PRACTICE FINAL

(1) There is no partial credit to the following problems. Check your answer carefully.

(a) Find the volume of the parallelopiped from by:

\[\vec{u} = \langle 1, 0, 2 \rangle \quad \vec{v} = \langle 2, -1, 0 \rangle \quad \vec{w} = \langle 4, 1, 1 \rangle \]

The volume is given by:

\[
\begin{vmatrix}
1 & 0 & 2 \\
2 & -1 & 0 \\
4 & 1 & 1
\end{vmatrix}
\]

\[= |1(-1) - 0(2) + 2(2 + 4)| \]

\[= 11 \]

(b) Find the parametric equations describing the tangent line to \(\vec{r}(t) = \langle \sqrt{2}t, 4 - t^3, t^2 - 1 \rangle \) at \((2, -4, 3)\).

The parametric curve passes through \((2, -4, 3)\) at \(t = 2\).

\[\vec{r}'(t) = \langle \frac{1}{\sqrt{2t}}, -3t^2, 2t \rangle \]

\[\vec{r}'(2) = \langle \frac{1}{2}, -12, 4 \rangle \]

Parametric equations of the tangent line are:

\[x = 2 + \frac{t}{2} \quad y = -4 - 12t \quad z = 3 + 4t \]

(c) Find the equation of the tangent plane to \(z = x^3 - 2 \cos(y) + x^2y \) at \(x = 2, y = \pi \).

At \(x = 2, y = \pi \) we have \(z = 2^3 - 2 \cos(\pi) + 2^2\pi = 10 + 4\pi \).

\[\frac{\partial z}{\partial x} = 3x^2 + 2xy \quad \frac{\partial z}{\partial y} = 2\sin(y) + x^2 \]

\[\frac{\partial z}{\partial x}(2, \pi) = 12 + 4\pi \quad \frac{\partial z}{\partial y}(2, \pi) = 4 \]

The equation of the tangent plane is:

\[z - (10 + 4\pi) = (12 + 4\pi)(x - 2) + 4(y - \pi) \]

(d) Write \(w = \left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \right)^{10} \) in the \(a + bi \) form.

We begin by writing \(\left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \right) \) in polar form:
\[
\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{-2 + 2\sqrt{3}i}{4} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i
\]

This \(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \cos \left(\frac{2\pi}{3} \right) + \sin \left(\frac{2\pi}{3} \right) i. \) Hence we get

\[
\left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \right)^{10} = \cos \left(\frac{20\pi}{3} \right) + \sin \left(\frac{20\pi}{3} \right) i = -\frac{1}{2} + \frac{\sqrt{3}}{2}i
\]

(e) Find the length of the following curve

\[\vec{r}(t) = \langle 12t, 8t^{3/2}, 3t^2 \rangle; \quad 0 \leq t \leq 1 \]

\[\vec{r}'(t) = \langle 12, 12\sqrt{t}, 6t \rangle \]

\[|\vec{r}'(t)| = \sqrt{144 + 144t + 36t^2} = \sqrt{(6t + 12)^2} = 6t + 12 \]

Thus the length of the parametric curve is given by

\[
\int_0^1 (6t + 12) dt = [3t^2 + 12t]_{t=0}^{t=1} = 15
\]
(2) Let \(f(x, y) = \ln(1 + x^2 + y^2) \).

(a) Compute \(f_{xx} \) and \(f_{xy} \).

\[
f_x = \frac{1}{1 + x^2 + y^2} 2x = \frac{2x}{1 + x^2 + y^2}
\]
\[
f_y = \frac{2y}{1 + x^2 + y^2}
\]
\[
f_{xx} = \frac{(1 + x^2 + y^2)2 - 2x(2x)}{(1 + x^2 + y^2)^2} = \frac{2 - 2x^2 + 2y^2}{(1 + x^2 + y^2)^2}
\]
\[
f_{xy} = \frac{-2x(2y)}{(1 + x^2 + y^2)^2} = \frac{-4xy}{(1 + x^2 + y^2)^2}
\]

(b) Write the unit vector along which \(f \) is increasing fastest at \(x = y = 1 \).

\[
f_x(1, 1) = \frac{2}{3} \quad f_y(1, 1) = \frac{2}{3}
\]

Therefore \(\vec{\nabla}(f)(1, 1) = \frac{2}{3} \langle 1, 1 \rangle \). The function \(f \) increases fastest in the direction of \(\vec{\nabla}(f) \), which is the unit vector along \(\langle 1, 1 \rangle \):

\[
\vec{u} = \frac{1}{\sqrt{2}} \langle 1, 1 \rangle
\]

(c) What is the rate of change of \(f \) at \((1, 1) \) in the direction of \(\langle 1, -2 \rangle \)?

