0, z0)r

′
2(t0) + ∂zf(x0, y0, z0)r

′
3(t0) (519)

= ⟨∇f(x0), r
′(t0)⟩. (520)

So ∇f(x0) is orthogonal to r′(t0). Note that the curve determined by r was an arbitrary curve
in S that passes through x0. So this has to be true for any such curve and, therefore, ∇f(x0) is
orthogonal to the level surface S determined by the constraint g(x) = k.

• As shown in section 14.3, the gradient of g is orthogonal to the level surfaces of g.

• This shows that ∇f(x0) and ∇g(x0) must be parallel, i.e.

∇f(x0) = λ∇g(x0) (521)

for λ ∈ R, which gets called the Lagrange Multiplier, and ∇g(x0) ̸= 0. This is the equation we want
to solve to find the extreme values of f under the constraint g(x, y, z) = k.

This is a sketch of the derivation of the equation. In practise what you need to do is the following:

The method of Lagrange Multipliers: Suppose you wish to find the maximum and minimum values of
f(x, y, z) subject to the constraint g(x, y, z) = k under the assumption that these extreme values exist
and ∇g ̸= 0 on the surface {g(x, y, z) = k}. Then one executes the following algorithm:

1. Find all values of x, y, z and λ such that

∇f = λ∇g and g(x, y, z) = k. (522)

2. Evaluate f at all points (x, y, z, λ) that result from the first step. The largest of these is the maximum
of f subject to the constraint and the smallest is the minimum of f subject to the constraint.

16.3 Examples

Example 16.1. Find the extreme values of

f(x, y) = x2 + 2y2

subject to the constraint
g(x, y) = x2 + y2 = 1

.

Let’s compute the gradient of f and g. We have

∇f = (2x, 4y), ∇g = (2x, 2y). (523)
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So we want to solve the system of equations

2x = 2λx (524)

4y = 2λy (525)

g(x, y) = x2 + y2 = 1. (526)

So the first has solutions x = 0 or λ = 1.

1. If x = 0 then y = ±1 from the constaint y2 = 1− x2. The second equation then enforces λ = 2.

2. If λ = 1 then y = 0 from the second equation. This enforces x = ±1 from the constraint.

Therefore we have 4 solutions (x, y, λ) = (0, 1, 2), (x, y, λ) = (0,−1, 2), (x, y, λ) = (1, 0, 1) and (x, y, λ) =
(−1, 0, 1). Evaluating f at these points gives

f(0, 1) = 2, f(0,−1) = 2, f(1, 0) = 1, f(−1, 0) = 1. (527)

So we have the maximum of f subject to the constraint g is 2 at (0,±1) and the minimum of f subject
to the constraint g is 1 at (±1, 0).

-1.0

-0.5

0.5

1.0

Example 16.2. The plane x+ y + 2z = 2 intersects the elliptic paraboloid z = x2 + y2 in the an ellipse.
Find the points on this ellipse nearest and farthest the from origin (0, 0, 0).

First, notice that the distance from the origin is given by

d(x, y, z) =
√

x2 + y2 + z2 (528)

Note that minimising and maximising the distance from the origin is equivalent to maximising/minimising
the distance squared. Second, note that we can solve for z here using the plane equation:

z = 1− 1

2
x− 1

2
y. (529)
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Therefore, we want to minimise/maximise

f(x, y) = d
(
x, y, 1− 1

2
x− 1

2
y
)2

= x2 + y2 +
(
1− 1

2
x− 1

2
y
)2
. (530)

We need to find an equation for our constraint, which is to lie on the ellipse determined by the
intersection of the paraboloid and the plane. To do this we can substitute in the plane equation solved for
z:

1− 1

2
x− 1

2
y = x2 + y2 =⇒ g(x, y) = x2 + y2 +

1

2
x+

1

2
y = 1. (531)

Therefore, by the method of Lagrange multipliers, we need to find (x, y, λ) such that

∇f = λ∇g (532)

g(x, y) = 1 (533)

Computing the gradients we have

∇f =
(
− 1 +

5

2
x+

1

2
y,−1 +

1

2
x+

5

2
y
)
, (534)

∇g =
(
2x+

1

2
, 2y +

1

2

)
. (535)

So, equating ∇f = λ∇g gives

−1 +
5

2
x+

1

2
y = λ

(
2x+

1

2

)
(536)

