1. Let $F_2 = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. How many elements are there in F_2^2, i.e. how many functions are there from F_2 to F_2? Show that every function from F_2 to F_2 is of the form $E(f)$ for a unique polynomial f of the form $ax + b$ (i.e. either $\deg f \leq 1$ or $f = 0$).

2. (i) Let R be a ring. Show that, if r and s are not divisors of zero, then rs is not a divisor of zero. In particular, if r is not a divisor of zero, then r^n is not a divisor of zero for every $n > 0$.

(ii) Show that, if R is a finite ring, then every element of R is either a zero divisor or a unit. In particular, the set of divisors of zero in $\mathbb{Z}/n\mathbb{Z}$ is $\mathbb{Z}/n\mathbb{Z} - (\mathbb{Z}/n\mathbb{Z})^*$.

3. Let X be a set and let R be a ring. Show that, if X has at least two elements, then R^X is not an integral domain.

4. Recall that an element r of a ring R is nilpotent if there exists a positive integer N such that $r^N = 0$. (The possibility that $r = 0$, i.e. that $N = 1$, is allowed.)

(a) What are all of the nilpotent elements in $\mathbb{Z}/6\mathbb{Z}$? In $\mathbb{Z}/8\mathbb{Z}$? In $\mathbb{Z}/24\mathbb{Z}$? Describe more generally all of the nilpotent elements in $\mathbb{Z}/n\mathbb{Z}$.

(b) Show that, if r is nilpotent and $s \in R$, then sr is nilpotent.

(c) Show that, if $r, s \in R$ and r and s are both nilpotent, then $r + s$ is also nilpotent (i.e. the sum of two nilpotent elements is again nilpotent. (Use the binomial theorem.) (Note: this does not necessarily hold in a non-commutative ring, for example, in $M_2(\mathbb{R})$ both $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ are nilpotent, but their sum is invertible.) Is it true that the set of all nilpotent elements of R is a subring of R?

(d) Show that, if r is nilpotent, then $1 + r$ is a unit. (Hint: geometric series, and first show that $1 - r$ is a unit.) More generally, if u is a unit in R and r is nilpotent, then $u + r$ is a unit.

(e) If r is a nilpotent element of R, then the polynomial $1 + rx$ is a unit in $R[x]$. Hence, if R is not an integral domain, then it is possible for $(R[x])^*$ to be larger than R^*.
5. Let p be a prime number.

(a) If k is an integer with $1 \leq k \leq p - 1$, show that p divides the binomial coefficient $\binom{p}{k}$.

(b) Let R be an integral domain of characteristic p, or more generally a ring such that $p \cdot r = 0$ for all $r \in R$. Show that, for all $r, s \in R$, $(r + s)^p = r^p + s^p$. (Use the binomial theorem and part (a).)

(c) If R is a ring such that $p \cdot r = 0$ for all $r \in R$, show that the function $F : R \to R$ defined by $F(r) = r^p$ is a (ring) homomorphism (the Frobenius homomorphism). If R is an integral domain, show that F is injective.

(d) Let $R = \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$. Show that $F(1) = 1$ and conclude that $F : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity. (This gives another proof of Fermat’s Little Theorem, a standard number theory fact proved in Modern Algebra I.)

(e) Let $R = (\mathbb{Z}/p\mathbb{Z})[x] = \mathbb{F}_p[x]$. What is $F(\sum a_i x^i)$? Show that $F : R \to R$ is injective but not surjective and describe the image of F.

The Frobenius homomorphism is very important in the study of finite fields, and it will reappear later on in the course.

6. Let $a, b, c \in \mathbb{Q}$, not all zero. We would like to show that $\mathbb{Q}(\sqrt[3]{2})$ is a field by rationalizing the denominator in an expression of the form $\frac{1}{a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2}$. Show that this can be done by multiplying by

$$1 = \frac{(a^2 - 2bc) + (-ab + 2c^2)\sqrt[3]{2} + (b^2 - ac)(\sqrt[3]{2})^2}{(a^2 - 2bc) + (-ab + 2c^2)\sqrt[3]{2} + (b^2 - ac)(\sqrt[3]{2})^2},$$

by checking that

$$(a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2)((a^2 - 2bc) + (-ab + 2c^2)\sqrt[3]{2} + (b^2 - ac)(\sqrt[3]{2})^2))$$

is the rational number $a^3 + 2b^3 + 4c^3 - 6abc$, which is nonzero if not all of a, b, c are zero (you do not need to prove that this expression is nonzero). We will see a few different ways to explain how to find this rationalizing factor over the course of the semester.