1. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and let $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, so that $B \in O_2$ and $A \in U = \\left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$. Compute ABA^{-1} and BAB^{-1}. Is O_2 a normal subgroup of $GL_2(\mathbb{R})$? Is U a normal subgroup of $GL_2(\mathbb{R})$?

2. Consider the following subgroup of A_4 (considered in Problem Set 10):

 $$H = \{1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}.$$

 (i) Show that $H = \{\sigma \in S_4 : \sigma \text{ is even and } \sigma \text{ has order 1 or 2}\}$.

 (ii) Show that H is a normal subgroup of A_4 and of S_4. (If $\sigma \in H$ and $\tau \in S_4$, what can you say about the shape of $\tau^{-1}\sigma \tau$?)

 (iii) Show that A_4/H has order 3 and that S_4/H has order 6. (In fact, one can show that $S_4/H \cong S_3$.)

 (iv) Show that $K = \{1, (1,2)(3,4)\}$ is a normal subgroup of H but not of A_4. Thus $K \lhd H$ and $H \lhd A_4$ but $K \nmid A_4$.

3. (i) Let G be a group and let H be a normal subgroup of G. Let $a \in G$. Show that the order of aH in the group G/H is equal to the smallest positive integer n such that $a^n \in H$ (and is infinite if no such integer exists).

 (ii) Give an example of a group G, a normal subgroup H of G, and an element $a \in G$ such that a has infinite order in G but such that aH has finite order.

 (iii) Show that, if a has finite order n in G, then the order of aH is finite and divides n. Is the order of aH always equal to n?

4. (i) Let G be a group and let H, K be two subgroups of G. Show that, if $H \lhd G$ and $K \lhd G$, then $H \cap K \lhd G$.

 (ii) With G, H, K as in (i), show that, if $H \lhd G$, then $H \cap K \lhd K$.

5. Let G_1 and G_2 be groups and let $f : G_1 \to G_2$ be a homomorphism.

 (i) Show that, if H_2 is a normal subgroup of G_2, then $f^{-1}(H_2)$ is a normal subgroup of G_1.

(ii) Show that, if H_1 is a normal subgroup of G_1, then $f(H_1)$ need not be a normal subgroup of G_2.

(iii) Show that, if H_1 is a normal subgroup of G_1, and f is surjective, then $f(H_1)$ is a normal subgroup of G_2.

6. Let G be a finite group and $f: G \to H$ a surjective homomorphism. Show that $\#(\text{Ker} \ f) = \#(G)/\#(H)$.

7. Let G be a group $G \neq \{1\}$. Show that G is simple if and only if, for every group H and homomorphism $f: G \to H$, either f is trivial (i.e. $\text{Im} \ f = \{1\}$) or f is injective.

8. Let G be a group, and let $H = \{1,g\}$ be a subgroup of G with just two elements. Show that H is a normal subgroup of G if and only if $H \leq Z(G)$, where $Z(G)$ denotes the center of G.

9. For $n \geq 5$, and using the fact that A_n is simple for $n \geq 5$, show that every normal subgroup H of S_n is either S_n, A_n, or $\{1\}$. (Hints: first, show that, by (ii) of Problem 4, either $H \cap A_n = A_n$ or $H \cap A_n = \{1\}$. If $H \cap A_n = A_n$, then $A_n \subseteq H$ so that $A_n \leq H \leq S_n$. What are the possibilities for the index $(S_n : H)$? If $H \cap A_n = \{1\}$, show that the induced homomorphism $\varepsilon : H \to \{\pm 1\}$ given by the sign homomorphism is injective. Conclude that $\#(H) \leq 2$. If $\#(H) = 2$, use the previous problem to conclude that $H \leq Z(S_n)$, the center of S_n, and then use Problem 7 from HW 9 to get a contradiction.)