−1 +
1

2
x+

5

2
y = λ

(
2y +

1

2

)
. (537)

Solving the second for x gives

x = 2 + λ+ (4λ− 5)y. (538)

Substituting this into the first gives

(λ− 1)(2 + λ+ (4λ− 6)y) = 0. (539)

So either λ = 1 or 2 + λ+ (4λ− 6)y = 0. If λ ̸= 3
2 then the second can be solved for y

y = − 2 + λ

4λ− 6
. (540)

If λ = 3
2 then 2 + λ = 0, i.e. λ = −2 which is a contradiction. So either

y = − 2 + λ

4λ− 6
or λ = 1. (541)

If λ = 1 then from (538) x = 3− y. Therefore, from the constraint

g(3− y, y) = (3− y)2 + y2 +
1

2
(3− y) +

1

2
y = 1. (542)

So, y has to be a root of the polynomial:

2y2 − 6y +
19

2
= 0 =⇒ 2

(
y − 3

2

)2
+

10

2
= 0 (543)

which has no solution.
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If y = − 2+λ
4λ−6 then

x = − 2 + λ

4λ− 6
(544)

from (538). Then plugging x, y into the constraint gives that λ must satisfy:

9λ2 − 27λ+ 8

4(3− 2λ)2
= 0 =⇒ λ =

1

3
, or λ =

8

3
. (545)

This then gives x = y = 1
2 or x = y = −1. We can then solve for z via the plane equation this gives two

points in R3:

(x, y, z) = (
1

2
,
1

2
,
1

2
), or (x, y, z) = (−1,−1, 2). (546)

To figure out the max/min we can simply plug into the distance:

d(
1

2
,
1

2
,
1

2
)2 =

3

4
, d(−1,−1, 2)2 = 6. (547)

Therefore, distance is maximise at (−1,−1, 2) and minimised (12 ,
1
2 ,

1
2).

Example 16.3. Find the max/min of f(x, y) = x2 + y2 + 4x− 4y subject to the constraint x2 + y2 ≤ 9.

This problem can be dealt with using Lagrange multipliers by introducting a dummy variable to encode
the constraint with an equality:

x2 + y2 ≤ 9 =⇒ x2 + y2 − 9 ≤ 0. (548)

We can write this as

9− x2 − y2 = z2 (549)

since, for x2+y2−9 ≤ 0, 9−x2−y2 has to be some positive number. Therefore, we want to max/minimise

f(x, y, z) = x2 + y2 + 4x− 4y, (550)

subject to the constraint

g(x, y, z) = 9− x2 − y2 − z2 = 0. (551)

Computing gradients gives

∇f = (2x+ 4, 2y − 4, 0), ∇g = (−2x,−2y,−2z). (552)

Therefore, the system resulting from the Lagrange multiplier method gives

2x+ 4 = −2λx (553)

2y − 4 = −2λy (554)

0 = −2λz (555)

Therefore, λ = 0 or z = 0. If λ = 0 then x = −2 and y = 2. If z = 0 then

x =
−2

1 + λ
, y =

2

1 + λ
. (556)

Substituting into our constraint gives

9− 8

(1 + λ)2
= 0 =⇒ λ = −1± 2

√
2

3
, (557)

and, therefore,

(x, y, z) = (− 3√
2
,
3√
2
, 0), (x, y, z) = (

3√
2
,− 3√

2
, 0). (558)

Evalutating f at these points gives a maximum of 9 + 12
√
2 at (x, y) = ( 3√

2
,− 3√

2
) and a minimum at

(x, y) = (−2, 2).
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17 Complex Numbers

What x solves the equation

x2 = −1? (559)

Clearly, no real number can satisfy this equation. However, we could define a new ‘number’ i =
√
−1 to

be a solution to this equation. This is how imaginary and complex numbers arise.

17.1 Introduction: Definition and Operations

Definition 17.1. The complex numbers, denoted C, is the set or collection of all numbers of the form

z = a+ bi (560)

where a, b ∈ R and i is a specific element, called the imaginary unit, which satisfies i2 = 1.

One can introduce some terminology to discuss complex numbers:

• The real part of z = a+ bi is a, this is sometimes written Re(z) = a.

• The imaginary part of z = a+ bi is b, this is sometimes written Im(z) = b.

