4. \(\mathbf{r}(t) = \langle 2 - t, 4 \sqrt{t} \rangle \) \(\Rightarrow \) At \(t = 1 \):
\[
\mathbf{v}(t) = \mathbf{r}'(t) = \langle -1, 2 / \sqrt{t} \rangle \quad \mathbf{v}(1) = \langle -1, 2 \rangle
\]
\[
\mathbf{a}(t) = \mathbf{r}''(t) = \langle 0, -1/t^{3/2} \rangle \quad \mathbf{a}(1) = \langle 0, -1 \rangle
\]
\[
|\mathbf{v}(t)| = \sqrt{1 + 4/t}
\]

8. \(\mathbf{r}(t) = t \mathbf{i} + 2 \cos t \mathbf{j} + \sin t \mathbf{k} \) \(\Rightarrow \) At \(t = 0 \):
\[
\mathbf{v}(t) = 1 - 2 \sin t \mathbf{j} + \cos t \mathbf{k} \quad \mathbf{v}(0) = \mathbf{i} + \mathbf{k}
\]
\[
\mathbf{a}(t) = -2 \cos t \mathbf{j} - \sin t \mathbf{k} \quad \mathbf{a}(0) = -2 \mathbf{j}
\]
\[
|\mathbf{v}(t)| = \sqrt{1 + 4 \sin^2 t + \cos^2 t} = \sqrt{2 + 3 \sin^2 t}
\]
Since \(y^2/4 + z^2 = 1 \), the path of the particle is an elliptical helix about the \(z \)-axis.

11. \(\mathbf{r}(t) = \sqrt{2} t \mathbf{i} + e^t \mathbf{j} + e^{-t} \mathbf{k} \) \(\Rightarrow \) \(\mathbf{v}(t) = \mathbf{r}'(t) = \sqrt{2} \mathbf{i} + e^t \mathbf{j} - e^{-t} \mathbf{k} \), \(\mathbf{a}(t) = \mathbf{r}'(t) = e^t \mathbf{j} + e^{-t} \mathbf{k} \),
\[
|\mathbf{v}(t)| = \sqrt{2 + e^{2t} + e^{-2t}} = \sqrt{(e^t + e^{-t})^2} = e^t + e^{-t}.
\]

16. \(\mathbf{a}(t) = 2 \mathbf{i} + 6t \mathbf{j} + 12t^2 \mathbf{k} \) \(\Rightarrow \) \(\mathbf{v}(t) = \int (2 \mathbf{i} + 6t \mathbf{j} + 12t^2 \mathbf{k}) \, dt = 2t \mathbf{i} + 3t^2 \mathbf{j} + 4t^3 \mathbf{k} + \mathbf{C} \), and \(\mathbf{i} = \mathbf{v}(0) = \mathbf{C} \),
so \(\mathbf{C} = \mathbf{i} \) and \(\mathbf{v}(t) = (2t + 1) \mathbf{i} + 3t^2 \mathbf{j} + 4t^3 \mathbf{k} \). \(\mathbf{r}(t) = \int [(2t + 1) \mathbf{i} + 3t^2 \mathbf{j} + 4t^3 \mathbf{k}] \, dt = (t^2 + t) \mathbf{i} + t^3 \mathbf{j} + t^4 \mathbf{k} + \mathbf{D} \).
But \(t \mathbf{j} + \mathbf{k} = \mathbf{r}(0) = \mathbf{D} \), so \(\mathbf{D} = t \mathbf{j} - \mathbf{k} \) and \(\mathbf{r}(t) = (t^2 + t) \mathbf{i} + (t^3 + 1) \mathbf{j} + (t^4 - 1) \mathbf{k} \).

