MODERN ALGEBRA II SPRING 2019:
THIRTEENTH PROBLEM SET

1. Let \(A_1 \) be the element \(a + b\sqrt{2} + c(\sqrt{2})^2 \in \mathbb{Q}(\sqrt{2}) \). Viewing \(\mathbb{Q}(\sqrt{2}) \) as a subfield of its splitting field \(\mathbb{Q}(\sqrt{2}, \omega) \) (where \(\omega \neq 1 \) satisfies \(\omega^3 = 1 \), show that, if \(\sigma \in \text{Gal}(\mathbb{Q}(\sqrt{2}, \omega)/\mathbb{Q}) \), then \(\sigma(A_1) \) is either \(A_1 \), \(A_2 \), or \(A_3 \), where

\[
A_1 = a + b\sqrt{2} + c(\sqrt{2})^2;
A_2 = a + b\omega\sqrt{2} + c\omega^2(\sqrt{2})^2;
A_3 = a + b\omega^2\sqrt{2} + c\omega(\sqrt{2})^2.
\]

More generally, if \(\sigma \in \text{Gal}(\mathbb{Q}(\sqrt{2}, \omega)/\mathbb{Q}) \), then \(\sigma \) permutes the \(A_i \). Conclude that \(A_1A_2A_3 \) is left fixed by every \(\sigma \in \text{Gal}(\mathbb{Q}(\sqrt{2}, \omega)/\mathbb{Q}) \), and hence (by the main theorem of Galois theory), \(A_1A_2A_3 \in \mathbb{Q} \). Can \(A_1A_2A_3 \) ever be 0? In fact, argue that \(A_1A_2A_3 = 0 \iff a = b = c = 0 \). Evaluate \(A_1A_2A_3 \) in terms of \(a, b, c \). Where have we seen this expression before? Setting \(D = A_1A_2A_3 \in \mathbb{Q} \), use Galois theory to see without any computation that \(A_2A_3/D \in \mathbb{Q}(\sqrt{2}) \) and that it is an explicit inverse for \(A_1 \).

2. Let \(f(x) \in \mathbb{Q}[x] \) be an irreducible cubic polynomial with exactly one real root. Let \(E \) be the splitting field of \(f(x) \).

(i) Argue that \(E \) has an automorphism of order 2 given by complex conjugation, so that the Galois group of \(E \) over \(\mathbb{Q} \) has an element of order 2. Using this fact alone, can the Galois group of \(E \) over \(\mathbb{Q} \) be equal to \(A_3 \)?

(ii) Show (without using (i)) that \(E \) has degree 6 over \(\mathbb{Q} \). (Let \(\alpha \) be a real root of \(f(x) \). What is \([\mathbb{Q}(\alpha) : \mathbb{Q}] \)? Can \(\mathbb{Q}(\alpha) \) be a splitting field for \(f(x) \)? Why or why not? Show that \([E : \mathbb{Q}(\alpha)] = 2 \).)

3. Let \(F \) be a field of characteristic zero, and let \(E \) be a normal extension of \(F \) with Galois group isomorphic to \(S_3 \). Show that \(E \) is the splitting field of an irreducible cubic polynomial. (Hint: use Galois theory to find a subfield \(K \) of \(E \) such that \([K : F] = 3 \). Can \(K \) be a normal extension of \(F \)? Now argue that \(K = F(\alpha) \) for some \(\alpha \in E \) which is a root of an irreducible polynomial \(f(x) \) of degree 3 over \(F \), and conclude that \(E \) is the splitting field of \(f(x) \).)
4. Let $\zeta = \zeta_5$ be the 5th root of unity $e^{2\pi i/5}$, and consider the field $\mathbb{Q}(\zeta)$.

(i) Show that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$.

(ii) Galois theory predicts that there is exactly one quadratic extension of \mathbb{Q} contained in $\mathbb{Q}(\zeta)$. To find this extension, let $\alpha = \zeta + \zeta^{-1} = \zeta + \zeta^4 = \zeta + \bar{\zeta}$, where the bar denotes complex conjugation. Show that α satisfies the quadratic equation $\alpha^2 + \alpha - 1 = 0$ (recall that ζ satisfies the equation $\zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1 = 0$), and hence $\alpha = \frac{-1 \pm \sqrt{5}}{2}$. To determine the sign, use $\zeta = e^{2\pi i/5}$ to see that $\alpha = 2 \cos(2\pi/5)$. What is the sign of $\cos(2\pi/5)$? Conclude that $\alpha = \frac{-1 + \sqrt{5}}{2}$. (Pure thought alone cannot determine the sign of the square root: in fact, by Galois theory, there is no way to distinguish algebraically between, say, ζ and ζ^a, where $1 \leq a \leq 4$, and hence between $\zeta + \zeta^{-1}$ and $\zeta^a + \zeta^{-a}$. Taking $a = 1$ or $a = 4$ gives α; the other choice of the square root comes from taking $a = 2$ or 3 and hence from $\zeta^2 + \zeta^3$.)

(iii) The field $\mathbb{Q}(\zeta)$ is a degree two extension of $\mathbb{Q}(\alpha)$. Show that

$$\zeta^2 - \alpha \zeta + 1 = 0,$$

and express ζ in terms of α by using the quadratic formula.

(iii) Now let $\zeta = \zeta_7$ be the 7th root of unity $e^{2\pi i/7}$, and consider the field $\mathbb{Q}(\zeta)$. Then $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong (\mathbb{Z}/7\mathbb{Z})^*$ and has two proper nontrivial subgroups of orders 3 and 2 respectively: $\langle 2 \rangle$ and $\{\pm 1\} = \langle 6 \rangle$. Galois theory predicts that the degree six extension $\mathbb{Q}(\zeta)$ has exactly one subfield which is a quadratic extension of \mathbb{Q} and one subfield which is a cubic extension of \mathbb{Q}. Using the equation $\zeta^6 + \zeta^5 + \zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1 = 0$, show that $\alpha = \zeta + \zeta^2 + \zeta^4$ satisfies the quadratic equation $\alpha^2 + \alpha + 2 = 0$, and hence $\alpha = \frac{-1 \pm \sqrt{-7}}{2}$. To find the cubic extension, let $\beta = \zeta + \zeta^{-1}$. By computing β^2, $\beta^2 - 2$, and $(\beta^2 - 2)\beta$, show that β is the root of a cubic polynomial in $\mathbb{Q}[x]$ and determine this polynomial explicitly.