Modern Algebra I Spring 2016
Review Sheet for the Final

Definition: Let G_1 and G_2 be groups. A function $f: G_1 \to G_2$ is a homomorphism if, for all $g, h \in G_1$, $f(gh) = f(g)f(h)$.

Examples: 1) f an isomorphism, or more generally f an isomorphism from G_1 to a subgroup of G_2. 2) $f(g) = 1$ for all $g \in G_1$. 3) $f: \mathbb{C} \to \mathbb{C}^*$ defined by $f(z) = e^z$. 4) $f: \mathbb{C}^* \to \mathbb{R}^*$ defined by $f(z) = |z|$. 5) $\varepsilon: S_n \to \{\pm 1\}$. 6) $\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$. 7) $\pi_1: G_1 \times G_2 \to G_1$ defined by $\pi_1(g_1, g_2) = g_1$ (and similarly for $\pi_2: G_1 \times G_2 \to G_2$). 8) $\pi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ defined by $\pi(k) = \lfloor k \rfloor = k + n\mathbb{Z}$. 9) For G a (multiplicative) group and $g \in G$, the function $f: G \to G$ defined by $f(g) = g^n$. 10) For G an abelian group and $n \in \mathbb{Z}$, the function $f: G \to G$ defined by $f(g) = g^n$.

Proposition: Let $f: G_1 \to G_2$ be a homomorphism. Then:

1. $f(1) = 1$.
2. For all $g \in G_1$, $f(g^{-1}) = f(g)^{-1}$.
3. If $H_1 \leq G_1$, then $f(H_1) \leq G_2$. In particular, the image $\text{Im } f = f(G_1)$ is a subgroup of G_2.
4. If $H_2 \leq G_2$, then $f^{-1}(H_2) \leq G_1$.

Proposition: Let $f: G_1 \to G_2$ and $g: G_2 \to G_3$ be homomorphisms. Then $g \circ f: G_1 \to G_3$ is a homomorphism.

Definition: Let $f: G_1 \to G_2$ be a homomorphism. Then the kernel of f, written $\text{Ker } f$, is the subgroup $f^{-1}(1) \leq G_1$.

In the above examples of homomorphisms, the kernel is as follows: 1) $\{1\}$; 2) G_1; 3) $\langle 2\pi i \rangle$; 4) $U(1) = \{z \in \mathbb{C} : |z| = 1\}$; 5) A_n; 6) $\text{SL}_n(\mathbb{R})$; 7) $H_2 = \{1\} \times G_2$; 8) $n\mathbb{Z}$; 9) $\{0\}$, if g has infinite order, and $d\mathbb{Z}$, where d is the order of g, in case g has finite order; 10) the subgroup $\{g \in G : g^n = 1\}$ of n-torsion points (if, say, $n > 0$).

Proposition: Let $f: G_1 \to G_2$ be a homomorphism. Then f is injective if and only if $\text{Ker } f = \{1\}$.

Cayley’s theorem: Let G be a finite group. Then there exists an n such that G is isomorphic to a subgroup of S_n.

Cosets: let G be a group and $H \leq G$. A left coset of H in G is a subset of G of the form $gH = \{gh : h \in H\}$ for some $g \in G$. The set of all left cosets is denoted G/H. Right cosets Hg are similarly defined. A left coset
of G is an equivalence class for the equivalence relation $g_1 \equiv g_2 \pmod{H} \iff g_2^{-1}g_1 \in H$. Hence two left cosets for H are either disjoint or equal, and every element of G is in exactly one left coset. A similar result holds for right cosets, using the equivalence relation $g_1 \equiv_{r} g_2 \pmod{H} \iff g_1g_2^{-1} \in H$.

Proposition: For all $g \in G$, there is a bijection from H to gH. Hence, if H is finite, for every $g \in G$, $#(gH) = #(H)$.

Corollary 1 (Lagrange): If G is finite and $H \leq G$, then $#(G) = #(H) \cdot #(G/H)$.

In particular, $#(H)$ divides $#(G)$.

Definition: if G is a group and $H \leq G$, the index $(G : H)$ of H in G is the integer $#(G/H)$, if G/H is finite; otherwise H is of infinite index in G. If G is finite, then $(G : H) = #(G)/#(H)$. The index satisfies: if $K \leq H \leq G$, then $(G : K) = (G : H)(H : K)$.

Corollary 2: If G is a finite group, then the order of every element of G divides the order of G.

Corollary 3: If G is a finite group of prime order, then G is cyclic.