• The complex conjugate of a complex number z = a+ bi, denoted z̄, is given by,

z̄ = a− bi. (561)

• The absolute value or modulus of a complex number z = a+ bi is denoted |z| and is given by

|z| =
√
a2 + b2. (562)

• Two complex numbers z1, z2 ∈ C are equal if their real parts are equal and their imaginary parts are
equal,

Re(z1) = Re(z2), Im(z1) = Im(z2). (563)

We can identify C with R2 via

z = a+ bi 7→ (a, b) ∈ R2, (a, b) 7→ a+ bi ∈ C, (564)

which means that we can draw C as we drew R2. We associate the x-axis with the real part of the complex
numbers and the y-axis with the imaginary part of the complex numbers. In this context the plane is called
the Argand or complex plane and the x-axis is called the real axis and the y-axis is called the imaginary
axis. This is plotted below:

o 1

2i

Re(z)

Im(z)

1 + 2i
×

i×

−i×
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Note that the distance of z ∈ C from the origin is given by the absolute value of z, i.e. |z| =
√
a2 + b2.

One can define addition and subtraction of imaginary numbers. Suppose

z1 = a+ bi z2 = c+ di. (565)

Then,

z1 + z2 = (a+ c) + (b+ d)i, z1 − z2 = (a− c) + (b− d)i. (566)

Further multiplication is defined with the usual commutative and distributive laws holding:

z1z2 = (a+ bi)(c+ di) = (ac− bd) + (ad+ cb)i (567)

where we’ve used i2 = −1.

Complex conjugates satisfy some very nice relations:

Proposition 17.1. For z, w ∈ C one has

z + w = z̄ + w̄, zw = z̄w̄, zn = z̄n, zz̄ = |z|2 (568)

Proof. Problem Sheet 10.

Division of two complex numbers is slightly more tricky. Suppose one has the quotient z
w with z = a+bi

and w = c+ di. One can use the complex conjugate of w and the very useful trick of multiplying by 1 to
simplify a quotient:

z

w
=

z

w

w

w
=

zw

|w|2
=

(a+ bi)(c− di)

|w|2
=

ac+ bd

|w|2
+

bc− ad

|w|2
i (569)

17.2 Polar Form, DeMoivre’s Theorem, Roots

As we’ve discussed above C can be identified with the plane R2. If you recall section 1, we discussed polar
coordinates (r, θ). Where we had

x = r cos θ, y = r sin θ. (570)

We can simply translate now to write any complex number z as

z = a+ bi = r(cos θ + i sin θ). (571)

This is the polar form of a complex number. The following picture should help with visualisation:

r

θ

o a

b

Re(z)

Im(z)

a+ bi
×
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From our discussion on polar coordinates in section 1, we have that

r = |z| =
√
a2 + b2, tan θ =

b

a
. (572)

One often calls the angle θ the argument or phase of z, denoted θ = arg(z) which is usually restricted
to θ ∈ [0, 2π) (or often θ ∈ (−π, π]).

Example 17.1. Write the following complex numbers in polar form:

z1 = 1 + i, z2 = 1− 7i, z3 =
√
2− 5i. (573)

Let’s find the absolute value |z1| =
√
2, |z2| = 5

√
2 and |z3| = 3

√
3. Now

1 + i =
√
2(cos θ + i sin θ) =⇒ cos θ =

1√
2
= sin θ =⇒ θ =

π

4
. (574)

Similarly

1− 7i = 5
√
2(cos θ + i sin θ) =⇒ cos θ =

1

5
√
2
, sin θ = − 7

5
√
2

=⇒ θ = 2π − arccos(
1

5
√
2
), (575)

or θ ≈ 1.545π. Finally,

√
2− 5i = 3

√
3(cos θ + i sin θ) =⇒ cos θ =

√
2

3
√
3
, sin θ = − 5

3
√
3

=⇒ θ = 2π − arccos(

√
2

3
√
3
), (576)

or θ ≈ 1.588π.

