(1) There is no partial credit to the following problems. Check your answer carefully.
(a) Find the volume of the parallelopiped from by:
\[\vec{u} = \langle 1, 0, 2 \rangle, \quad \vec{v} = \langle 2, -1, 0 \rangle, \quad \vec{w} = \langle 4, 1, 1 \rangle\]

(b) Find the parametric equations describing the tangent line to \[\vec{r}(t) = \langle \sqrt{2}t, 4 - t^3, t^2 - 1 \rangle\] at \((2, -4, 3) \).

(c) Find the equation of the tangent plane to \(z = x^3 - 2\cos(y) + x^2y \) at \(x = 2, y = \pi \).

(d) Write \(w = \left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \right)^{10} \) in the \(a + bi \) form.

(e) Find the length of the following curve \[\vec{r}(t) = \langle 12t, 8t^{3/2}, 3t^2 \rangle; \quad 0 \leq t \leq 1\]

(2) Let \(f(x, y) = \ln(1 + x^2 + y^2) \).
(a) Compute \(f_{xx} \) and \(f_{xy} \).
(b) Write the unit vector along which \(f \) is increasing fastest at \(x = y = 1 \).
(c) What is the rate of change of \(f \) at \((1, 1) \) in the direction of \(\langle 1, -2 \rangle \) ?

(3) Find all critical points of \(f(x, y) = 2x^3 + y^3 - 5xy \) and classify them as local minimum, local maximum, saddle points.

(4) Find the absolute maximum and minimum values of \(f(x, y) = xy - 5x^2 + 3 \) on the finite domain \(D \) bounded by \(x \)-axis, \(x = 2 \) and \(y = x^3 \).

(5) Let \(C \) be the curve of intersection of teh following two surfaces
\[x^2 + y^2 = 1 \]
\[z = 3 - 2x^2 - 4y^2 \]
Find points on \(C \) which are closest to and farthest from the origin.

(6) A projectile is fired with an initial speed of 100 m/s at an angle of 60 \(^\circ \).
(a) Write the position \(\vec{r}(t) \) and velocity \(\vec{v}(t) \) of the particle at time \(t \).
(b) At what times is the projectile at the height three quarters of its maximum height?

(7) Assume that \(z \) is implicitly defined as a function of \(x \) and \(y \) by
\[\cos(yz) + x^2z = 9 \]
If at \(x = 2, \ y = 0 \) and \(z = 2 \), the value of \(x \) starts increasing at the rate of 1 unit per second, and the value of \(y \) starts decreasing at the rate of 2 units per second, compute the rate of change of \(z \).

(8) Let \(\mathbf{r}(t) \) be a parametric curve. Prove that

\[
\frac{d}{dt} \left(\frac{\mathbf{r}'(t)}{||\mathbf{r}(t)||} \right) = \frac{1}{||\mathbf{r}(t)||} \left(\mathbf{r}'(t) - \text{Proj}_{\mathbf{r}(t)}(\mathbf{r}'(t)) \right)
\]

(9) Prove that the curvature \(\kappa(x) \) of a curve \(y = f(x) \) is given by:

\[
\kappa(x) = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}}
\]

Use this formula to find the curvature of \(y = x^3 \) at \((2, 8)\).