The rate of change of \(f \) at \((1, 1) \) in the direction of \(\langle 1, -2 \rangle \) is given by the directional derivative \(D_{\vec{v}}(f)(1, 1) \). Here \(\vec{v} \) is the unit vector in the direction of \(\langle 1, -2 \rangle \):

\[
\vec{v} = \frac{1}{\sqrt{5}} \langle 1, -2 \rangle
\]
\[
D_{\vec{v}}(f)(1, 1) = \vec{\nabla}(f)(1, 1) \cdot \vec{v}
\]
\[
= \frac{2}{3} \cdot \frac{1}{\sqrt{5}} \langle 1, 1 \rangle \cdot \langle 1, -2 \rangle
\]
\[
= \frac{2}{3\sqrt{5}} \cdot (-1) = \frac{-2}{3\sqrt{5}}
\]
(3) Find all critical points of \(f(x, y) = 2x^3 + y^3 - 5xy \) and classify them as local minimum, local maximum, saddle points.

\[
\begin{align*}
f_x &= 6x^2 - 5y & f_y &= 3y^2 - 5x \\
f_{xx} &= 12x & f_{yy} &= 6y & f_{xy} &= -5 \\
D(x, y) &= f_{xx}f_{yy} - f_{xy}^2 = 72xy - 25
\end{align*}
\]

Critical point: \(f_x = 0 \) and \(f_y = 0 \).

\[
\begin{align*}
6x^2 &= 5y \\
3y^2 &= 5x \\
\Rightarrow 9y^4 &= 25x^2 = 25\left(\frac{5y}{6}\right) = \frac{125}{6}y \\
\Rightarrow y \left(y^3 - \frac{125}{54}\right) &= 0
\end{align*}
\]

Therefore, \(y = 0 \) or \(y = \frac{5}{3(2)^{1/3}} \). Using \(x = \frac{3}{2}y^2 \) we get:

\[
\begin{align*}
y &= 0 & \Rightarrow & x = 0 \\
y &= \frac{5}{3(2)^{1/3}} & \Rightarrow & x = \frac{5}{3(2)^{2/3}}
\end{align*}
\]

- \((x, y) = (0, 0)\): \(D = -25 < 0 \). Therefore \((0, 0)\) is a saddle point.
- \((x, y) = \left(\frac{5}{3(2)^{2/3}}, \frac{5}{3(2)^{1/3}}\right)\):

\[
D = 72\frac{25}{9(2)} - 25 = 75 > 0 \text{ and } f_{xx} = 12 \left(\frac{5}{3(2)^{2/3}}\right) > 0
\]

Therefore, this is a local min.
(4) Find the absolute maximum and minimum values of \(f(x, y) = xy - 5x^2 + 3 \) on the finite domain \(D \) bounded by \(x \)-axis, \(x = 2 \) and \(y = x^3 \).

(Step 1) Critical points of \(f \).
\[
\begin{align*}
 f_x &= y - 10x \\
 f_y &= x
\end{align*}
\]

\(f_y = 0 \) imples that \(x = 0 \). \(f_x = 0 \) implies that \(y = 10x = 0 \). Therefore \((0, 0)\) is the only critical point and \(f(0, 0) = 3 \).

(Step 2) Extreme values of \(f \) on the boundry. The boundry of \(D \) consists of three segments: (I) \(y = 0 \) and \(0 \leq x \leq 2 \). (II) \(x = 2 \) and \(0 \leq y \leq 8 \). (III) \(y = x^3 \) and \(0 \leq x \leq 2 \).

(I) \(y = 0 \) gives the function \(f(x, 0) = -5x^2 + 3 \). This function is decreasing on \(0 \leq x \leq 2 \), and has extreme values at \(x = 0 \) and \(x = 2 \):
\[
\begin{align*}
 f(0, 0) &= 3 \\
 f(2, 0) &= -17
\end{align*}
\]

(II) \(x = 2 \) gives the function \(f(2, y) = 2y - 17 \). This function is increasing on \(0 \leq y \leq 8 \) with extreme values at \(y = 0 \) and \(y = 8 \):
\[
\begin{align*}
 f(2, 0) &= -17 \\
 f(2, 8) &= -1
\end{align*}
\]

