4 Finite fields

Our goal in this section is to classify finite fields up to isomorphism and, given two finite fields, to describe when one of them is isomorphic to a subfield of the other. We begin with some general remarks about finite fields.

Let \(F \) be a finite field. As the additive group \((F, +)\) is finite, \(\text{char } F = p > 0 \) for some prime \(p \). Thus \(F \) contains a subfield isomorphic to the prime field \(F_p \), which we will identify with \(F_p \). Since \(F \) is finite, it is clearly a finite-dimensional vector space over \(F_p \). Let \(n = \dim_{F_p} F = [F : F_p] \). Then \(\#(F) = p^n \). It is traditional to use the letter \(q \) to denote a prime power \(p^n \) in this context.

We note that the multiplicative group \((F^{\ast}, \cdot)\) is cyclic. If \(\gamma \) is a generator, then every nonzero element of \(F \) is a power of \(\gamma \). In particular, \(F = F_p(\gamma) \) is a simple extension of \(F_p \).

With \(\#(F) = p^n = q \) as above, by Lagrange’s theorem, since \(F^{\ast} \) is a finite group of order \(q - 1 \), for every \(\alpha \in F^{\ast} \), \(\alpha^{q-1} = 1 \). Hence \(\alpha^q = \alpha \) for all \(\alpha \in F \), since clearly \(0^q = 0 \). Thus every element of \(F \) is a root of the polynomial \(x^q - x \). (Warning: although \(\alpha^q = \alpha \) for every \(\alpha \in F \), it is not true that \(x^q - x \in F[x] \) is the zero polynomial.)

Define the function \(\sigma_p : F \to F \) by: \(\sigma_p(\alpha) = \alpha^p \). Since \(\text{char } F = p \), the function \(\sigma_p \) is a homomorphism, the Frobenius homomorphism. Clearly \(\ker \sigma_p = \{0\} \) since \(\alpha^p = 0 \iff \alpha = 0 \), and hence \(\sigma_p \) is injective. (In fact, by a HW problem, this is always true for homomorphisms from a field to a nonzero ring.) As \(F \) is finite, since \(\sigma_p \) is injective, it is also surjective and hence an isomorphism (by the pigeonhole principle). Thus, every element of \(F \) is a \(p^{\text{th}} \) power, so that \(F \) is perfect as previously defined. Note that every power \(\sigma_p^k \) is also an isomorphism. We have

\[
\sigma_p^2(\alpha) = \sigma_p(\sigma_p(\alpha)) = \sigma_p(\alpha^p) = (\alpha^p)^p = \alpha^{p^2},
\]
and so $\sigma_p^2 = \sigma_{p^2}$, where by definition $\sigma_{p^2}(\alpha) = \alpha^{p^2}$. An easy induction shows that $\sigma_p^k = \sigma_{p^k}$, where by definition $\sigma_{p^k}(\alpha) = \alpha^{p^k}$. Clearly, the result holds for $k = 1$ since both sides are then σ_p. Assuming the result inductively for a positive integer k, we have

$$\sigma_p^{k+1}(\alpha) = \sigma_p(\sigma_p^k(\alpha)) = (\alpha^{p^k})^p = \alpha^{p^{k+1}} = \sigma_{p^{k+1}}(\alpha).$$

In particular, taking $k = n$, where $\#(\mathbb{F}) = q = p^n$, we see that $\sigma_q(\alpha) = \alpha^q = \alpha$. Thus $\sigma_q = Id$.

More generally, for every positive integer r, we can define $\sigma_r : \mathbb{F} \rightarrow \mathbb{F}$ by: $\sigma_r(\alpha) = \alpha^r$. Then the same induction argument shows that $\sigma_q^k = \sigma_{r^k}$.

(However, σ_r is a ring homomorphism $\iff r$ is a power of p.)

With this said, we can now state the classification theorem for finite fields:

Theorem 4.1 (Classification of finite fields). Let p be a prime number.

(i) For every $n \in \mathbb{N}$, there exists a field \mathbb{F}_q with $q = p^n$ elements.

(ii) If \mathbb{F} and \mathbb{F}' are two finite fields, then \mathbb{F} and \mathbb{F}' are isomorphic $\iff \#(\mathbb{F}) = \#(\mathbb{F}')$.

(iii) Let \mathbb{F} and \mathbb{F}' be two finite fields, with $\#(\mathbb{F}) = q = p^n$ and $\#(\mathbb{F}') = q' = p^{n'}$. Then \mathbb{F}' is isomorphic to a subfield of \mathbb{F} $\iff m$ divides n $\iff q = (q')^d$ for some positive integer d.

