A LIOUVILLE THEOREM FOR SOLUTIONS TO THE LINEARIZED MONGE-AMPERE EQUATION

OVIDIU SAVIN
Department of Mathematics, Columbia University
Columbia University
New York, NY 10027, USA

ABSTRACT. We prove that global Lipschitz solutions to the linearized Monge-Ampere equation

\[L_\varphi u := \sum \varphi^{ij} u_{ij} = 0 \]

must be linear in 2D. The function \(\varphi \) is assumed to have the Monge-Ampere measure \(\det D^2 \varphi \) bounded away from 0 and 1.

1. Introduction. In this paper we consider global \(C^2 \) solutions \(u : \mathbb{R}^2 \to \mathbb{R} \) that satisfy certain types of degenerate elliptic equations

\[\sum a_{ij}(x)u_{ij} = 0 \quad \text{in } \mathbb{R}^2. \tag{1} \]

We are interested in equations (1) that appear as the linearized operator for the Monge-Ampere equation. We show that the only global Lipschitz solutions i.e

\[\|\nabla u(x)\|_{L^\infty(\mathbb{R}^2)} \leq C. \tag{2} \]

must be linear.

For simplicity we assume throughout the paper that the coefficients \(a_{ij} \) are smooth and satisfy the ellipticity condition:

\[A(x) := (a_{ij}(x))_{ij} > 0. \]

We start by recalling two classical Liouville type theorems concerning global solutions of (1). The first is due to Bernstein (see [6], [1]) and asserts:

A global \(C^2 \) solution (in \(\mathbb{R}^2 \)) which is bounded must be constant.

The result fails if one allows linear growth for \(u \) at \(\infty \) as it can be seen from the following simple example

\[u(x) = \sqrt{1+x_1^2} - \sqrt{1+x_2^2}, \]

for appropriate \(A(x) \).

The second theorem states that global solutions satisfying (1), (2) must be linear if the coefficients are uniformly elliptic i.e

\[\lambda I \leq A(x) \leq \Lambda I, \quad x \in \mathbb{R}^2. \]

This follows from the classical \(C^{1,\alpha} \) interior estimates in 2D due to Morrey [7] and Nirenberg [8].

2000 Mathematics Subject Classification. Primary: 35J70, 35B65.
Key words and phrases. Monge-Ampere equation, Harnack inequality.
The author is supported by NSF grant 0701037.
In this short paper we prove a similar Liouville theorem for solutions to the linearized operator of the Monge-Ampere equation
\[\det D^2 \varphi = f, \quad \lambda \leq f \leq \Lambda. \] (3)

Theorem 1.1. Assume \(\varphi \) is a smooth convex function in \(\mathbb{R}^2 \) satisfying
\[\lambda \leq \det D^2 \varphi \leq \Lambda, \]
and denote by \((\varphi^{ij})\) the inverse matrix of \(D^2 \varphi \). If \(u \in C^2 \) is globally Lipschitz (i.e. satisfies (2)) and solves
\[L_{\varphi} u := \sum \varphi^{ij} (x) u_{ij} = 0 \quad \text{in} \ \mathbb{R}^2, \] (4)
then \(u \) is linear.

Equation (4) was studied by Caffarelli and Gutierrez in [3]. It appears for example in fluid mechanics (see [2], [4]), or in the affine maximal graph equation (see [10]) etc. The main result in [3] states that solutions of (4) satisfy the Harnack inequality in the sections of \(\varphi \) (see Section 2 for the precise statement). When dealing with the degenerate equation \(L_{\varphi} u = 0 \), the sections of \(\varphi \) play the same role as the euclidean balls do in the theory of uniformly elliptic equations.

Theorem 1.1 suggests that in \(\mathbb{R}^2 \), solutions of (4) satisfy stronger estimates than those obtained from Harnack inequality. In a forthcoming paper we intend to obtain interior \(C^{1,\alpha} \) estimates for the equation \(L_{\varphi} u = 0 \) in \(2D \).