Corollary 4 (Fermat’s little theorem): If p is a prime and $a \in \mathbb{Z}$ is such that p does not divide a, then $a^{p-1} \equiv 1 \pmod{p}$. Hence for all $a \in \mathbb{Z}$, $a^p \equiv a \pmod{p}$.

Corollary 5 (Euler’s generalization of Fermat’s little theorem): More generally, for $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, if $\gcd(a,n) = 1$, then $a^{\varphi(n)} \equiv 1 \pmod{n}$, where φ is the Euler φ-function.

Coset multiplication: we try to turn the set G/H of left cosets into a group using multiplication of representatives. In other words, we try to define $(g_1H)(g_2H) = (g_1g_2)H$. To see that this is well-defined, we must show that it is independent of the choice of representative. In other words, we must check that, for all $g_1, g_2 \in G$ and $h_1, h_2 \in H$, $(g_1h_1g_2h_2)H = (g_1g_2)H$, or equivalently that there exists an $h_3 \in H$ such that $g_1h_1g_2h_2 = g_1g_2h_3$.

Proposition: Coset multiplication for G/H is well-defined if and only if, for all $g \in G$ and $h \in H$, there exists an $h' \in H$ such that $hg = gh'$. Equivalently, coset multiplication for G/H is well-defined if and only if, for all $g \in G$ and $h \in H$, $g^{-1}hg \in H$.

Let $g^{-1}Hg = \{g^{-1}hg : h \in H\}$.

Proposition: Let G be a group and let $H \leq G$. Then the following are equivalent:

1. For all $g \in G$ and $h \in H$, there exists an $h' \in H$ such that $hg = gh'$.
2. For all $g \in G$, $Hg \subseteq gH$.

3. For all $g \in G$, $g^{-1}Hg \subseteq H$.

4. For all $g \in G$, $g^{-1}Hg = H$.

5. For all $g \in G$, $gH = Hg$, i.e. every left coset of G is also a right coset.

Definition: H is a normal subgroup of G (written $H \triangleleft G$) if coset multiplication for G/H is well-defined, i.e. if any and hence all of the equivalent conditions of the preceding proposition are satisfied. (Usually, the easiest to check in practice to show that, for all $g \in G$ and $h \in H$, $g^{-1}hg \in H$.)

Corollary: If H has index two in G, then $H \triangleleft G$.

Proposition: If $H \triangleleft G$, then G/H is a group under coset multiplication. It is called the quotient of G by H and a group of the form G/H is called a quotient group. In this case, the function $\pi : G \to G/H$ defined by $\pi(g) = gH$ is a homomorphism, the quotient homomorphism, and Ker $\pi = H$.

Facts about normal subgroups:

1. If $H \triangleleft G$ and $K \triangleleft G$, then $H \cap K \triangleleft G$.

2. If $H \triangleleft G$ and $K \leq G$, then $H \cap K \triangleleft K$.

3. If $H \leq K$ and $H \triangleleft G$, then $H \triangleleft K$. But there are examples of subgroups $H \leq K \leq G$ such that $H \triangleleft K$ and $K \triangleleft G$, but H is not a normal subgroup of G.

4. If $H \triangleleft G$ and $K \leq G$, then the set $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G and $H \triangleleft HK$, $K \leq HK$.

Proposition: If $f : G_1 \to G_2$ is a homomorphism, then Ker f is a normal subgroup of G_1.

More generally, if $f : G_1 \to G_2$ is a homomorphism and H_2 is a normal subgroup of G_2, then $f^{-1}(H_2)$ is a normal subgroup of G_1. If f is surjective and if H_1 is a normal subgroup of G_1, then $f(H_1)$ is a normal subgroup of G_2.

Theorem (First Isomorphism Theorem, or Fundamental Homomorphism Theorem): Let $f : G_1 \to G_2$ be a homomorphism and let $K = \text{Ker } f$. Then there exists a unique isomorphism $\tilde{f} : G_1/K \to \text{Im } f$ such that $\tilde{f}(gK) = f(g)$ for all $g \in G_1$. Hence $f = i \circ \tilde{f} \circ \pi$, where $i : \text{Im } f \to G_2$ is the inclusion and $\pi : G_1 \to G_1/K$ is the quotient homomorphism: $\pi(g) = gK$ for all $g \in$
In other words, every homomorphism can be “factored” into a quotient homomorphism, followed by an isomorphism, followed by an inclusion of a subgroup.

