(13.0) Recall: we studied how to compute derivatives of a function and the following applications:

1) Related rates of change: an application of the chain rule.

2) Linear approximation of a function: an application of the equation of the tangent line.

3) Differentials: \(y = f(x) \) implies \(dy = f'(x) \, dx \).
 (to estimate errors)

(13.1) Maximum and minimum values

Let \(f(x) \) be a function and \(c \) be a real number in the domain of \(f \).

Definition. We say \(f(c) \) is the absolute maximum value of \(f(x) \) (on its domain) if \(f(c) \geq f(x) \) for every \(x \) in the domain of \(f \).

Similarly, \(f(c) \) is the absolute minimum value of \(f \) if \(f(c) \leq f(x) \) for every \(x \) in the domain of \(f \).
\[f(c) \text{ is a local maximum value of } f \text{ if } f(c) \geq f(x) \text{ for every } x \text{ near } c. \]

\[f(c) \text{ is a local minimum value of } f \text{ if } f(c) \leq f(x) \text{ for every } x \text{ near } c. \]

Examples:

- Absolute minimum value

If \(f(x) \) is continuous on \([a,b]\) then \(f \) has an absolute maximum and an absolute minimum value on \([a,b]\).

(3.2) Critical points.

Assume \(f(x) \) is continuous on \([a,b] \), \(c \in (a,b) \) is a local max. or min. of \(f(x) \) and \(f'(c) \) exists. Then \(f'(c) = 0 \).
Reason. \[f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \]

If \(f(c) \) is local max., then for \(h \) close to 0, we have
\[f(c+h) \leq f(c) \implies f(c+h) - f(c) \leq 0. \]

Therefore for \(h > 0 \)
\[\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \leq 0 \]

for \(h < 0 \)
\[\lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \geq 0 \]

Since the two quantities are equal to \(f'(c) \), we get
\[f'(c) = 0. \]

Therefore at local extreme (max or min) point \(c \), we have the following possibilities
- \(f'(c) \) does not exist
- \(f'(c) \) exist and equals zero.

Definition. \(c \) is a real number in the domain of \(f \) is said to be critical point if either \(f \) is not differentiable at \(c \), or \(f'(c) = 0 \).
Examples. (1) $f(x) = |x|$. Recall $f'(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$

The only critical point of $f(x)$ is 0.

(2) $f(x) = x^2 - 3x + 1$

$f'(x) = 2x - 3$. is defined for any x.

$f'(x) = 0 \equiv 2x - 3 = 0 \equiv x = \frac{3}{2}$ critical point.

(3) $f(x) = \sqrt{x} (x^2 - 1)$

$f'(x) = \frac{1}{2\sqrt{x}} (x^2 - 1) + \sqrt{x} \cdot 2x$

$= \frac{x^2 - 1 + 2x^2}{2\sqrt{x}} = \frac{3x^2 - 1}{2\sqrt{x}}$

$f'(x)$ not defined at $x=0$

$f'(x) = 0 \equiv 3x^2 - 1 = 0 \equiv x^2 = \frac{1}{3} \equiv x = \pm \sqrt{\frac{1}{3}}$

Critical points $0, \pm \sqrt{\frac{1}{3}}$.
(13.3) Absolute max./min. values on a closed interval.

Let \(f(x) \) be a continuous function on \([a, b]\).

→ Absolute max./min. values of \(f \) occur at the critical points or the end points \(a, b \).

Example. Find absolute max. and min. values of

\[
f(x) = x^3 - 6x^2 + 5 \quad \text{on } [-3, 5]
\]

(i) Find the critical points of \(f \):

\[
f'(x) = 3x^2 - 12x \quad \text{defined for every } x
\]

\[
f'(x) = 0 \quad \Leftrightarrow \quad 3x^2 - 12x = 0 \quad \Leftrightarrow \quad 3x^2 = 12x
\]

\[x = 0 \quad \text{or} \quad x = \frac{12}{3} = 4\]

\[
\begin{align*}
\left[f(-3) = -27 - 54 + 5 = -76 & \quad \text{absolute min.} \\
\left[f(5) = 125 - 150 + 5 = -20 & \quad \text{absolute max.} \\
\left[f(0) = 0 - 0 + 5 = 5 & \\
\left[f(4) = 64 - 96 + 5 = -27
\end{align*}
\]
Example. \(f(x) = x - 2 \tan^{-1}(x) \) on \([0, 4]\)

\[
f'(x) = 1 - \frac{2}{1 + x^2} = \frac{x^2 + 1 - 2}{x^2 + 1} = \frac{x^2 - 1}{x^2 + 1}
\]

defined everywhere.

\[
f'(x) = 0 \equiv x^2 - 1 = 0 \equiv x = \pm 1
\]

Only critical point in \([0, 4]\) is \(x = 1\).

\[
f(0) = 0 - 2(0) = 0
\]

Absolute min. \(f(1) = 1 - 2 \tan^{-1}(1) = 1 - 2 \frac{\pi}{4} = 1 - \frac{\pi}{2} \approx -0.57\)

