1. a) Give the definition of compactness.
b) Give the definition of interior point.
c) Define the closure \bar{E} of a set $E \subset X$.
d) Give the definition of countable set.
e) For which x, y in \mathbb{R}^n we have $|x \cdot y| = |x||y|$. (just give the answer without any proof)
f) Give an example of a set which is neither closed nor open.

2. Prove that a perfect set P of \mathbb{R}^n is uncountable.

3. a) Prove that the collection of finite subsets of \mathbb{N} is countable.
b) Prove that the collection of all subsets of \mathbb{N} is uncountable.

4. Show that in \mathbb{R}^n the closure of the open ball $B(x, r)$ is the closed ball
 \[\bar{B}(x, r) = \{ y \in \mathbb{R}^n, |x - y| \leq r \} \]
 Give an example of metric space for which the corresponding statement is false.

5. Let F be closed and K compact sets of X with $F \cap K = \emptyset$. Show that there exists $\delta > 0$ such that $d(x, y) > \delta$ for all $x \in K$ and $y \in F$.
 Give an example for which the result is not true if K is only closed.