The situation is expressed by the following “commutative diagram:”

\[
\begin{array}{ccc}
G_1 & \xrightarrow{f} & G_2 \\
\downarrow \pi & & \uparrow i \\
G_1/K & \xrightarrow{f} & \text{Im } f.
\end{array}
\]

Examples: 1) \(G\) a group, \(g \in G\), and \(f: \mathbb{Z} \to G\) defined by \(f(k) = g^k\): then \(\text{Im } f = \langle g \rangle \cong \mathbb{Z}\) if \(g\) is of infinite order and \(\text{Im } f = \langle g \rangle \cong \mathbb{Z}/n\mathbb{Z}\) if \(g\) has order \(n\). 2) \(G_1\) and \(G_2\) two groups, with normal subgroups \(H_1 \triangleleft G_1\) and \(H_2 \triangleleft G_2\). Then \(f: G_1 \times G_2 \to (G_1/H_1) \times (G_2/H_2)\) defined by

\[f(g_1, g_2) = (g_1 H_1, g_2 H_2)\]

is a homomorphism with kernel \(H_1 \times H_2\), so that \((G_1 \times G_2)/(H_1 \times H_2) \cong (G_1/H_1) \times (G_2/H_2)\). 3) \(GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong \mathbb{R}^*\). 4) The homomorphism \(f: \mathbb{R} \to \mathbb{C}^*\) defined by \(f(t) = e^{2\pi it}\) has image \(U(1)\) and kernel \(\mathbb{Z}\). Thus \(\mathbb{R}/\mathbb{Z} \cong U(1)\), and \(\mathbb{Q}/\mathbb{Z} \cong \mu_\infty\), the torsion subgroup of \(U(1)\).

Third Isomorphism Theorem: Let \(G\) be a group, \(H, K\) two subgroups of \(G\) with \(H \leq K\), and suppose that \(H \triangleleft G\) and \(K \triangleleft G\). Then the image \(\pi(K) = K/H\) is a normal subgroup of \(G/H\), and

\[(G/H)/(K/H) \cong G/K.\]

Definition: A group \(G\) is simple if \(G \neq \{1\}\) and the only normal subgroups of \(G\) are either \(\{1\}\) or \(G\).

Example: If \(p\) is a prime, then \(\mathbb{Z}/p\mathbb{Z}\) is simple. Every abelian finite simple group is isomorphic to \(\mathbb{Z}/p\mathbb{Z}\) for some prime \(p\).

Theorem: The group \(A_n\) is simple for \(n \geq 5\).

Corollary (HW): If \(n \geq 5\) and \(H\) is a normal subgroup of \(S_n\), then \(H\) is either \(S_n\), \(A_n\), or \(\{1\}\).

Definition: Let \(G\) be a group and \(X\) a set. Then an action of \(G\) on \(X\) is a function \(F: G \times X \to X\), where we write \(F(g, x) = g \cdot x\), satisfying:

1. For all \(g_1, g_2 \in G\) and \(x \in X\), \(g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x\).
2. For all \(x \in X\), \(1 \cdot x = x\).
When the action F is understood, we say that X is a G-set.

Examples:

1. The trivial action: $g \cdot x = x$ for all $g \in G$ and $x \in X$.

2. S_n acts on $\{1, \ldots, n\}$ via $\sigma \cdot k = \sigma(k)$ (here we use the definition of multiplication in S_n as function composition). More generally, if X is any set, S_X acts on X, and on $\mathcal{P}(X)$, and on all subsets of X of a fixed cardinality.

3. $GL_n(\mathbb{R})$ acts on \mathbb{R}^n, via matrix multiplication, and \mathbb{R}^* acts on \mathbb{R}^n by scalar multiplication. Also O_n and SO_n act on \mathbb{R}^n, and on S^{n-1}, the unit sphere in \mathbb{R}^n.

4. D_n acts on the set of vertices of a regular n-gon, as well as on the set of edges. Similarly for the symmetry groups of the five regular solids, which are subgroups of SO_3.

5. G acts on itself by left multiplication: $g \cdot x = gx$. More generally, if $H \leq G$, then G acts on the set of left cosets G/H via: $g \cdot (xH) = (gx)H$.

6. G acts on itself by conjugation i_g: $i_g(x) = gxg^{-1}$.

If X is a G-set and $f: G' \to G$ is a homomorphism, then X becomes a G'-set via $g \cdot x = f(g) \cdot x$. In particular, if $H \leq G$, then a G-set X is also an H-set by just looking at $h \cdot x$ for $h \in H$.