The polar form lets us gain new insight on mulitplication and division. Recall the trigonometic formulas

cos θ1 sin θ2 =
1

2

[
sin(θ1 + θ2)− sin(θ1 − θ2)

]
(577)

cos θ1 cos θ2 =
1

2

[
cos(θ1 − θ2) + cos(θ1 + θ2)

]
(578)

sin θ1 sin θ2 =
1

2

[
cos(θ1 − θ2)− cos(θ1 + θ2)

]
(579)

This means

z1z2 = r1r2

[
cos θ1 cos θ2 − sin θ1 sin θ2 + i cos θ1 sin θ2 + i sin θ2 cos θ1

]
(580)

= r1r2

[
cos(θ1 + θ2) + i sin(θ1 + θ2)

]
(581)

and

z1
z2

=
r1
r2

[
cos(θ1 − θ2) + i sin(θ1 − θ2)

]
, z2 ̸= 0. (582)

We are about to state a theorem about the polar form of zn. The proof of this is by a method known as
induction. Theorems that can be proved in this way depend on a natural number n. The idea is to prove
the base case n = 0 or n = 1. Then we assume that the statement holds for some n = k > 1 and prove
that it holds for n = k + 1. Since k is arbitrary this then must hold for all n.

Theorem 17.1 (De Moivre’s Theorem). If z = r(cos θ + i sin θ) and n ∈ {1, 2, 3, ...} then

zn = (r cos θ + ir sin θ)n = rn(cos(nθ) + i sin(nθ)). (583)

Proof. (Non-examinable). This is clear for n = 1. So lets prove the base case n = 2

z2 = r2(cos2 θ − sin2 θ) + 2r2i cos θ sin θ (584)
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From our trignometic formulas in equations (577)-(579) one has

z2 = r2 cos(2θ) + r2i sin(2θ). (585)

Lets assume this holds for n− 1 and prove it for n. Under this assumption

zn = rn(cos((n− 1)θ) + i sin((n− 1)θ))(cos(θ) + i sin(θ)) (586)

= rn
[
cos((n− 1)θ) cos θ − sin((n− 1)θ) sin θ

]
+ irn

[
cos((n− 1)θ) sin θ + sin((n− 1)θ) cos θ

]
.

Using the trig. identities (equations (577)-(579)) once more gives the result. Therefore, by induction we
have the result.

De Moivre’s theorem can be use to find the nth root of a complex number z, i.e. find w such that

wn = z. (587)

Writing w and z in polar form as

w = s
(
cosφ+ i sinφ

)
, z = r

(
cos θ + i sin θ) (588)

gives, via DeMoivre’s theorem,

sn
(
cos(nφ) + i sin(nφ)

)
= r

(
cos θ + i sin θ

)
. (589)

This requires,

s = r
1
n , cos(nφ) = cos θ, sin(nφ) = sin θ. (590)

This can be simplified to

s = r
1
n , φ =

θ + 2kπ

n
, (591)

where k is an integer. This gives distinct solutions for k ∈ {0, 1, ..., n−1}. So we have the following result:

Proposition 17.2. Let z = r(cos θ + i sin θ) and n ∈ {1, 2, 3, ...}. Then z has n distinct roots given by

wk = r
1
n

[
cos

(θ + 2kπ

n

)
+ i sin

(θ + 2kπ

n

)]
, (592)

for k = 0, ..., n− 1.

Remark 17.1. All n roots of z have modulus r
1
n . Hence, they lie on a circle. Moreover, successive roots

are spaced by 2π
n , i.e. they are spaced equally on the circle.

Example 17.2. Find all distinct w such that w4 = 1.

The above proposition gives us 4 distinct roots:

wk = r
1
4

[
cos

(θ + 2kπ

4

)
+ i sin

(θ + 2kπ

4

)]
(593)

for k = 0, 1, 2, 3. The absolute value of z is

r = |z| =
√
12 = 1 (594)

and θ = arctan(0) = 0. So,

wk =
[
cos

(kπ
2

)
+ i sin

(kπ
2

)]
. (595)

for k = 0, 1, 2, 3. Evaluating gives

w0 = 1, w1 = i, w2 = −1, w3 = −i. (596)
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17.3 Complex Functions and the Fundamental Theorem of Algebra

So far in this course, we’ve studied functions that take real numbers as inputs and give out real numbers
as outputs. What about functions that take complex numbers as inputs and give out complex numbers as
outputs? We would denote this notationally,

f : C → C. (597)

If z = x+ iy then

f(z) = u(x, y) + iv(x, y) (598)

for u, v : R2 → R.