19. \(\mathbf{r}(t) = \langle t^2, 5t, t^2 - 16t \rangle \) \(\Rightarrow \) \(\mathbf{v}(t) = \langle 2t, 5, 2t - 16 \rangle \), \(|\mathbf{v}(t)| = \sqrt{4t^2 + 25 + 4t^2 - 64t + 256} = \sqrt{8t^2 - 64t + 281} \)
and \(\frac{d}{dt} |\mathbf{v}(t)| = \frac{1}{2} (8t^2 - 64t + 281)^{-1/2} (16t - 64) \). This is zero if and only if the numerator is zero, that is,
\[
16t - 64 = 0 \text{ or } t = 4. \text{ Since } \frac{d}{dt} |\mathbf{v}(t)| < 0 \text{ for } t < 4 \text{ and } \frac{d}{dt} |\mathbf{v}(t)| > 0 \text{ for } t > 4, \text{ the minimum speed of } \sqrt{153} \text{ is attained at } t = 4 \text{ units of time.}
\]

22. The argument here is the same as that in Example 13.2.4 with \(\mathbf{r}(t) \) replaced by \(\mathbf{v}(t) \) and \(\mathbf{r}'(t) \) replaced by \(\mathbf{a}(t) \).

27. Let \(\alpha \) be the angle of elevation. Then \(v_0 = 150 \text{ m/s} \) and from Example 5, the horizontal distance traveled by the projectile is
\[
d = \frac{v_0^2 \sin 2\alpha}{g}.
\]
Thus \(\frac{150^2 \sin 2\alpha}{g} = 800 \Rightarrow \sin 2\alpha = \frac{800g}{150^2} \approx 0.3484 \Rightarrow 2\alpha \approx 20.4^\circ \text{ or } 180 - 20.4 = 159.6^\circ.
\]

Two angles of elevation then are \(\alpha \approx 10.2^\circ \) and \(\alpha \approx 79.8^\circ \).
36. From Equation 7 we have \(\alpha = v'T + \kappa v^2 N \). If a particle moves along a straight line, then \(\kappa = 0 \) [see Section 13.3], so the acceleration vector becomes \(\alpha = v'T \). Because the acceleration vector is a scalar multiple of the unit tangent vector, it is parallel to the tangent vector.

(b) If the speed of the particle is constant, then \(v' = 0 \) and Equation 7 gives \(\alpha = \kappa v^2 N \). Thus the acceleration vector is parallel to the unit normal vector (which is perpendicular to the tangent vector and points in the direction that the curve is turning).

39. \(r(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k} \Rightarrow r'(t) = -\sin t \mathbf{i} + \cos t \mathbf{j} + \mathbf{k}, \quad |r'(t)| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}, \)
\(r''(t) = -\cos t \mathbf{i} - \sin t \mathbf{j}, \quad r'(t) \times r''(t) = \sin t \mathbf{i} - \cos t \mathbf{j} + \mathbf{k}. \)

Then \(a_T = \frac{r'(t) \cdot r''(t)}{|r'(t)|} = \frac{\sin t \cos t - \sin t \cos t}{\sqrt{2}} = 0 \) and \(a_N = \frac{|r'(t) \times r''(t)|}{|r'(t)|} = \frac{\sqrt{\sin^2 t + \cos^2 t + 1}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = 1. \)

40. \(r(t) = t \mathbf{i} + t^2 \mathbf{j} + 3t \mathbf{k} \Rightarrow r'(t) = 2t \mathbf{j} + 3 \mathbf{k}, \quad |r'(t)| = \sqrt{1 + (2t)^2 + 3^2} = \sqrt{4t^2 + 10}, \)
\(r''(t) = 2 \mathbf{j}, \quad r'(t) \times r''(t) = -6 \mathbf{i} + 2 \mathbf{k}. \)

Then \(a_T = \frac{r'(t) \cdot r''(t)}{|r'(t)|} = \frac{4t}{\sqrt{4t^2 + 10}} \) and \(a_N = \frac{|r'(t) \times r''(t)|}{|r'(t)|} = \frac{2 \sqrt{10}}{\sqrt{4t^2 + 10}}. \)

17. \(\sqrt{1 - x^2} \) is defined only when \(1 - x^2 \geq 0 \), or
\[x^2 \leq 1 \iff -1 \leq x \leq 1, \text{ and } \sqrt{1 - y^2} \text{ is defined only when } 1 - y^2 \geq 0, \text{ or } y^2 \leq 1 \iff -1 \leq y \leq 1. \]

Thus the domain of \(f \) is
\[\{(x, y) \mid -1 \leq x \leq 1, \ -1 \leq y \leq 1\}. \]
25. \(z = 10 - 4x - 5y \) or \(4x + 5y + z = 10 \), a plane with intercepts 2, 5, 2, and 10.