Proof. First, we prove (i). Viewing the polynomial $x^q - x$ as a polynomial in $\mathbb{F}_p[x]$, we know that there exists an extension field E of \mathbb{F}_p such that $x^q - x$ is a product of linear factors in $E[x]$, say

$$x^q - x = (x - \alpha_1) \cdots (x - \alpha_q)$$

where the $\alpha_i \in E$. We claim that the α_i are all distinct: $\alpha_i = \alpha_j$ for some $i \neq j$ $\iff x^q - x$ has a multiple root in E $\iff x^q - x$ and $D(x^q - x)$ are not relatively prime in $\mathbb{F}_p[x]$. But $D(x^q - x) = qx^{q-1} - 1 = -1$, since q is a power of p and hence divisible by p. Thus the gcd of $x^q - x$ and $D(x^q - x)$ divides -1 and hence is a unit, so that $x^q - x$ and $D(x^q - x)$ are relatively prime. It follows that $x^q - x$ does not have any multiple roots in E.

Now define the subset \mathbb{F}_q of E by

$$\mathbb{F}_q = \{\alpha_1, \ldots, \alpha_q\} = \{\alpha \in E : \alpha^q - \alpha = 0\} = \{\alpha \in E : \sigma_q(\alpha) = \alpha\}.$$

By what we have seen above, $\#(\mathbb{F}_q) = q$. Moreover, we claim that \mathbb{F}_q is a subfield of E, and hence is a field with q elements. Clearly $1 \in \mathbb{F}_q$.

and more generally $\mathbb{F}_p \subseteq \mathbb{F}_q$. It suffices to show that \mathbb{F}_q is closed under addition, subtraction, multiplication, and division. This follows since σ_q is a homomorphism: If $\alpha, \beta \in \mathbb{F}_q$, i.e. if $\alpha^q = \alpha$ and $\beta^q = \beta$, then $(\alpha \pm \beta)^q = \alpha^q \pm \beta^q = \alpha \pm \beta$. Similarly, $(\alpha \beta)^q = \alpha^q \beta^q = \alpha \beta$, and, if $\beta \neq 0$, then $(\alpha/\beta)^q = \alpha^q / \beta^q = \alpha / \beta$. In other words, then $\alpha \pm \beta, \alpha \beta$, and (for $\beta \neq 0$) α/β are all in \mathbb{F}_q. Hence \mathbb{F}_q is a subfield of E, and in particular it is a field with q elements. (Remark: \mathbb{F}_q is the fixed field of σ_q, i.e. $\mathbb{F} = \{ \alpha \in E : \sigma_q(\alpha) = \alpha \}$.)

Next we prove (iii) in the special case that $\mathbb{F} = \mathbb{F}_q$. More generally, let \mathbb{F} and \mathbb{F}' be two finite fields with $\#(\mathbb{F}) = q = p^n$ and $\#(\mathbb{F}') = q' = p^m$. Clearly, if \mathbb{F}' is isomorphic to a subfield of \mathbb{F}, which we can identify with \mathbb{F}', then \mathbb{F} is an \mathbb{F}'-vector space. Since \mathbb{F} is finite, it is finite-dimensional as an \mathbb{F}'-vector space. Let $d = \dim_{\mathbb{F}'} \mathbb{F} = [\mathbb{F} : \mathbb{F}']$. Then $p^n = q = \#(\mathbb{F}) = (q')^d = p^{md}$, proving that m divides n and that q is a power of q'. Conversely, suppose that \mathbb{F}_q is the finite field with $q = p^n$ elements constructed in the proof of (i), so that $x^q - x$ factors into linear factors in $\mathbb{F}[x]$. Let \mathbb{F}' be a finite field with $\#(\mathbb{F}') = q' = p^m$ and suppose that $q = p^n = (q')^d$, or equivalently $n = md$. We shall show first that \mathbb{F}_q contains a subfield isomorphic to \mathbb{F}' and then that every field with q elements is isomorphic to \mathbb{F}_q, proving the converse part of (iii) as well as (ii).

As we saw in the remarks before the statement of Theorem 4.1, there exists a $\beta \in \mathbb{F}'$ such that $\mathbb{F}' = \mathbb{F}_p(\beta)$. Since $\beta \in \mathbb{F}'$, $\sigma_q(\beta) = \beta^q = \beta$, and hence

$$\beta^q = \beta(q)^d = (\sigma_q)^d(\beta) = \beta.$$

Thus β is a root of $x^q - x$. Hence $\text{irr}(\beta, \mathbb{F}_p)$ divides $x^q - x$ in $\mathbb{F}_p[x]$, say $x^q - x = \text{irr}(\beta, \mathbb{F}_p) \cdot h$, with $\deg h < q = \deg(x^q - x) = q$ since $\deg \text{irr}(\beta, \mathbb{F}_p) \geq 1$. On the other hand, $x^q - x$ factors into linear factors in $\mathbb{F}_q[x]$, so that there is an equality in $\mathbb{F}_q[x]$

$$\text{irr}(\beta, \mathbb{F}_p) \cdot h = (x - \alpha_1) \cdots (x - \alpha_q).$$