(III) \(y = x^3 \) gives the function \(g(x) = f(x, x^3) = x^4 - 5x^2 + 3 \).
\[
\begin{align*}
 g'(x) = 0 &\iff 4x^3 - 10x = 0 \iff x = 0 \text{ or } x = \sqrt{\frac{5}{2}}
\end{align*}
\]

At the additional critical point, we get:
\[
\begin{align*}
 g \left(\sqrt{\frac{5}{2}} \right) &= \frac{25}{4} - \frac{25}{2} + 3 = -\frac{13}{4}
\end{align*}
\]

Among the values computed above, we have the absolute maximum of 3 at the point \((0, 0)\) and an absolute minimum of \(-17\) at \((2, 0)\).
(5) Let C be the curve of intersection of the following two surfaces

\[x^2 + y^2 = 1 \]

\[z = 3 - 2x^2 - 4y^2 \]

Find points on C which are closest to and farthest from the origin.

We have to find the extreme values of the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to two constraints: $g_1(x, y, z) = x^2 + y^2 = 1$ and $g_2(x, y, z) = 2x^2 + 4y^2 + z = 3$.

\[\vec{\nabla} f = \langle 2x, 2y, 2z \rangle \]
\[\vec{\nabla} g_1 = \langle 2x, 2y, 0 \rangle \]
\[\vec{\nabla} g_2 = \langle 4x, 8y, 1 \rangle \]

Thus the Lagrange equations are:

\[2x = 2\lambda_1 x + 4\lambda_2 x \]
\[2y = 2\lambda_1 y + 8\lambda_2 y \]
\[2z = \lambda_2 \]
\[x^2 + y^2 = 1 \]
\[2x^2 + 4y^2 + z = 3 \]

From the first two equations we get

\[2x = 2\lambda_1 x + 4\lambda_2 x \Rightarrow x = 0 \text{ or } \lambda_1 + 2\lambda_2 = 1 \]
\[2y = 2\lambda_1 y + 8\lambda_2 y \Rightarrow y = 0 \text{ or } \lambda_1 + 4\lambda_2 = 1 \]

If $x = 0$ we get $y = \pm 1$ and hence $z = -1$. Similarly, if $y = 0$ we get $x = \pm 1$ and hence $z = 1$. For both these cases $f(x, y, z) = 2$.

If both x and y are non-zero, we get $\lambda_1 + 2\lambda_2 = 1$ and $\lambda_1 + 4\lambda_2 = 1$ which yield $\lambda_1 = 1$ and $\lambda_2 = 0$. Thus $z = \lambda_2/2 = 0$ and the two constraints give us $x^2 = y^2 = 1/2$. Hence $x = \pm 1/\sqrt{2}$ and $y = \pm 1/\sqrt{2}$ and we get $f(x, y, z) = 1$.

Thus the points on C closest to the origin are $(\pm 1/\sqrt{2}, \pm 1/\sqrt{2}, 0)$ and the points farthest from the origin are $(0, \pm 1, -1)$ and $(\pm 1, 0, 1)$.
(6) A projectile is fired with an initial speed of 100 m/s at an angle of 60°.

(a) Write the position \(\vec{r}(t) \) and velocity \(\vec{v}(t) \) of the particle at time \(t \).

The acceleration \(\vec{a}(t) = <0, -g> \) and the initial data is: \(\vec{r}(0) = \vec{0} \), \(\vec{v}(t) = <100 \cos(60°), 100 \sin(60°)> = <50, 50\sqrt{3}> \).

Solving for \(\vec{v}(t) \) gives:

\[\vec{v}(t) = <50, 50\sqrt{3} - gt> \]

Solving for \(\vec{r}(t) \) gives:

\[\vec{r}(t) = <50t, 50\sqrt{3}t - \frac{1}{2}gt^2> \]

(b) At what times is the projectile at the height three quarters of its maximum height?

The maximum height is reached by the projectile at the time \(t \) such that the \(y \)-component of \(\vec{v}(t) \) is zero. That is, for \(t = \frac{50\sqrt{3}}{g} \). Hence the maximum height reached is given by

\[
50\sqrt{3} \cdot \frac{50\sqrt{3}}{g} - \frac{1}{2}g \left(\frac{50\sqrt{3}}{g} \right)^2 = \frac{(50\sqrt{3})^2}{2g}
\]