Theorem 1.1 can be proved in fact in a more general form, where the coefficient matrix \(A(x) \) is “uniformly elliptic” with respect to the inverse of \(D^2 \varphi \) i.e.
\[c(D^2 \varphi)^{-1} \leq A(x) \leq C(D^2 \varphi)^{-1}, \quad 0 < c < C, \]
and the Monge-Ampere measure
\[\det D^2 \varphi = \mu \]
satisfies a standard doubling condition (see conditions 0.3-0.4 of [3]). In this setting, the Liouville theorem for uniformly elliptic equations mentioned above appears as a consequence of Theorem 1.1 by taking \(\varphi(x) := |x|^2 \).

The proof of Theorem 1.1 follows the same strategy as the proof of Bernstein theorem for elliptic equations in \(2D \). If \(u \) is a solution to (1) and is not linear, then any tangent plane splits the graph of \(u \) into at least 4 unbounded connected components. Then we apply the Harnack inequality of Caffarelli and Gutierrez in certain nondegenerate directions and obtain a contradiction. Similar ideas have been used in [9], [5] for other degenerate equations.

2. Geometry of sections and Harnack inequality. Let \(S_h(x) \), the section of \(\varphi \) at the point \(x \) and of height \(h > 0 \), be defined as
\[S_h(x) := \{ y \in \mathbb{R}^2 \mid \varphi(y) < \varphi(x) + \nabla \varphi(x) \cdot (y - x) + h \}. \]

We list below the key properties (see for example [3]) for the sections of a convex function \(\varphi \) that satisfies
\[\det D^2 \varphi = f, \quad \lambda \leq f \leq \Lambda. \]

a) \(S_h(x) \) is convex, and if \(h \leq t \) then \(S_h(x) \subset S_t(x) \).
b) To each section $S_h(x)$ we can associate an ellipse

$$E_h(x) = A_h(x)B_1,$$

with $A_h(x)$ a symmetric matrix

such that

$$E_h(x) \subset S_h(x) - x \subset C E_h(x),$$

with the constant C depending only on λ, Λ. In what follows we denote by

$|E_h(x)|$ – the ratio between the longest and the shortest axis of $E_h(x)$

$\xi_h(x)$ – the direction of the longest axis of $E_h(x)$.

\[\text{(5)} \]

\[\text{c) If } x_1 \in S_h(x_0) \text{ then } \]

$$S_h(x_0) \subset S_{C_1h}(x_1) \subset S_{C_2h}(x_0),$$

with C_1, C_2 depending only on λ, Λ.

\[\text{d) If } M > 1 \text{ then } \]

$$S_{Mh}(x) - x \subset M(S_h(x) - x) \subset S_{C(M)h} - x,$$

for some constant $C(M)$ depending on λ, Λ and M.

Caffarelli and Gutierrez proved in \[3\] the Harnack inequality for solutions of the linearized operator

$$L_\varphi u = \sum a^{ij}u_{ij}.$$

Precisely, if $u \geq 0$ in $S_h(x_0)$ then

$$\inf_{S_{h/2}(x_0)} u \geq c \sup_{S_{h/2}(x_0)} u,$$

with $c > 0$ a small constant depending only on λ, Λ. We need the following weak Harnack inequality for supersolutions which was proved also in \[3\] (Theorem 2).

Theorem. If $L_\varphi (u) \leq 0$ and $u \geq 0$ in $S_h(x_0)$ then,

$$\inf_{S_{h/2}(x_0)} u \geq c(\tau) \inf_{S_{\tau h}(x_0)} u$$

with $c(\tau) > 0$ a small constant depending on λ, Λ.

Applying the theorem repeatedly we see that for any $\tau \leq 1/4$,

$$\inf_{S_{h/2}(x_0)} u \geq c(\tau) \inf_{S_{\tau h}(x_0)} u$$

with $c(\tau) > 0$ depending also on τ.

Before we state the next lemmas we introduce the following notation. We define A_δ as the set

$$A_\delta := \{(x,t) | \quad \text{diam } S_t(x) \geq \delta, \quad S_t(x) \subset B_{1/\delta}\}. \quad \text{(7)}$$

Lemma 2.1. Let $S_h(0)$ be the maximal section at 0 which is included in B_1. Assume that (see (3))

$$|E_h(0)| \leq M,$$

for some constant M. Then

$$|E_t(x)| \leq C(M, \delta) \quad \forall (x,t) \in A_\delta,$$
with \(C(M, \delta) \) a large constant depending on \(M, \delta, \lambda, \Lambda \).