Generalization of the proof of Cayley’s Theorem: Given a homomorphism $\rho: G \to S_X$, then X becomes a G-set. Conversely, if $F: G \times X \to X$ is an action, then let $\ell_g: X \to X$ be defined by $\ell_g(x) = F(g,x) = g \cdot x$. (For $X = G$ with the action of left multiplication, this is the definition from the proof of Cayley’s Theorem.) Thus $\ell_1 = \text{Id}_X$ and $\ell_g \circ \ell_h(x) = g \cdot (h \cdot x) = (gh) \cdot x = \ell_{gh}(x)$. In particular $\ell_g \circ \ell_{g^{-1}} = \ell_{g^{-1}} \circ \ell_g = \ell_1 = \text{Id}_X$, so that $\ell_{g^{-1}} = \ell_g^{-1}$ and ℓ_g is a bijection for all $g \in G$. In particular we see that

$$y = g \cdot x \iff x = g^{-1} \cdot y.$$

Moreover, $\rho: G \to S_X$ defined by $\rho(g) = \ell_g$ is a homomorphism from G to S_X. Finally, the two constructions just described (passing from a homomorphism $G \to S_X$ to an action of G on X, and passing from an action of G on X to a homomorphism $G \to S_X$) are inverse constructions. Thus, the concept of a G-set X is equivalent to the concept of a homomorphism $G \to S_X$.

5
Definition: If X is a G-set, then a G-subset Y of X is a subset $Y \subseteq X$ such that, for all $g \in G$ and $y \in Y$, $g \cdot y \in Y$. A G-subset is itself a G-set.

Definition: If X_1 and X_2 are G-sets, an isomorphism f from X_1 to X_2 (of G-sets) is a bijection $f: X_1 \to X_2$ such that $f(g \cdot x) = g \cdot f(x)$ for all $g \in G$ and $x \in X$. In this case we say that X_1 and X_2 are isomorphic (as G-sets) and write this as $X_1 \cong_G X_2$. If $f: X_1 \to X_2$ is an isomorphism of G-sets, then so is f^{-1}; likewise the composition of two isomorphisms of G-sets is again an isomorphism of G-sets.

Definition: If X is a G-set and $x \in X$, the orbit of X (under G) is the set $G \cdot x = \{g \cdot x : g \in G\}$. Thus $G \cdot x \subseteq X$. Clearly $G \cdot x$ is a G-subset of X and is the smallest G-subset of X containing x. The orbit of x is the equivalence class containing x for the equivalence relation $x \sim_G y \iff$ there exists a $g \in G$ such that $g \cdot x = y$. Thus, two orbits are either disjoint or equal. If $G \cdot x = X$ for one (or equivalently all) $x \in X$, we say that G acts transitively on X.

Example: if $\sigma \in S_n$, then we have previously defined the orbits $O_\sigma(i)$ of σ. The link with the current definition is as follows: the orbits of σ in the previous sense are the orbits of the cyclic subgroup $\langle \sigma \rangle$ acting on $\{1, \ldots, n\}$ as a subgroup of S_n.

Definition: If X is a G-set and $x \in X$, the isotropy subgroup G_x is the set $\{g \in G : g \cdot x = x\}$. It is a subgroup of G.

Definition: If X is a G-set, then the fixed set X^G is the set $\{x \in X : g \cdot x = x \text{ for all } g \in G\}$. It is the largest G-subset of X for which the G-action is trivial. Clearly $x \in X^G \iff G_x = G \iff G \cdot x = \{x\} \iff$ the orbit $G \cdot x$ contains exactly one element.

Example: If G acts on itself by conjugation, then the fixed set G^G is the center $Z(G)$, the orbit of $x \in G$ is the conjugacy class $C(x) = \{gxg^{-1} : g \in G\}$, and the isotropy group of x is the centralizer of x, namely the subgroup $Z_G(x) = \{g \in G : gxg^{-1} = x\}$.

Proposition: If X is a G-set, $x \in X$, and $y = g \cdot x \in G \cdot x$, then $G_y = gG_xg^{-1}$. In other words, the isotropy groups of x and y are conjugate by g.

Theorem: If X is a G-set and $x \in X$, then there is an isomorphism of G-sets from $G \cdot x$ to G/G_x, where G acts on the set of left cosets of G_x in the usual way (by left multiplication of cosets).

Corollary: If G is finite, X is a G-set, and $x \in X$, then

$$\#(G) = \#(G_x) \cdot \#(G \cdot x),$$
or equivalently
\[\#(G \cdot x) = (G : G_x). \]

Hence the number of elements of an orbit of \(G \) in \(X \) divides the order of \(G \).

