1. (a) \[\frac{d}{dx} \left(\tan^{-1} \left(\sqrt{1-x^2} \right) \right) = \frac{1}{1 + \left(\sqrt{1-x^2} \right)^2} \cdot \frac{d}{dx} \left(\sqrt{1-x^2} \right) \]

\[= \frac{1}{1 + 1 - x^2} \cdot \frac{1}{2 \sqrt{1-x^2}} \cdot \frac{d}{dx} \left(1-x^2 \right) = \frac{1}{2-x^2} \cdot \frac{1}{2 \sqrt{1-x^2}} \cdot (-2x) \]

\[= \frac{1}{(2-x^2)} \cdot \frac{(-x)}{\sqrt{1-x^2}} = \frac{-x}{(2-x^2) \sqrt{1-x^2}} \]

(b) \[\frac{d}{dx} \left(\log_5 (2x+1) \right) = \frac{1}{(2x+1) \cdot \ln(5)} \cdot \frac{d}{dx} (2x+1) \]

\[= \frac{2}{(2x+1) \ln(5)} \]

(c) \[\lim_{x \to 0} (1+3x)^{\cot(x)} : \text{ indeterminable form} \]

\[y = (1+3x)^{\cot(x)} \Rightarrow \ln(y) = \cot(x) \cdot \ln(1+3x) \]

\[\lim_{x \to 0} \ln(y) = \lim_{x \to 0} \frac{\ln(1+3x)}{\tan(x)} : \frac{0}{0} \text{ indeterminable form} \]

\[= \lim_{x \to 0} \frac{\frac{d}{dx} \ln(1+3x)}{\frac{d}{dx} \tan(x)} \text{ by L'Hopital rule} \]
\[
\lim_{x \to 0} \frac{1}{1+3x} \cdot 3 \cdot \sec^2(x) = \frac{3}{1} = 3
\]

\Rightarrow \lim_{x \to 0} \cot(x) = 3.

(d) \quad \frac{d}{dx} \ln(\sec(x)) = \frac{1}{\sec(x)} \cdot \frac{d}{dx} (\sec(x))

= \frac{1}{\sec(x)} \cdot \sec(x) \tan(x) = \tan(x)
2. Let $m =$ slope of the line

Note: $m < 0$ for the line to cut a triangle in the first quadrant.

Equation of the line: $y - 5 = m(x - 3)$

Point P: is given by $y = 0$. $\Rightarrow -5 = m(x - 3)
\implies x = 3 - \frac{5}{m}$

Point Q: is given by $x = 0$. $\Rightarrow y - 5 = m(-3)
\implies y = 5 - 3m$

Area of the triangle OPQ: $A(m) = \frac{1}{2} \left(3 - \frac{5}{m} \right) (5 - 3m)$

$m \in (-\infty, 0)$

$$\frac{dA}{dm} = \frac{1}{2} \left[\frac{5}{m^2} (5 - 3m) + (3 - \frac{5}{m}) (-3) \right] = \frac{1}{2} \left[\frac{25}{m^2} - 9 \right] = \frac{1}{2} \left[\frac{25 - 9m^2}{m^2} \right]$$

$$\frac{dA}{dm} = 0 \equiv 25 - 9m^2 = 0 \equiv m^2 = \frac{25}{9} \equiv m = \frac{-5}{3} \quad \text{(since } m < 0)$$

$$\frac{dA}{dm} > 0 \text{ for } m \in \left(-\frac{5}{3}, 0 \right) \text{ and } \frac{dA}{dm} < 0 \text{ for } m \in (-\infty, -\frac{5}{3})$$

Hence $m = -\frac{5}{3}$ is the absolute minimum.

Equation of the line: $y - 5 = -\frac{5}{3} (x - 3)$
3. \(f(x) = \tan^(-1)(x) \)
\[f'(x) = \frac{1}{1+x^2} \]

\[f(1) = \frac{\pi}{4} \]
\[f'(1) = \frac{1}{2} \]

Linear approx. of \(f(x) \) **at** \(x = 1 \):

\[L(x) = f(1) + \frac{1}{2} (x - 1) = \frac{\pi}{4} + \frac{1}{2} (x-1) \]

\[\tan^(-1)(1.01) \approx L(1.01) = \frac{\pi}{4} + \frac{1}{2} (0.01) \]

\[= \frac{\pi}{4} + 0.005 \]
4. (a) False. **Counterexample:** let \(f(x) = x^3 \). Then \(f'(x) = 3x^2 \).
 \[
 f'(0) = 0 \quad \text{but} \quad 0 \text{ is neither a local max nor a local min.}
 \]

 (b) True. \(f(x) = x^3 + x - 1 \)
 \[
 f(0) = -1 \quad \text{and} \quad f(1) = 1. \quad \text{Thus by I.V.T. } f(x) = 0 \text{ has at least one solution in } [0,1].
 \]

 \(f'(x) = 3x^2 + 1 \quad \text{is always} \quad \geq 1 \)

 If there were two solutions of \(f(x) = 0 \) in \([0,1]\) then by M.V.T. \(f'(c) = 0 \) for some \(c \) in \((0,1)\). Since this is not the case, \(f(x) = 0 \) has exactly one solution.

