Throughout these notes, \(R \) denotes an **integral domain** unless otherwise noted.

1 Unique factorization domains and principal ideal domains

Definition 1.1. For \(r, s \in R \), we say that \(r \) *divides* \(s \) (written \(r \mid s \)) if there exists a \(t \in R \) such that \(s = tr \). An element \(u \in R \) is a *unit* if it has a multiplicative inverse, i.e. if there exists an element \(v \in R \) such that \(uv = 1 \). The (multiplicative) group of units is denoted \(R^* \). If \(r, s \in R \), then \(r \) and \(s \) are *associates* if there exists a unit \(u \in R^* \) such that \(r = us \). In this case, \(s = u^{-1}r \), and indeed the relation that \(r \) and \(s \) are associates is an equivalence relation (HW). Another easy result is (this was on the midterm):

Lemma 1.2. For an integral domain \(R \), if \(r, s \in R \), then \(r \) and \(s \) are associates \(\iff (r) = (s) \).

Proof. \(\implies \): If \(r = us \), then \(r \in (s) \), hence \((r) \subseteq (s) \). Since \(s = u^{-1}r \), \(s \in (r) \), and hence \((s) \subseteq (r) \). Thus \((r) = (s) \).

\(\impliedby \): If \(r = 0 \), then \((r) = (0) = \{0\} \), so if \((s) = (r) \), then \(s \in \{0\} \), hence \(s = 0 \). Thus \(r = s = 0 \), and in particular \(r \) and \(s \) are associates, since for example \(s = 1 \cdot r \). If \(r \neq 0 \), then \((s) = (r) \implies s \in (r) \implies s = tr \) for some \(t \in R \). Likewise \(r \in (s) \), so \(r = us \) for some \(u \in R \). Thus

\[r = us = utr. \]

By assumption, \(r \neq 0 \), and since \(R \) is an integral domain, we can cancel \(r \). Thus \(1 = ut \). So \(u \) is a unit and \(r = us \), so that \(r \) and \(s \) are associates.

Example 1.3. 1) \(R = \mathbb{Z} \). The units \(\mathbb{Z}^* = \pm 1 \). Two integers \(n \) and \(m \) are associates \(\iff m = \pm n \).

2) \(R = F[x], F \) a field. The units in \(F[x] \) are: \((F[x])^* = F^* \), the set of constant nonzero polynomials. Hence, if \(F \) is infinite, there are an infinite
number of units. Two polynomials f and g are associates \iff there exists a $c \in F^*$ with $g = cf$.

3) $R = \mathbb{Z}[i]$, the Gaussian integers. The units $(\mathbb{Z}[i])^* = \{\pm 1, \pm i\}$. Two elements $\alpha, \beta \in \mathbb{Z}[i]$ are associates $\iff \alpha = \pm \beta$ or $\alpha = \pm i\beta$.

4) $R = \mathbb{Z}[\sqrt{2}]$. As we have seen on the homework, $1 + \sqrt{2}$ is a unit of infinite order. In fact, $(\mathbb{Z}[\sqrt{2}])^* \cong \mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$.

5) $R = \mathbb{Z}[\sqrt{-2}]$. An easy calculation shows that $(\mathbb{Z}[\sqrt{-2}])^* = \{\pm 1\}$.

We say that $r \in R$ is irreducible if $r \neq 0$, r is not a unit, and, for all $s \in R$, if s divides r then either s is a unit or s is an associate of r. In other words, if $r = st$ for some $t \in R$, then one of s or t is a unit (and hence the other is an associate of r). If $r \in R$ with $r \neq 0$ and r is not a unit, then r is reducible if it is not irreducible.

Definition 1.4. Let $r, s \in R$, not both 0. A greatest common divisor (gcd) of r and s is an element $d \in R$ such that $d|r$, $d|s$, and if $e \in R$ and $e|r$, $e|s$, then $e|d$.

Lemma 1.5. Let $r, s \in R$, not both 0. If a gcd of r and s exists, it is unique up to a unit (i.e. any two gcd’s of r and s are associates).

Proof. If d and d' are both a gcd of r and s, then by definition $d|d'$ and $d'|d$. Hence there exist $u, v \in R$ such that $d' = ud$ and $d = v d'$. Thus $d = uvd$. Since $d|r$ and $d|s$ and at least one of r, s is nonzero, $d \neq 0$. Hence $uv = 1$, so that u and v are units. Thus d and d' are associates. □

Definition 1.6. Let $r, s \in R$, not both 0. The elements r and s are relatively prime if 1 is a gcd of r and s; equivalently, if $d \in R$ and $d|r$, $d|s$, then d is a unit.

Lemma 1.7. Let $r, s \in R$, with r irreducible. Then a gcd of r and s exists, and is either a unit or an associate of r. Hence, if r does not divide s, then r and s are relatively prime.

