PRACTICE MID TERM I
CALCULUS III

- The use of class notes, book, formulae sheet, calculator is not permitted.

- In order to get full credit, you must show all your work.

- Each solution must have a clearly labeled problem number and start at the top of a new page.

- You have one hour and fifteen minutes.

- Do not forget to write your name and UNI in the space provided below and on the notebook provided.
(1) Write the parametric equations describing the line
- lying on the plane \(P : x - 2y + z = 4 \)
- passing through the intersection of the plane \(P \) with the line \(L : \vec{r} = (1 + t, 1 - t, 2t) \), and
- perpendicular to line \(L \).

(2) Let \(A = (1, 0, 1) \), \(B = (3, 1, 0) \) and \(C = (3, 2, 2) \) and \(D = (-2, -2, 1) \) be four points in \(\mathbb{R}^3 \).
 (a) Find the volume of the parallelopiped formed by edges \(AB, AC \) and \(AD \).
 (b) Find the coordinates of the point \(E \) opposite to \(A \) in this parallelopiped.
 (c) Find the angle \(\angle EAB \).

(3) Consider the plane \(P : x + y - 3z = 1 \) and a point \(P = (2, 1, 0) \).
 (a) Find the parametric equations describing the line through \(P \) and perpendicular to the plane \(P \).
 (b) Find the coordinates of the point \(Q \) where this line meets the plane \(P \).
 (c) Compute the length of the line segment \(PQ \).
 (d) Compute the distance between the point \(P \) and the plane \(P \) directly (using the formula) and verify your answer from part (c).

(4) True/False. Justify your answer with a proof if true, or a counterexample if false.
 (a) If \(\vec{v} \cdot \vec{w} = 0 \) then either \(\vec{v} = 0 \) or \(\vec{w} = 0 \).
 (b) If \(\vec{v} \times \vec{w} = 0 \) then \(\vec{v} \) and \(\vec{w} \) must be parallel.
 (c) A pair of lines is either parallel or intersect in a point.
 (d) \(\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} \).
 (e) \(|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \).

(5) Consider the equation \(z = ax^2 + y^2 \).
 (a) Sketch the traces for \(a = -1, 0, 1 \).
 (b) Sketch the surface for \(a = -1, 0, 1 \).
 (c) Describe how the surface changes when \(a \) approaches 0 from the left and from the right.

(6) Find the equation of the plane which contains the following two parallel lines:

\[
\begin{align*}
x &= 2 - t \\
y &= 3 + 2t \\
z &= 1 + t
\end{align*}
\]

\[
1 - x = \frac{y - 4}{2} = z - 3
\]

(7) Let \(\vec{v} \) be a non–zero vector.
 - Prove that \(\text{Proj}_{\vec{v}}(\vec{u}) = 0 \) if, and only if \(\vec{u} \) is orthogonal to \(\vec{v} \).
 - Prove that \(\text{Proj}_{\vec{v}}(\vec{u}) = \vec{u} \) if, and only if \(\vec{u} \) is parallel to \(\vec{v} \).