For example, if \(G \) is a finite group and \(x \in G \), then
\[\#(C(x)) = (G : Z_G(x)). \]

Suppose \(X \) is a finite \(G \)-set with the different orbits listed (for some \(x_1, \ldots, x_k \in X \)) as \(O_1 = G \cdot x_1, \ldots, O_k = G \cdot x_k \). Then
\[\#(X) = \sum_{i=1}^{k} \#(G \cdot x_i) = \sum_{i=1}^{k} \#(O_i). \]

We rewrite this by grouping together the one-element orbits into \(X^G \), as
\[\#(X) = \#(X^G) + \sum_{\#(G \cdot x_i) > 1} \#(G \cdot x_i) = \#(X^G) + \sum_{\#(O_i) > 1} \#(O_i), \]
where the second sum is over the orbits which have more than one element (note that \(\#(O) \) divides \(\#(G) \) if \(G \) is finite). Thus:

Corollary: If \(\#(G) = p^r \), where \(p \) is a prime, and if \(X \) is a finite \(G \)-set, then
\[\#(X) \equiv \#(X^G) \pmod{p}. \]

For a general finite group \(G \), regarding \(G \) as acting on itself by conjugation, we get the class equation
\[\#(G) = \#(Z(G)) + \sum \#(C(x_i)), \]
where the sum is over the distinct conjugacy classes \(C(x_i) \) which have more than one element (i.e. for which \(x_i \notin Z(G) \)).

Corollary: Let \(p \) be a prime number. If \(\#(G) = p^r \) with \(r \geq 1 \), then \(Z(G) \neq \{1\} \). In particular, if \(\#(G) \neq p \), then \(G \) is not simple (and hence, by induction, solvable).

Corollary: Let \(p \) be a prime number. If \(\#(G) = p^2 \), then \(G \) is abelian.

Definition: Let \(p \) be a prime number. Let \(G \) be a finite group such that \(\#(G) = p^r m \) where \(r > 0 \) and \(p \) does not divide \(m \). A \(p \)-Sylow subgroup of \(G \) is a subgroup \(P \) such that \(\#(P) = p^r \), or equivalently \((G : P) = m \).

Theorem (Sylow Theorem): Let \(G \) be a group of order \(n \), let \(p \) be a prime number such that \(p \mid n \), and write \(n = p^r m \) where \(p \) does not divide \(m \). Then:
1. There exists a p-Sylow subgroup of G.

2. If P_1 and P_2 are two p-Sylow subgroups of G, then P_1 and P_2 are conjugate, i.e. there exists a $g \in G$ such that $gP_1g^{-1} = P_2$.

3. If $H \leq G$ and $\#(H) = p^s$, then there exists a p-Sylow subgroup P of G such that $H \leq P$.

4. The number of p-Sylow subgroups of G is congruent to 1 (mod p) and divides $\#(G)$.

Lemma (Cauchy’s Theorem for abelian groups): Let G be a finite abelian group and let p be a prime number such that p divides $\#(G)$. Then G contains an element of order p.

Lemma: Let G be a group, and H and K two subgroups of G. Set $X = G/K$, with G acting on X by left multiplication of cosets.

1. Viewing X as an H-set by restricting the action to H, we have
 $$X^H = \{gK : H \leq gKg^{-1}\}.$$

2. If in addition $H = K$ and H is finite,
 $$X^H = \{gH : H = gHg^{-1}\}.$$

Definition: For a subgroup H of a group G, the normalizer $N_G(H)$ of H in G is the set
 $$\{g \in G : gHg^{-1} = H\}.$$

Then $N_G(H) \leq G$, $H \trianglelefteq N_G(H)$, and $H \trianglelefteq G \iff N_G(H) = G$. (2) of the lemma then says: if $X = G/H$, then $X^H = N_G(H)/H$.

Corollary (of (3) of the Sylow theorem): A group G contains exactly one p-Sylow subgroup \iff there exists a normal p-Sylow subgroup.

Corollary (of (4) of the Sylow theorem): Let p and q be distinct primes. Then a group of order pq is not simple. In fact, if $p < q$, P is a p-Sylow subgroup, and Q is a q-Sylow subgroup, then $Q \lhd G$, $Q \cap P = \{1\}$, and $G = PQ$. Hence, if q is not congruent to 1 mod p, then P is also normal and $G \cong P \times Q \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.

Corollary: Let P be a finite group of order p^r, where p is a prime number. Then for each $i \leq r$, there exists a subgroup of P of order p^i. Thus, if G be a group of order $n = p^rm$, where $r > 0$ and p does not divide m, then G has a subgroup of order p^i for $i \leq r$. The case $i = r$ is 1) of the Sylow Theorem and the case $i = 1$ is the general form of Cauchy’s Theorem.