17.3.1 Polynomials

Let’s start with a univariate polynomial of a complex number, z. This is an expression of the form

P (z) = anz
n + an−1z

n−1...+ a1z
1 + a0, a0, ..., an ∈ C. (599)

The degree of the polynomial is the largest power appearing in it’s equation, i.e. n. The coefficients of
the polynomial are a0, ..., an. A root of a polynomial is a complex number z0 such that P (z0) = 0. A
root’s multiplicity is the number of times that root appears in the factorisation, i.e.

P (x) = (x− 1)2(x− 7) (600)

has roots x = 1 with multiplicity 2 and x = 7 with multiplicity 1.

For univarite polynomial’s one has a very beautiful theorem about the existence of roots called the
Fundamental Theorem of Algebra.10

Theorem 17.2. Every non-zero, univariate polynomial of degree n with complex coefficients has, counted
with multiplicity, exactly n complex roots.

We do not give the proof here but we will content ourselves with a proof for quadratic equations

P (z) = az2 + bz + c. (601)

To study the roots sets P (z) = 0. Then

az2 + bz + c = 0. (602)

One can rewrite this as

a
(
z +

b

2a

)2
− b2

4a
+ c = 0. (603)

So, (
z +

b

2a

)2
=

b2 − 4ac

4a2
. (604)

Now when we consider a, b, c as complex numbers and allow for complex roots as above,
√

b2−4ac
a2

is

well-defined. Therefore,

z =
b±

√
b2 − 4ac

2a
, (605)

which is two roots unless b2 − 4ac = 0, in which case b
2a appears as a root with multiplicity 2.

10This theorem is usually attributed to Gauss in 1799. However, as is usual in mathematics there is a complicated history
here. If you’re interested in the history Wikipedia lays it out well.
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17.3.2 Complex Exponentials

The complex exponential is the extension of ex to the complex plane. We denote this with ez. How is this
defined? Well, there’s a couple of ways but one is included here for completeness. The most common is
through an infinite series11

ez
.
=

∞∑
n=0

zn

n!
= 1 + z +

z2

2
+

z3

6
+ .... (606)

It turns out that the complex exponential has the same property as the real exponential, namely

ez1+z2 = ez1ez2 . (607)

There is a further property in relation to the trignometric functions sin and cos. Let’s do some rough
manipulation with this formula.12 Consider, eix for x ∈ R. By the definition via the series one has

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ .... (608)

Noting that i2n = (−1)n for n = 1, 2, 3, ... and i2n+1 = (−1)ni for n = 1, 2, 3, ... one can collect real and
imaginary parts of eix as

eix =
(
1− x2

2!
+

x4

4!
+ ...

)
+ i

(
x− x3

3!
+

x5

5!
+ ...

)
. (609)

The real part is the series expansion of cos(x) and the imaginary part is the series expansion of sin(x). We
have arrived at Euler’s formula

eix = cosx+ i sinx. (610)

Let’s compute using this formula eiπ:

eiπ = cosπ + i sinπ = 1 =⇒ eiπ = −1. (611)

This is often viewed as one of the most remarkable relations in mathematics. On the left-hand side you
have two irrational numbers, e and π and the imaginary unit. Via Euler’s formula, these combine to give
the integer number −1!

Let’s note one last thing about the complex exponential. From Euler’s formula one has

eix = cos(x) + i sin(x), e−ix = cos(−x) + i sin(−x) = cos(x)− i sin(x). (612)

Therefore,

cos(x) =
1

2

(
eix + e−ix

)
, sin(x) =

1

2i

(
eix − e−ix

)
, (613)

which are very useful identities to know if you forget your trignometric identities.

17.3.3 A Couple of Interesting Uses/Properties Associated to Complex Numbers

This section is non-examinable.

Definition 17.2 (Complex Differentiable/Holomorphic Functions). A complex-valued function f of a single
complex variable z is complex differentiable/holomorphic at z0 if the following limit exists

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
. (614)

(Note this is defined in the complex plane the limit has to agree on any path.)
11For those of you concerned with convergence of this series one can check via the ratio test that this convergence for all

z ∈ C and is therefore a well-defined object.
12Note: the following manipulation can be made rigorous by noting the absolute convergence of the series. If this doesn’t

mean anything to you do not worry about it.
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Theorem 17.3. Let z = x+ iy and let f be a complex-valued function of z, i.e. f : C → C and

f(z) = u(x, y) + iv(x, y). (615)

If the function f is complex-differential/holomorphic it satisfies the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (616)

If f satisfies the Cauchy–Riemann equations and is continuous and the first partial derivatives of u and v
exist then f is holomorphic.