 (c) True. Let \(\theta = \cos^{-1}(x) \). Then \(\cos(\theta) = x \)
 \[
 \sin(\theta) = \pm \sqrt{1 - \cos^2 \theta} = \pm \sqrt{1 - x^2}
 \]
 Since \(\sin(\theta) \geq 0 \) for \(\theta \in [0,\pi] \), we get
 \[
 \sin(\cos^{-1}(x)) = \sqrt{1 - x^2}
 \]

 (d) False. Let \(c_1 < c_2 \) be the two local min. of \(f \).
 Then \(f' \) is positive to the right of \(c_1 \) (near \(c_1 \))
 and negative to the left of \(c_2 \) (near \(c_2 \)).

 Since \(f'(x) \) exists for every \(x \), it must change sign to \(- \) somewhere
 in \((c_1, c_2)\). Thus \(f \) must have a local max.
\[f(x) = \frac{\sin(x)}{1 + \cos(x)} \]

(a) \[1 + \cos(x) = 0 \quad \equiv \quad \cos(x) = -1 \]
\[\equiv x = \pm \pi, \pm 3\pi, \pm 5\pi, \ldots \]

\[\text{Domain of } f = \{ x \neq (2n+1)\pi \text{ for any integer } n \} \]

(b) \[f'(x) = \frac{(1 + \cos(x))\cos(x) - \sin(x)(-\sin(x))}{(1 + \cos(x))^2} = \frac{\cos^2 x + \cos^2 x + \sin^2 x}{(1 + \cos(x))^2} \]
\[= \frac{1 + 2\cos(x)}{(1 + \cos(x))^2} = \frac{1}{1 + \cos(x)} > 0 \quad (\text{since } -1 \leq \cos(x) \leq 1) \]

Since \(f'(x) > 0 \) for every \(x \) in the domain of \(f \), \(f(x) \) has no critical points, and \(f \) is always increasing.

(c) \[f''(x) = \frac{-1}{(1 + \cos(x))^2} \cdot (-\sin(x)) = \frac{\sin(x)}{(1 + \cos(x))^2} \]

\[f''(x) = 0 \quad \equiv \quad \sin(x) = 0 \quad \equiv \quad x = 0, \pm \pi, \pm 2\pi, \ldots \]
and
\[\cos(x) \neq -1 \]
\[x \neq (2n+1)\pi \]

Thus \(f''(x) = 0 \) for \(x = 0, \pm 2\pi, \pm 4\pi, \ldots = 2n\pi \text{ for integer } n \).

Sign of \(f'' = \text{sign of } \sin(x) \)
\[
\Rightarrow \quad \text{Sign of } f'' \quad \Rightarrow \\
\quad -\infty \quad -\pi \quad 0 \quad \pi \quad 2\pi \quad 3\pi \quad 4\pi \\
\end{align*}

\(f(x) \) is concave up on \((0, \pi), (2\pi, 3\pi), (4\pi, 5\pi)\) \\
concave down on \((\pi, 2\pi), (3\pi, 4\pi)\) \\

Equivalently, \(f(x) \) is concave up on \((2n\pi, (2n+1)\pi) \) for \(n \): integer \\
concave down on \((2n+1)\pi, (2n+2)\pi) \)

Thus \(x = 2n\pi \) is an inflection point for every integer \(n \).

\[(d) \quad \lim_{x \to (2n+1)\pi^-} f(x) = \lim_{x \to (2n+1)\pi^-} \frac{\sin(x)}{1 + \cos(x)} = \frac{0}{0} \text{ indeterminate form} \]

\[
= \lim_{x \to (2n+1)\pi^-} \frac{\cos(x)}{-\sin(x)} = +\infty
\]

Similarly \(\lim_{x \to (2n+1)\pi^+} f(x) = -\infty \)

\[
\begin{align*}
(\text{e})
\end{align*}
\]

\[
\begin{align*}
\therefore f(0) = 0 \quad \therefore \quad f(2\pi) = 0 \\
\end{align*}
\]

\[
\text{concave up} \quad \text{concave down}
\]
Bonus: Graph of $f(x)$.

Note: $\sin(x + 2\pi) = \sin(x)$ \{ implies $f(x + 2\pi) = f(x)$ \}
$\cos(x + 2\pi) = \cos(x)$
Given: \(\frac{dx}{dt} = 10 \text{ m/min} \).

Now \(\frac{x}{15} = \frac{y}{50} \) implies \(y = \frac{50}{15} x \).

Take derivative with respect to \(t \):

\[
\frac{dy}{dt} = \frac{50}{15} \cdot \frac{dx}{dt}
\]

\[
= \frac{50}{15} \times 10 \text{ m/min}
\]

\[
= \frac{100}{3} \text{ m/min} \approx 33.33 \text{ m/min}
\]
7. To compute $a^{\frac{1}{3}}$, we need to find solution of

$$f(x) = x^3 - a = 0$$

$$f'(x) = 3x^2$$

Newton's Method gives iteration:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - \frac{x_n^3 - a}{3x_n^2}$$

$$= x_n - \frac{1}{3}x_n + \frac{a}{3x_n^2}$$

$$= \frac{a}{3}x_n + \frac{a}{3x_n^2}$$