Thus, for all i, α_i is a root of either $\text{irr}(\beta, \mathbb{F}_p)$ or of h. But since the α_i are all distinct and the number of roots of h is at most $\deg h < q$, at least one of the α_i must be a root of $\text{irr}(\beta, \mathbb{F}_p)$. Hence $\text{irr}(\alpha_i, \mathbb{F}_p)$ divides $\text{irr}(\beta, \mathbb{F}_p)$. But both $\text{irr}(\alpha_i, \mathbb{F}_p)$ and $\text{irr}(\beta, \mathbb{F}_p)$ are monic irreducible polynomials, so we must have $\text{irr}(\alpha_i, \mathbb{F}_p) = \text{irr}(\beta, \mathbb{F}_p)$. Let $f = \text{irr}(\alpha_i, \mathbb{F}_p) = \text{irr}(\beta, \mathbb{F}_p)$. Then since $\mathbb{F}' = \mathbb{F}_p(\beta)$, $e\nu_\beta$ induces an isomorphism $\widehat{e}\nu_\beta : \mathbb{F}_p[x]/(f) \cong \mathbb{F}'$. On the other hand, we have $e\nu_{\alpha_i} : \mathbb{F}_p[x] \rightarrow \mathbb{F}_q$, with $\text{Ker} e\nu_{\alpha_i} = (f)$ as well, so there is an induced injective homomorphism $\widehat{e}\nu_{\alpha_i} : \mathbb{F}_p[x]/(f) \rightarrow \mathbb{F}_q$. The situation
is summarized in the following diagram:

\[
\begin{array}{c}
\mathbb{F}_p[x]/(f) \xrightarrow{\tilde{e}v_{\alpha_i}} \mathbb{F}_q \\
\downarrow \cong \\
\mathbb{F}'
\end{array}
\]

The homomorphism \(\tilde{e}v_{\alpha_i} \circ (\tilde{e}v_{\beta})^{-1} \) is then an injective homomorphism from \(\mathbb{F}' \) to \(\mathbb{F}_q \) and thus identifies \(\mathbb{F}' \) with a subfield of \(\mathbb{F}_q \). This proves the converse direction of (iii), for the specific field \(\mathbb{F}_q \) constructed in (i), and hence for any field which is isomorphic to \(\mathbb{F}_q \).

To prove (ii), note that, if \(\mathbb{F} \) and \(\mathbb{F}' \) are isomorphic, then clearly \(\#(\mathbb{F}) = \#(\mathbb{F}') \). Conversely, suppose that \(\mathbb{F}_q \) is the specific field with \(q \) elements constructed in the proof of (i) and that \(\mathbb{F} \) is another finite field with \(q \) elements. By what we have proved so far above, since \(q = (q)^1 \), \(\mathbb{F} \) is isomorphic to a subfield of \(\mathbb{F}_q \), i.e. there is an injective homomorphism \(\rho: \mathbb{F} \rightarrow \mathbb{F}_q \). But since \(\mathbb{F} \) and \(\mathbb{F}_q \) have the same number of elements, \(\rho \) is necessarily an isomorphism, i.e. \(\mathbb{F} \cong \mathbb{F}_q \). Hence, if \(\mathbb{F}' \) is yet another field with \(q \) elements, then also \(\mathbb{F}' \cong \mathbb{F}_q \) and hence \(\mathbb{F} \cong \mathbb{F}' \), proving (ii). Finally, the converse direction of (iii) now holds for every field with \(q \) elements, since every such field is isomorphic to \(\mathbb{F}_q \).

If \(q = p^n \), we often write \(\mathbb{F}_q \) to denote any field with \(q \) elements. Since any two such fields are isomorphic, we often speak of the field with \(q \) elements.

Remark 4.2. Let \(q = p^n \). The polynomial \(x^q - x \) is reducible in \(\mathbb{F}_p[x] \). For example, for every \(a \in \mathbb{F}_p \), \(x - a \) is a factor of \(x^q - x \). Using Theorem 4.1, one can show that the irreducible monic factors of \(x^q - x \) are exactly the irreducible monic polynomials in \(\mathbb{F}_p[x] \) of degree \(d \), where \(d \) divides \(n \). From this, one can show the following beautiful formula: let \(N_p(m) \) be the number of irreducible monic polynomials in \(\mathbb{F}_p[x] \) of degree \(m \). Then

\[
\sum_{d|n} dN_p(d) = p^n.
\]