28. \(z = 1 + 2x^2 + 2y^2 \), a circular paraboloid with vertex at \((0, 0, 1)\).
32. All six graphs have different traces in the planes $x = 0$ and $y = 0$, so we investigate these for each function.

(a) $f(x, y) = |x| + |y|$. The trace in $x = 0$ is $z = |y|$, and in $y = 0$ is $z = |x|$, so it must be graph VI.

(b) $f(x, y) = |xy|$. The trace in $x = 0$ is $z = 0$, and in $y = 0$ is $z = 0$, so it must be graph V.

(c) $f(x, y) = \frac{1}{1 + x^2 + y^2}$. The trace in $x = 0$ is $z = \frac{1}{1 + y^2}$, and in $y = 0$ is $z = \frac{1}{1 + x^2}$. In addition, we can see that f is close to 0 for large values of x and y, so this is graph I.

(d) $f(x, y) = (x^2 - y^2)^2$. The trace in $x = 0$ is $z = y^4$, and in $y = 0$ is $z = x^4$. Both graph II and graph IV seem plausible; notice the trace in $z = 0$ is $0 = (x^2 - y^2)^2 \Rightarrow y = \pm x$, so it must be graph IV.

(e) $f(x, y) = (x - y)^2$. The trace in $x = 0$ is $z = y^2$, and in $y = 0$ is $z = x^2$. Both graph II and graph IV seem plausible; notice the trace in $z = 0$ is $0 = (x - y)^2 \Rightarrow y = x$, so it must be graph II.

(f) $f(x, y) = \sin(|x| + |y|)$. The trace in $x = 0$ is $z = \sin|y|$, and in $y = 0$ is $z = \sin|x|$. In addition, notice that the oscillating nature of the graph is characteristic of trigonometric functions. So this is graph III.

59. $z = \sin(xy)$

(a) C

(b) II

Reasons: This function is periodic in both x and y, and the function is the same when x is interchanged with y, so its graph is symmetric about the plane $y = x$. In addition, the function is 0 along the x- and y-axes. These conditions are satisfied only by C and II.

60. $z = e^x \cos y$

(a) A

(b) IV

Reasons: This function is periodic in y but not x, a condition satisfied only by A and IV. Also, note that traces in $x = k$ are cosine curves with amplitude that increases as x increases.

61. $z = \sin(x - y)$

(a) F

(b) I

Reasons: This function is periodic in both x and y but is constant along the lines $y = x + k$, a condition satisfied only by F and I.

62. $z = \sin x - \sin y$

(a) E

(b) III

Reasons: This function is periodic in both x and y, but unlike the function in Exercise 61, it is not constant along lines such as $y = x + \pi$, so the contour map is III. Also notice that traces in $y = k$ are vertically shifted copies of the sine wave $z = \sin x$, so the graph must be E.
63. \(z = (1 - x^2)(1 - y^2) \)
 (a) B (b) VI
 Reasons: This function is 0 along the lines \(x = \pm 1 \) and \(y = \pm 1 \). The only contour map in which this could occur is VI. Also note that the trace in the \(xz \)-plane is the parabola \(z = 1 - x^2 \) and the trace in the \(yz \)-plane is the parabola \(z = 1 - y^2 \), so the graph is B.

64. \(z = \frac{x - y}{1 + x^2 + y^2} \)
 (a) D (b) V
 Reasons: This function is not periodic, ruling out the graphs in A, C, E, and F. Also, the values of \(z \) approach 0 as we use points farther from the origin. The only graph that shows this behavior is D, which corresponds to V.