Proof. Since \(S_h(0) \) is the maximal section included in \(B_1 \) and satisfies \(|E_h(0)| \leq M \) we see from property b) that for a small constant \(c(M) \) depending on \(M \) (and on \(\lambda, \Lambda \))

\[
B_c \subset S_h(0) \subset B_1.
\]

Then by property d) we can find a large constants \(C_1(M, \delta) \) such that

\[
B_{2/\delta} \subset S_{C_1h}(0) \subset B_{C_1}.
\]

Now by c), there exist \(C_2(M, \delta), C_3(M, \delta) \) such that for any \(x \in B_{1/\delta} \),

\[
B_1 \subset S_{C_2h}(x) - x \subset B_{C_3}.
\]

Now, we use d) and find \(c_1(M, \delta), c_2(M, \delta) \) small such that

\[
B_{c_1} \subset S_{c_2h}(x) - x \subset B_{\delta/2}.
\]

This shows, by property a), that any section \(S_t(x) \) with \(x \in B_{1/\delta} \) and \(\text{diam} S_t(x) \leq \delta \) contains a ball of radius \(c_1 \) in the interior, and the conclusion of the lemma follows easily. \(\square \)

Lemma 2.2. Let \(S_h(0) \) be the maximal section at 0 included in \(B_1 \), and assume \(|E_h(0)| \leq M \). Let \(u \) be defined on \(B_r(x) \) for some \(x \in B_1 \) and \(\delta \leq r \leq 1 \).

If \(u \geq 0 \) in \(B_r(x) \) and

\[
L_\varphi u \leq 0,
\]

then

\[
\inf_{B_{\delta/2}(x)} u \geq c(M, \delta) \inf_{B_{\delta/4}(x)} u
\]

with \(c(M, \delta) \) a small positive constant depending on \(M, \delta, \lambda, \Lambda \).

Proof. It suffices to show that if \(u \geq 0 \) in \(B_\delta(x) \) then

\[
\inf_{B_\epsilon(x)} u \geq c(M, \delta) \inf_{B_{\epsilon/2}(x)} u,
\]

for some \(\eta(M, \delta) \) small.

By Lemma 2.1 there exists \(\eta(M, \delta) \) small and a section \(S_t(x) \) with \((x, t) \in A_\delta \) such that

\[
B_\eta \subset S_{t/2}(x) - x \subset S_t(x) - x \subset B_\delta.
\]

By property d), we can find \(\tau(M, \delta) > 0 \) such that

\[
S_{\epsilon t}(x) - x \subset B_{\eta/2}.
\]

Now the weak Harnack inequality (6) applied to \(u \) in \(S_t \) gives

\[
\inf_{B_{\epsilon}(x)} u \geq \inf_{S_{t/2}(x)} u \geq c(\tau) \inf_{S_{\epsilon t}(x)} u \geq c(\tau) \inf_{B_{\eta/2}(x)} u.
\]

\(\square \)

Lemma 2.3. Let \(S_h(0) \) be the maximal section included in \(B_1 \) and assume

\[
|E_h(0)| \geq M.
\]

There exists \(\sigma(M, \delta) \) such that for all \((x, t) \in A_\delta \) (see (5), (7))

\[
|E_t(x)| \geq \sigma^{-1}, \quad \angle(\xi_1(x), \xi_h(0)) \leq \sigma
\]

and \(\sigma(M, \delta) \to 0 \) as \(M \to \infty \).