Absolute max. \(f(4) = 4 - 2 \tan^{-1}(4) = 1.35\)

Example. \(f(x) = xe^{-x^2/8} \) on \([-1, 4]\)

\[
f'(x) = (x)'e^{-x^2/8} + x(e^{-x^2/8})'
\]

\[
= e^{-x^2/8} + x\left(\frac{d}{dx}(\frac{-x^2}{8})\right)
\]

\[
= e^{-x^2/8} + xe^{-x^2/8} \left(-\frac{2x}{8}\right) \text{ defined everywhere}
\]

\[
f'(x) = 0 \equiv e^{-x^2/8} \left[1 - \frac{x^2}{4}\right] = 0 \equiv 1 - \frac{x^2}{4} = 0
\]

\[
\equiv x = \pm 2
\]
Only critical point in \([-1, 4]\) is \(x = 2\).

\[
f(-1) = (-1)^{\frac{1}{8}} e^{\frac{1}{2}} = -e^{\frac{1}{8}} \quad \text{← Absolute min.}
\]

\[
f(4) = 4 \cdot e^{2}
\]

\[
f(2) = 2 \cdot e^{\frac{1}{2}} \quad \text{← Absolute max.}
\]

(13.4) Mean Value Theorem.

Assume \(f(x)\) is continuous on \([a, b]\) and \(f'(x)\) exists for every \(x \in (a, b)\). Then there exists \(c \in (a, b)\) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

Special case. when \(f(a) = f(b)\) the theorem states existence of some point \(c\) in the interval \((a, b)\) such that

\[
f'(c) = 0
\]

(called Rolle's Theorem).

Examples: \((1)\) \(f(x) = 2x^2 - 3x + 1\) on \([0, 2]\)

\[
f(0) = 1 \quad f(2) = 8 - 6 + 1 = 3
\]

By MVT, there must be \(c \in (0, 2)\) such that
\[f'(c) = \frac{f(2) - f(0)}{2-0} = \frac{3-1}{2} = 1 \]

Now \[f'(x) = 4x - 3 \implies 4x - 3 = 1 \implies x = 1 \]

Some interesting examples.

(2) Assume \(f'(x) = 0 \) for every \(x \in (a,b) \). Then \(f(x) \) is a constant function.

(3) If \(f'(x) \geq 0 \) for every \(x \in (a,b) \), then \(f(x) \geq f(a) \) for every \(x \).

Examples. (1) Prove that \(x^3 - 15x + 1 = 0 \) has exactly one root in \([-2, 2]\).

\[f(x) = x^3 - 15x + 1 \]
\[f(-2) = -8 + 30 + 1 = 23 \]
\[f(2) = 8 - 30 + 1 = -21 \]

By I.V.T. there is some \(c \) such that \(f(c) = 0 \).

\(-2 < c < 2\)

\[f'(x) = 3x^2 - 15 = 3(x^2 - 5) \]. For \(-2 \leq x \leq 2\), \(x^2 - 5 < 0 \). If \(c \neq d \) are two roots of \(f(x) = 0 \) then there must be some number \(e \in (c,d) \) such that \(f'(e) = 0 \).

But there is no such number in \((-2,2)\). \(\blacksquare \)
(ii) Prove that
\[
\sin^{-1}\left(\frac{x-1}{x+1}\right) = 2\tan^{-1}(\sqrt{x}) - \frac{\pi}{2} ; \quad x \geq 0
\]

Let
\[
f(x) = \sin^{-1}\left(\frac{x-1}{x+1}\right) - 2\tan^{-1}(\sqrt{x})
\]

\[
f'(x) = \frac{1}{\sqrt{1 - \left(\frac{x-1}{x+1}\right)^2}} \cdot \frac{d}{dx}\left(\frac{x-1}{x+1}\right) - 2 \cdot \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{d}{dx}(\sqrt{x})
\]

\[
= \frac{x+1}{2\sqrt{(x+1)^2 - (x-1)^2}} \cdot \frac{(x+1)-(x-1)}{(x+1)^2} - \frac{2}{1 + x} \cdot \frac{1}{2\sqrt{x}}
\]

\[
= \frac{2}{\sqrt{4x}(x+1)} - \frac{1}{\sqrt{x}(x+1)} = 0
\]

Therefore, \(f(x) \) is constant function.

\[
f'(0) = \sin^{-1}(-1) - 2\tan^{-1}(0) = -\frac{\pi}{2} - 0 = -\frac{\pi}{2}
\]

(iii) Assume \(f'(x) \geq 3 \) for every \(x \). Prove that:

\[
f(8) - f(2) \geq 18
\]

By MVT, there exists \(c \in (2,8) \) such that:

\[
f'(c) = \frac{f(8) - f(2)}{8-2}
\]

\[
3 \leq f'(c) \implies 3 \leq \frac{f(8) - f(2)}{6} \implies 18 \leq f(8) - f(2)
\]