MODERN ALGEBRA II SPRING 2019:
TWELFTH PROBLEM SET

1. Let $E = F(\alpha, \beta)$ be a finite extension of the field F, so that α and β are algebraic over F. Let $f = \text{irr}(\alpha, F)$ and let $g = \text{irr}(\beta, F)$. Suppose that g is irreducible in $F(\alpha)[x]$. Show that f is irreducible in $F(\beta)[x]$.
(Hint: let $d = \deg f$ and let $e = \deg g$. What is $[F(\alpha, \beta) : F]$?)

2. Let F be a field of characteristic zero, let $f \in F[x]$ be an irreducible polynomial of degree n, and let E be the splitting field of f. We have seen that, if $G = \text{Gal}(E/F)$, then n divides the order of G and the order of G divides $n!$. Does G necessarily contain an element of order exactly n? (Consider the case $F = \mathbb{Q}$ and $f = x^4 - 10x^2 + 1$.)

3. (Cyclotomic extensions.) Let F be a field of characteristic zero and let $n \in \mathbb{N}$.

(ii) Let K be an extension field of F such that $x^n - 1$ is a product of linear factors in K. Let ζ be a primitive nth root of unity, i.e. a generator for the cyclic group of all nth roots of unity in K, and set $E = F(\zeta)$. In case $F = \mathbb{Q}$ and $K = \mathbb{C}$, we set $\zeta_n = e^{2\pi i/n}$.
Show that E contains all n distinct roots of $x^n - 1$, and hence that E is a splitting field for $x^n - 1$ over F.

(ii) Let $\sigma \in \text{Gal}(E/F)$. Show that $\sigma(\zeta) = \zeta^i$ for a unique $i \in (\mathbb{Z}/n\mathbb{Z})^*$. The main point here is to show that i must be relatively prime to n, or equivalently that the order of $\sigma(\zeta)$ is n. Finally show that the function

$$\sigma \in \text{Gal}(E/F) \mapsto i \in (\mathbb{Z}/n\mathbb{Z})^*,$$

where $\sigma(\zeta) = \zeta^i$, defines an injective homomorphism from $\text{Gal}(E/F)$ to $(\mathbb{Z}/n\mathbb{Z})^*$. In particular, $\text{Gal}(E/F)$ is abelian.

(iii) We have seen that, for $F = \mathbb{Q}$ and $n = p$ a prime number, $\Phi_p(x) = (x^p - 1)/(x - 1) \in \mathbb{Q}[x]$ and $\Phi_p(x)$ is irreducible, by the Eisenstein criterion. Using this fact, show that $\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^*$, which is cyclic of order $p - 1$. (Warning: you must use the irreducibility of Φ_p in some way.)

(Note: As we have already mentioned, one can show that the polynomial

$$\Phi_n(x) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^*} (x - \zeta^i)$$

has coefficients in \(\mathbb{Q} \) and is always irreducible in \(\mathbb{Q}[x] \). It then follows that \([\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)\) and that \(\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \) is isomorphic to \((\mathbb{Z}/n\mathbb{Z})^*\).

4. \((n^{th} \text{ root extensions})\) Let \(F \) be a field of characteristic zero and suppose that \(F \) contains all of the \(n^{th} \) roots of unity, i.e. that \(\#(\mu_n(F)) = n \) (here \(\#(\mu_n(F)) \) is the number of \(n^{th} \) roots of unity in \(F \)). Let \(f = x^n - a \) for some \(a \in F, \ a \neq 0 \). Let \(E \) be an extension field of \(F \) and let \(\alpha \in E \) be such that \(\alpha^n = a \). Finally, assume that \(E = F(\alpha) \).

(i) Show that \(E \) is a splitting field for \(f \) over \(F \).

(ii) Let \(\sigma \in \text{Gal}(E/F) \). Show that \(\sigma(\alpha) = \zeta \cdot \alpha \) for a unique \(n^{th} \) root of unity \(\zeta \).

(iii) Define the function
\[
\sigma \in \text{Gal}(E/F) \mapsto \zeta,
\]
where \(\zeta \) is the unique \(n^{th} \) root of unity such that \(\sigma(\alpha) = \zeta \cdot \alpha \). In other words,
\[
\rho(\sigma) = \frac{\sigma(\alpha)}{\alpha}.
\]
Show that \(\rho \) does not depend on the choice of \(\alpha \) (i.e. the particular choice of a root of \(x^n - a \)) and that \(\rho \) is an injective homomorphism from \(\text{Gal}(E/F) \) to the multiplicative group of all \(n^{th} \) roots of unity in \(E \), which is cyclic of order \(n \). Hence \(\text{Gal}(E/F) \) is a cyclic group of order dividing \(n \).

(iv) Under the above assumptions, what is \(\text{Gal}(E/F) \) when \(F = \mathbb{Q}(i) \) and \(f = x^4 - 2 \) (hence \(E = \mathbb{Q}(i, \sqrt{2}) \))? What is \(\text{Gal}(E/F) \) when \(F = \mathbb{Q}(i, \sqrt{2}) \) and \(f = x^4 - 2 \) (hence \(E = \mathbb{Q}(i, \sqrt{2}) \))?