Example 17.3. The function f(z) = z2 is holomorphic:

f(z) = (x+ iy)2 = x2 − y2 + 2ixy, =⇒ u(x, y) = x2 − y2, v(x, y) = 2xy. (617)

∂xu = 2x, ∂yv = 2x (618)

∂yu = −2y, ∂xv = 2y. (619)

So, the Cauchy–Riemann equations are satisfied.

Why are holomorphic functions useful you may ask? Well they have some very nice properties:

• They are infinitely differentiable.

• At any point z0 in it’s domain you can find a small disk where the function coincides with its Taylor
series

f(z) = f(z0) + f ′(z0)(z − z0) +
1

2
f ′′(z0)(z − z0)

2 +
1

3
f ′′′(z0)(z − z0)

3 + .... (620)

This is extremely useful for approximating functions beyond the linear approximation.

• You can differentiate this series freely, just like a polynomial.

• The whole behaviour of the function can be reconstructed from knowledge of the function in the
neighbourhood of a single point.

Let’s end the section on complex numbers with a result that allows us to solve an ordinary differential
equation.

Example 17.4. Let u(x) satisfy the ordinary differential equation

d2u

dx2
+ ku = 0, (621)

for k constant. This is the equation modelling simple harmonic motion, which arises everywhere in physics.
A simple example is a mass on the end of a spring.

We want to solve for u. You may or may not of seen how to solve this equation before. Here we use a
trick: let’s write ( d2

dx2
+ k

)
u = 0, (622)

which we can manipulate to ( d

dx
+ ik

)( d

dx
− ik

)
u = 0. (623)

So, this tells us that ( d

dx
+ ik

)
f = 0 (624)
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where

f =
( d

dx
− ik

)
u. (625)

Lets assume f ̸= 0, then the first equation (624) can be rewritten as

1

−ikf

d

dx
f = 1 =⇒ d

dx

( i

k
log(f)

)
= 1 (626)

where we’ve used 1
i = −i and d

dx log f = 1
f

d
dxf by the chain rule. We can now integrate both sides to

obtain

i

k
log(f) = x+ c1 =⇒ f(x) = e−ik(c1+x) = c2e

−ikx, (627)

where c2 = e−ikc1 .
We can return to equation 625 and substitute in f to find( d

dx
− ik

)
u = c2e

−ikx. (628)

Multiply both sides by e−ikx then we find

e−ikx d

dx
u− ike−ikxu = c2e

−2ikx. (629)

The left hand side can be written as

d

dx
(e−ikxu). (630)

So, our equation becomes

d

dx
(e−ikxu) = c2e

−2ikx. (631)

Both sides can be integrated to find

e−ikxu = c2e
−2ikx + c3. (632)

Therefore,

u(x) = c3e
ikx + c2e

−ikx. (633)

You can invert the relations:

cos(kx) =
1

2

(
eikx + e−ikx

)
, sin(kx) =

1

2i

(
eikx − e−ikx

)
, (634)

to find

u(x) = c4 cos(kx) + ic5 sin(kx). (635)

where c4 and c5 are related to c3, c4.
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Appendices

A Abbreviations

• ∴ : therefore, or ‘it follows that’.

• Propn: proposition. This is a statement of a result, like a theorem only smaller and less important.

• fn: function

• defn: definition

• notn: notation

• Rem. or Rmk: remark/a comment.

• Cor.: a corollary. a statement of a result that follows from a proposition or theorem above it.

• pt: shorthand for ‘point’.

• #: shorthand for ‘number’.

• w/: shorthand for ‘with’.

• s.t.: shorthand for ‘such that’.

• w.r.t: shorthand for ‘with respect to’.

• std: shorthand for ‘standard’.

• resp.: shorthand for ‘respectively’

• //: shorthand for ‘parallel’.

• ⊥: shorthand for ‘perpendicular’ or orthogonal.

• (†), (‡), (††) (⋆), (⋆⋆), (◦): said ‘dagger’, ‘double dagger’, ‘star’, ‘double star’, ‘circle’. Labelling of
equations to refer back to in lectures. Does not hold over multiple lectures, only for that lecture.

• RHS: right-hand side

• LHS: right-hand side
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