1. (i) Find the remainder of 5^{143} when divided by 29.

(ii) Show that, for every integer a such that $\gcd(a, 100) = 1$, $a^{20} \equiv 1 \pmod{100}$, and use this to compute the last two digits of $(17)^{122}$.
(Note that $\phi(100) = 40$, so this improves on Euler’s generalization.)

2. Let G be a group (not necessarily finite), let H_1 and H_2 be two finite subgroups of G, and suppose that $\#(H_1) = n_1$ and $\#(H_2) = n_2$ with $\gcd(n_1, n_2) = 1$. Show that $H_1 \cap H_2 = \{1\}$.

3. Let G be a group of order p^n, where p is a prime. Show that G contains an element of order p. (Show first that every element of G has order p^k for some $k \leq n$.)

4. Let G be a group and let H be a subgroup of G, not necessarily normal. Show that $g_1 \equiv_{H} g_2 \mod H \iff g_1^{-1} \equiv_{H} g_2^{-1} \mod H$. Conclude that the function $f : G/H \rightarrow H \backslash G$ given by $f(gH) = Hg^{-1}$ is well-defined, i.e. does not depend on the choice of a representative for G/H, and defines a bijection from G/H to $H \backslash G$. (Note: However, the “function” $F : G/H \rightarrow H \backslash G$ given by $F(gH) = Hg$ is well-defined if and only if H is normal.)

5. By Problem 3 of HW 10, if $f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is a homomorphism, then there exist $a, b, c, d \in \mathbb{Z}$ such that f is of the form $f(n, m) = n(a, c) + m(b, d) = (an + bm, cn + dm)$, where $f(1, 0) = (a, c)$ and $f(0, 1) = (b, d)$. Thus f corresponds to a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with integer coefficients, and conversely, every such 2×2 matrix with integer coefficients defines a homomorphism $f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$.

(a) Using a little linear algebra, or directly, show that $\ker f = \{(0, 0)\}$ (i.e. f is injective) $\iff (a, c)$ and (b, d) are linearly independent as vectors in \mathbb{R}^2 $\iff \det A \neq 0$, and in this case

$$H = \text{Im } f = \langle (a, c), (b, d) \rangle = \{n(a, c) + m(b, d) : n, m \in \mathbb{Z}\}$$

$$= \{(an + bm, cn + dm) : n, m \in \mathbb{Z}\}$$

is a subgroup of $\mathbb{Z} \times \mathbb{Z}$ isomorphic to $\mathbb{Z} \times \mathbb{Z}$.
(b) Show that $H = \text{Im } f$ is equal to $\mathbb{Z} \times \mathbb{Z}$, i.e. (a, c) and (b, d) generate the group $\mathbb{Z} \times \mathbb{Z}$, \iff det $A = \pm 1$. (Hint: $H = \mathbb{Z} \times \mathbb{Z}$ \iff f is surjective \iff f is an isomorphism \iff there exists an inverse isomorphism g: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, necessarily corresponding to a 2×2 matrix B with integer coefficients. Show that, in this case, $AB = I$, and hence, since det A and det B are integers, that det $A = \pm 1$. Conversely, if det $A = \pm 1$, show that A is invertible and that A^{-1} has integer coefficients, and thus defines a homomorphism g: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ which is an inverse for f.)

6. Compute the matrix product

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)^{-1}.$$

Using this, show that O_2 and SO_2 are not normal subgroups of $GL_2(\mathbb{R})$.

7. Consider the following subgroup of A_4 (considered in HW 9):

$$H = \{1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}.$$

(i) Show that $H = \{\sigma \in S_4 : \sigma \text{ is even and } \sigma \text{ has order 1 or 2}\}$.

(ii) Show that H is a normal subgroup of A_4 and of S_4. (If $\sigma \in H$ and $\tau \in S_4$, what can you say about the shape of $\tau \sigma \tau^{-1}$?)

(iii) Show that A_4/H has order 3 and that S_4/H has order 6. (In fact, one can show that $S_4/H \cong S_3$.)

(iv) Show that $K = \{1, (1,2)(3,4)\}$ is a normal subgroup of H but not of A_4. Thus $K \triangleleft H$ and $H \triangleleft A_4$ but $K \ntriangleleft A_4$. (There are similar examples for D_4.)

8. (i) Let G be a group and let H, K be two subgroups of G. Show that, if $H \triangleleft G$ and $K \triangleleft G$, then $H \cap K \triangleleft G$.

(ii) With G, H, K as in (i), show that, if $H \triangleleft G$, then $H \cap K \triangleleft K$.

(iii) With G, H, K as in (i), show that, if $H \triangleleft G$ and $K \leq G$, then $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G containing H and K.