Here \(\angle(\xi_1, \xi_2) \) denotes the angle \((\in [0, \pi/2]) \) between the lines of directions \(\xi_1 \) and \(\xi_2 \).
Proof. We need to show that, for \(\delta \) fixed,
\[
\inf_{(x,t) \in \mathcal{A}_\delta} |E_t(x)| \to \infty, \quad \sup_{(x,t) \in \mathcal{A}_\delta} \angle(\xi_t(x), \xi_h(0)) \to 0 \quad \text{as} \quad M \to \infty.
\]
From Lemma 2.1 it follows that if \(|E_t(x)| \leq N \) for some \((x, t) \in \mathcal{A}_\delta\), then
\[
|E_h(0)| \leq C(\delta, N).
\]
This shows that
\[
\inf_{(x,t) \in \mathcal{A}_\delta} |E_t(x)| \to \infty \quad \text{as} \quad M \to \infty.
\]
Now assume that for some \((x, t) \in \mathcal{A}_\delta\)
\[
\angle(\xi_t(x), \xi_h(0)) \geq \sigma_0 > 0.
\]
Let \(x^* \) be the point of intersection of the line passing through \(x \) and of direction \(\xi_t(x) \) with the line passing through \(0 \) and direction \(\xi_h(0) \). Clearly \(|x^*| \leq C(\delta, \sigma_0) \). Moreover by the properties c) and d), there exists a section \(S_t'(x^*) \) with
\[
S_h(0) \subset S_t'(x^*), \quad S_t(x) \subset S_t'(x^*), \quad \text{diam} \ S_t'(x^*) \leq C(\delta, \sigma_0).
\]
Since \(S_t'(x^*) \) contains 2 segments of length \(\delta \) at an angle \(\sigma_0 \), it contains also a small ball of radius \(c(\delta, \sigma_0) \), hence
\[
|E_t'(x^*)| \leq C(\sigma_0, \delta).
\]
By Lemma 2.1, this implies that \(|E(0, h)| \leq C(\sigma_0, \delta) \). In conclusion
\[
\angle(\xi_t(x), \xi_h(0)) \to 0 \quad \text{as} \quad M \to \infty.
\]

3. Proof of Theorem 1.1. Without loss of generality assume \(u(0) = 0 \) and \(\|\nabla u\|_{L^\infty(\mathbb{R}^2)} \leq 1 \). Let
\[
K := \nabla u(\mathbb{R}^2).
\]
We need to show that \(K \) consists of a single point. As in the proof of the theorem of Bernstein, the key will be to use the following 2D theorem.

Theorem. Assume \(u \in C^2(\mathbb{R}^2) \) satisfies \(L_\varphi u = 0 \). If \(x \) is a nondegenerate point i.e \(D^2 u(x) \neq 0 \), then the set
\[
\{ y \in \mathbb{R}^2 \mid u(y) > u(x) + \nabla u(x) \cdot (y - x) \}
\]
contains at least two disconnected unbounded components that have \(x \) as a boundary point.

From now on we assume by contradiction that \(u \) is not linear.

First we remark that the set of nondegenerate points is dense in \(\mathbb{R}^2 \). Indeed, otherwise \(D^2 u = 0 \) in a neighborhood, and by unique continuation (since \(\varphi \in C^\infty \)) \(D^2 u = 0 \) in whole \(\mathbb{R}^2 \) and we reach a contradiction.

Clearly, the images of the gradients of these nondegenerate points form a dense open subset of \(K \).

Let \(R_n \) be a sequence converging to \(\infty \) and let
\[
u_n(x) := \frac{u(R_n x)}{R_n}
\]

represent the corresponding rescalings of u. The functions u_n satisfy

$$L_{\varphi_n}u_n = 0, \quad \varphi_n(x) := \frac{\varphi(R_n x)}{R_n^2}.$$

The function φ_n also satisfies (3), and its sections are obtained by $1/R_n$-dilations of the original sections of u. Denote

$$e_n := |E_{h_n}(0)|$$

where $S_{h_n}(0)$ is the maximal section of u included in B_{R_n}. We distinguish 2 cases:

1) There exists a sequence of $R_n \to \infty$ such that e_n remains bounded;

2) $e_n \to \infty$ as $R_n \to \infty$.

We show that we reach a contradiction in both cases.