We want to find the value of \(t \) when the height reached is \(3/4 \) times the max. height. That is, \(t \) such that

\[
50\sqrt{3}t - \frac{1}{2}gt^2 = \frac{3}{4} \cdot \frac{(50\sqrt{3})^2}{2g}
\]

\[
\equiv 4g^2t^2 - 8(50\sqrt{3})gt + 3(50\sqrt{3})^2 = 0
\]

\[
\equiv (2gt - 50\sqrt{3})(2gt - 3(50\sqrt{3})) = 0
\]

Thus \(t = \frac{50\sqrt{3}}{2g} \) or \(t = \frac{3(50\sqrt{3})}{2g} \).
(7) Assume that \(z \) is implicitly defined as a function of \(x \) and \(y \) by
\[
\cos(yz) + x^2z = 9
\]
If at \(x = 2, y = 0 \) and \(z = 2 \), the value of \(x \) starts increasing at the rate of 1 unit per second, and the value of \(y \) starts decreasing at the rate of 2 units per second, compute the rate of change of \(z \).

By the chain rule, we have
\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}
\]
Thus we have to compute \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \). Take the derivative with respect to \(x \) of \(\cos(yz) + x^2z = 9 \):
\[
\sin(yz) y \frac{\partial z}{\partial x} + 2xz + x^2 \frac{\partial z}{\partial x} = 0
\]
At \(x = 2, y = 0, z = 2 \) this equation gives:
\[
0 + 8 + 4 \frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x} = -2
\]
Similarly we take the derivative with respect to \(y \) of \(\cos(yz) + x^2z = 0 \) to get
\[
-\sin(yz) \left(z + y \frac{\partial z}{\partial y} \right) + x^2 \frac{\partial z}{\partial y} = 0
\]
Agian at \(x = 2, y = 0, z = 2 \) this equation becomes:
\[
0 + 4 \frac{\partial z}{\partial y} = 0 \Rightarrow \frac{\partial z}{\partial y} = 0
\]
Thus we get
\[
\frac{dz}{dt} = (-2)(1) + (0)(-2) = -2
\]
(8) Let \(\vec{r}(t) \) be a parametric curve. Prove that

\[
\frac{d}{dt} \left(\frac{\vec{r}(t)}{|\vec{r}(t)|} \right) = \frac{1}{|\vec{r}(t)|} \left(\vec{r}'(t) - \text{Proj}_{\vec{r}(t)}(\vec{r}'(t)) \right)
\]

Use the quotient rule to find the derivative:

\[
\frac{d}{dt} \left(\frac{\vec{r}(t)}{|\vec{r}(t)|} \right) = \frac{1}{|\vec{r}(t)|^2} \left(|\vec{r}(t)| \vec{r}'(t) - \frac{d|\vec{r}(t)|}{dt} \vec{r}(t) \right)
\]

\[
= \frac{1}{|\vec{r}(t)|^2} \left(|\vec{r}(t)| \vec{r}'(t) - \left(\frac{\vec{r}(t) \cdot \vec{r}'(t)}{|\vec{r}(t)|} \right) \vec{r}(t) \right)
\]

\[
= \frac{1}{|\vec{r}(t)|} \left(\vec{r}'(t) - \left(\frac{\vec{r}(t) \cdot \vec{r}'(t)}{|\vec{r}(t)|} \right) \vec{r}(t) \right)
\]

\[
= \frac{1}{|\vec{r}(t)|} \left(\vec{r}'(t) - \text{Proj}_{\vec{r}(t)}(\vec{r}'(t)) \right)
\]
(9) Prove that the curvature $\kappa(x)$ of a curve $y = f(x)$ is given by:

$$\kappa(x) = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}}$$

We can write the curve $y = f(x)$ in its parametric form as:

$$\vec{r}(t) = \langle t, f(t), 0 \rangle$$

which implies

$$\vec{r}'(t) = \langle 1, f'(t), 0 \rangle$$
$$\vec{r}''(t) = \langle 0, f''(t), 0 \rangle$$
$$\vec{r}'(t) \times \vec{r}''(t) = \langle 0, 0, f''(t) \rangle$$

Using the formula for the curvature

$$\kappa(t) = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}$$

we get:

$$\kappa(t) = \frac{|f''(t)|}{(1 + f'(t)^2)^{3/2}}$$

Use this formula to find the curvature of $y = x^3$ at $(2, 8)$.

For $f(x) = x^3$, we have $f'(x) = 3x^2$ and $f''(x) = 6x$. At $x = 2$ we get

$$f'(2) = 12 \quad f''(x) = 12$$

Thus

$$\kappa(2) = \frac{12}{(1 + 12^2)^{3/2}} = \frac{12}{(145)^{3/2}}$$