7. \(f(x, y) = \frac{4 - xy}{x^2 + 3y^2} \) is a rational function and hence continuous on its domain.

\[(2, 1) \text{ is in the domain of } f \text{, so } f \text{ is continuous there and } \lim_{(x,y)\to(2,1)} f(x,y) = f(2,1) = \frac{4 - (2)(1)}{(2)^2 + 3(1)^2} = \frac{2}{7}. \]

10. \(f(x, y) = \frac{5y^4 \cos^2 x}{x^4 + y^4} \). First approach \((0, 0)\) along the \(x \)-axis. Then \(f(x, 0) = \frac{0}{x^4} = 0 \) for \(x \neq 0 \), so \(f(x, y) \to 0 \). Next approach \((0, 0)\) along the \(y \)-axis. For \(y \neq 0 \), \(f(0, y) = \frac{5y^4}{y^4} = 5 \), so \(f(x, y) \to 5 \). Since \(f \) has two different limits along two different lines, the limit does not exist.

13. \(f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}} \). We can see that the limit along any line through \((0, 0)\) is 0, as well as along other paths through \((0, 0)\) such as \(x = y^2 \) and \(y = x^2 \). So we suspect that the limit exists and equals 0, we use the Squeeze Theorem to prove our assertion. \(0 \leq \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| \leq |x| \) since \(|y| \leq \sqrt{x^2 + y^2} \), and \(|x| \to 0 \) as \((x,y)\to(0,0)\). So \(\lim_{(x,y)\to(0,0)} f(x,y) = 0 \).

14. \(f(x, y) = \frac{x^4 - y^4}{x^2 + y^2} = \frac{(x^2 + y^2)(x^2 - y^2)}{x^2 + y^2} = x^2 - y^2 \) for \((x,y) \neq (0,0)\). Thus the limit as \((x,y)\to(0,0)\) is 0.

15. Let \(f(x, y) = \frac{x^2 ye^y}{x^4 + 4y^2} \). Then \(f(x, 0) = 0 \) for \(x \neq 0 \), so \(f(x, y) \to 0 \) as \((x,y)\to(0,0)\) along the \(x \)-axis. Approaching \((0, 0)\) along the \(y \)-axis or the line \(y = x \) also gives a limit of 0. But \(f(x, x^2) = \frac{x^2 x^2 e^{x^2}}{x^4 + 4(x^2)^2} = \frac{x^4 e^{x^2}}{5x^4} = \frac{e^{x^2}}{5} \) for \(x \neq 0 \), so \(f(x, y) \to e^0/5 = \frac{1}{5} \) as \((x,y)\to(0,0)\) along the parabola \(y = x^2 \). Thus the limit doesn’t exist.
18. \(f(x, y) = xy^4/(x^2 + y^8) \). On the \(x \)-axis, \(f(x, 0) = 0 \) for \(x \neq 0 \), so \(f(x, y) \to 0 \) as \((x, y) \to (0, 0) \) along the \(x \)-axis.

Approaching \((0, 0) \) along the curve \(x = y^4 \) gives \(f(y^4, y) = y^6/2y^8 = \frac{1}{2} \) for \(y \neq 0 \), so along this path \(f(x, y) \to \frac{1}{2} \) as \((x, y) \to (0, 0) \). Thus the limit does not exist.

31. \(F(x, y) = \frac{1 + x^2 + y^2}{1 - x^2 - y^2} \) is a rational function and thus is continuous on its domain

\[\{(x, y) \mid 1 - x^2 - y^2 \neq 0\} = \{(x, y) \mid x^2 + y^2 \neq 1\} . \]

37. \(f(x, y) = \begin{cases} \frac{x^2y^3}{2x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 1 & \text{if } (x, y) = (0, 0) \end{cases} \)

The first piece of \(f \) is a rational function defined everywhere except at the origin, so \(f \) is continuous on \(\mathbb{R}^2 \) except possibly at the origin. Since \(x^2 \leq 2x^2 + y^2 \), we have \(|x^2y^3/(2x^2 + y^2)| \leq |y^3| \). We know that \(|y^3| \to 0 \) as \((x, y) \to (0, 0) \). So, by the Squeeze Theorem,

\[\lim_{(x, y) \to (0, 0)} f(x, y) = \lim_{(x, y) \to (0, 0)} \frac{x^2y^3}{2x^2 + y^2} = 0. \]

But \(f(0, 0) = 1 \), so \(f \) is discontinuous at \((0, 0)\). Therefore, \(f \) is continuous on the set \(\{(x, y) \mid (x, y) \neq (0, 0)\} \).