Case 1. By assumption, there exists M such that $|e_n| \leq M$ for all n. Without loss of generality we can assume that

$$u_n \to u^* \quad \text{uniformly on compact sets.}$$

From Lemma 2.2, each u_n satisfies the weak Harnack inequality (8), thus the same inequality holds for u^* if $u^* \geq 0$ in $B_r(x)$.

Lemma 3.1. Let $\nu \in \mathbb{R}^2$, $|\nu| = 1$ be a unit direction, and assume

$$\min_{p \in K} \nu \cdot p$$

is achieved for $p = p_\nu \in \bar{K}$. Then

$$u^*(t \nu) = t\nu \cdot p_\nu$$

either for all $t \geq 0$ or for all $t \leq 0$.

Proof. The equation is invariant under addition with linear functionals, thus we may assume for simplicity that $\nu = e_2$ and $p_\nu = 0$, that is

$$K \subset \{x \cdot e_2 \geq 0\}, \quad 0 \in \bar{K}.$$

This implies that the functions u, u_n, and u^* are all increasing in the e_2 direction and that there exists a sequence of nondegenerate points for u whose gradients approach 0. By passing if necessary to a subsequence we may assume that there exists $x_n \to 0$ with $\nabla u_n(x_n) = \nabla u(R_n x_n) \to 0$ and x_n is a nondegenerate point for u_n. Define

$$l_n(x) := u_n(x_n) + \nabla u_n(x_n) \cdot (x - x_n),$$

then clearly $l_n \to 0$ uniformly on compact sets. By the theorem above, the set $\{u_n > l_n\}$ contains at least 2 unbounded connected components that have x_n as a boundary point.

Since u^* is increasing in the e_2 direction, it suffices to show that either $u^*(e_2) = 0$ or $u^*(-e_2) = 0$. Assume by contradiction that

$$u^*(-e_2) < 0, \quad u^*(e_2) > 0.$$

Then we can find δ (depending on u^*) and a rectangle

$$\mathcal{R} := [-2\delta, 2\delta] \times [-1, 1]$$
such that \(u^* \) is positive on the top of \(R \) and negative on the bottom. This implies that for all \(n \) large, \(u_n \) is positive on the top of \(R \) and negative on the bottom. We conclude that the set \(\{u_n > l_n\} \) has an unbounded connected component \(U \) that does not intersect the top or the bottom of, say the rectangle
\[
R_1 := [\delta, 2\delta] \times [-1, 1],
\]
but intersects both lateral sides of \(R_1 \). Let \(P \) be a nonintersecting polygonal line included in \(U \) which connects the lateral sides. This polygonal line splits \(R_1 \) into two disjoint domains \(R_1^+ \) (containing the top) and \(R_1^- \).

From each \(u_n \) we create a supersolution \(\tilde{u}_n : R_1 \rightarrow \mathbb{R} \) to \(L_{\varphi_n} \tilde{u}_n \leq 0 \) as follows.

First we replace \(u_n \) by \(l_n \) in the set \(U \). Clearly the new function is a supersolution. Then we modify this function to be equal to \(l_n \) in \(R_1^- \).

Notice that \(\tilde{u}_n \) converges uniformly in \(R_1 \) to
\[
(u^*)^+ := \max\{u^*, 0\}.
\]
Since \(\tilde{u}_n \) satisfies the weak Harnack inequality of Lemma 2.2, we see that the same conclusion holds for \((u^*)^+ \) as well. This implies that \((u^*)^+ > 0 \) in the interior of \(R_1 \). On the other hand \((u^*)^+ = 0 \) in a neighborhood of the bottom of \(R_1 \) since \(u^* \) is negative there. We reached a contradiction and the lemma is proved.

By the lemma above, \(u^*(x) = p_{\nu} \cdot x \) (and \(u(x) = p_{-\nu} \cdot x \)) on at least half of the line \(tv \). Since the set \(K \) has nonempty interior, by the definition of \(p_{\nu} \) we have
\[
\nu \cdot (p_{\nu} - p_{-\nu}) < 0,
\]
which implies that \(u^*(tv) \) is linear both for \(t \geq 0 \) and \(t \leq 0 \) but with different slopes. We conclude that \(u^* \) is homogenous of degree one.

Since \(u^* \) is continuous, homogenous of degree 1 but not linear, we can easily find a ball \(B_r(x) \) and a linear function \(l \) such that \(u^* - l \geq 0 \) in \(B_r(x) \), \((u^* - l)(x) = 0 \) but \(u^* - l \) is not identically 0 in \(B_r(x) \). This contradicts weak Harnack inequality for \(u^* - l \), and concludes Case 1.

Case 2. By passing to a subsequence, we can assume that the directions
\[
\xi_n := \xi_{h_n}(0) \rightarrow e_2 \quad \text{as} \quad n \rightarrow \infty,
\]
and as before \(u_n \rightarrow u^* \) uniformly on compact sets. First we show that \(u^* \) satisfies weak Harnack inequality in the \(e_2 \) direction.

Lemma 3.2. Assume
\[
u^*(x + te_2) \geq 0, \quad \text{for all} \quad |t| \leq r,
\]
for some \(x \in B_1 \) and \(0 < r \leq 1 \). Then
\[
\inf_{|t| \leq \frac{r}{4}} u^*(x + te_2) \geq \inf_{|t| \leq \frac{r}{4}} u(x + te_2), \tag{9}
\]
where \(c > 0 \) depends only on \(\lambda, \Lambda \).

Proof. It suffices to prove (9) with \(r/2 \) replaced by \(\eta r \) and \(r/4 \) by \(\eta r/2 \) with \(\eta \) a small constant depending on \(\lambda, \Lambda \).

Since \(|\nabla u| \leq 1 \), \(u_n \) and \(u^* \) are Lipschitz functions with Lipschitz constant 1. By hypothesis, \(u^* \geq 0 \) on the segment \([x - re_2, x + re_2]\), hence
\[
u^* + 2\varepsilon > 0 \quad \text{on} \quad R = [-\varepsilon, \varepsilon] \times [x - re_2, x + re_2],
\]
and the same inequality holds for u_n for all n large.

Let $S_{t_n}(x)$ be the maximal section of u_n at x which is included in \mathcal{R}. From the hypotheses $e_n \to \infty$, $\xi_n \to e_2$ and Lemma 2.3 we see that

$$2r + 2\varepsilon \geq \text{diam } S_{t_n}(x) \geq 2r$$

for all large n. From the properties of sections we see that there exist constants η, τ such that $S_{t_n}(x)$ contains a segment of length 2η centered at x and

$$S_{\tau t_n}(x) \subset [-\varepsilon, \varepsilon] \times [x - \frac{\eta}{2} e_2, x + \frac{\eta}{2} e_2].$$

We apply weak Harnack inequality (6) for $u_n + 2\varepsilon$ in $S_{t_n}(x)$ and use that u_n is Lipschitz to obtain

$$\inf_{|t| \leq \frac{2r}{\tau}} u_n(x + te_2) \geq c \inf_{|t| \leq \frac{2r}{\tau}} u_n(x + te_2) - C\varepsilon.$$

The lemma is proved by letting $n \to \infty$ and then $\varepsilon \to 0$.

Lemma 3.3. If $\nu = \pm e_2$ we have

$$u^*(t\nu) = tv \cdot p_\nu$$

either for all $t \geq 0$ or $t \leq 0$.

Proof. The proof is essentially identical to the proof of Lemma 3.1. We need to remark that the supersolutions \tilde{u}_n obtained from u_n are uniformly Lipschitz. Hence, as in the proof of Lemma 3.3 above, the weak Harnack inequality for \tilde{u}_n implies the weak Harnack inequality for their limit $(u^*)^+$ in the e_2 direction. This gives that $(u^*)^+ > 0$ in \mathcal{R}_1 and we reach a contradiction as before.

Now we are ready to reach a contradiction in Case 2.

The previous lemma implies (as in Case 1) that on the line te_2 the function u^* is linear on both half lines $t \geq 0$ and $t \leq 0$, but with different slopes. This contradicts that $u^* - l$ satisfies weak Harnack inequality in the e_2 direction for an appropriate linear function l.

REFERENCES

Received March 2010; revised April 2010.

E-mail address: savin@math.columbia.edu