Proof. Suppose that r divides s. Then r is a gcd of r and s, since r divides both r and s and any e which divides r and s is either a unit or an associate of r, hence divides r. If r does not divide s, then any e which divides r and s cannot be an associate of r, hence must be a unit. It follows that 1 is a gcd of r and s, and hence r and s are relatively prime. □

Definition 1.8. R is a unique factorization domain (UFD) if

(i) for every $r \in R$ not 0 or a unit, there exist irreducibles $p_1, \ldots, p_n \in R$ such that $r = p_1 \cdots p_n$, and
(ii) if \(p_i, 1 \leq i \leq n \) and \(q_j, 1 \leq j \leq m \) are irreducibles such that \(p_1 \cdots p_n = q_1 \cdots q_m \), then \(n = m \) and, after reordering, \(p_i \) and \(q_i \) are associates.

Note that two separate issues are involved: (i) the existence of some factorization of \(r \) into irreducibles and (ii) the uniqueness of a factorization. As we shall see, these two questions are in general unrelated, in the sense that one can hold but not the other.

Given an element \(r \) in a UFD, not 0 or a unit, it is often more natural to factor \(r \) by grouping together all of the associated irreducibles (after making some choices). Hence, such an \(r \) can always be written as

\[
 r = u p_1^{a_1} \cdots p_n^{a_n},
\]

where \(u \) is a unit, the \(p_i \) are irreducibles, \(a_i > 0 \), and, for \(i \neq j \), \(p_i \) and \(p_j \) are not associates, and such a product is essentially unique in the following sense: if also

\[
 r = v q_1^{b_1} \cdots q_m^{b_m},
\]

where \(v \) is a unit, the \(q_j \) are irreducibles, \(b_j > 0 \), and, for \(k \neq \ell \), \(q_k \) and \(q_\ell \) are not associates, then \(n = m \) and, after reordering, \(p_i \) and \(q_i \) are associates and \(a_i = b_i \).

Definition 1.9. \(R \) is a principal ideal domain (PID) if every ideal \(I \) of \(R \) is principal, i.e. for every ideal \(I \) of \(R \), there exists \(r \in R \) such that \(I = (r) \).

Example 1.10. The rings \(\mathbb{Z} \) and \(F[x] \), where \(F \) is a field, are PID’s.

We shall prove later: A principal ideal domain is a unique factorization domain. However, there are many examples of UFD’s which are not PID’s. For example, if \(n \geq 2 \), then the polynomial ring \(F[x_1, \ldots, x_n] \) is a UFD but not a PID. Likewise, \(\mathbb{Z}[x] \) is a UFD but not a PID, as is \(\mathbb{Z}[x_1, \ldots, x_n] \) for all \(n \geq 1 \).

Proposition 1.11. If \(R \) is a UFD, then the gcd of two elements \(r, s \in R \), not both 0, exists.

Proof. If say \(r = 0 \), then the gcd of \(r \) and \(s \) exists and is \(s \). If \(r \) is a unit, then the gcd of \(r \) and \(s \) exists and is a unit. So we may clearly assume that \(r \) is neither 0 nor a unit, and likewise that \(s \) is neither 0 nor a unit. Then we can factor both \(r \) and \(s \) as in the comments after the definition of a UFD. In fact, it is clear that we can write

\[
 r = u p_1^{a_1} \cdots p_k^{a_k}, \quad s = v p_1^{b_1} \cdots p_k^{b_k}
\]
where u and v are units, the p_i are irreducibles, $a_i, b_i \geq 0$, and, for $i \neq j$, p_i and p_j are not associates. (Here, we set $a_i = 0$ if p_i is not a factor of r, and similarly for b_i.) Then set

$$d = p_1^{c_1} \cdots p_k^{c_k},$$

where $c_i = \min\{a_i, b_i\}$. We claim that d is a gcd of r and s. Clearly $d|r$ and $d|s$. If now $e|r$ and $e|s$ and q is an irreducible factor of e, then q is an associate of p_i for some i, and so we can assume that $q = p_i$. If m_i is the largest integer such that $p_i^{m_i}|e$, then since $p_i^{m_i}|r$ and $p_i^{m_i}|s$, $m_i \leq a_i$ and $m_i \leq b_i$. Hence $m_i \leq c_i$. It then follows by taking the factorization of e into powers of the p_i times a unit that $e|d$. Hence d is a gcd of r and s.

Lemma 1.12. If R is a UFD and $p, r, s \in R$ are such that p is an irreducible and $p|r s$, then either $p|r$ or $p|s$. More generally, if t and r are relatively prime and $t|rs$ then $t|s$.

Proof. To see the first statement, write $rs = pt$ and factor r, s, t into irreducibles. Then p must be an associate of some irreducible factor of either r or s, hence p divides either r or s. The second statement can be proved along similar but slightly more complicated lines.

As a consequence, we have:

Proposition 1.13. Let R be a UFD and let $r \in R$, where $r \neq 0$. Then (r) is a prime ideal \iff r is irreducible.

Proof. \implies: If (r) is a prime ideal, then r is not a unit, and $r \neq 0$ by assumption. If $r = st$, then one of $s, t \in (r)$, say $s \in (r)$, hence $s = ru$. Then $r = rut$ so that $ut = 1$ and t is a unit. Hence r is irreducible. (Note: this part did not use the fact that R was a UFD, and holds in every integral domain.)

\impliedby: If r is irreducible, then it is not a unit and hence $(r) \neq R$. Suppose that $st \in (r)$. Then $r|st$. By the remark above, either $r|s$ or $r|t$, i.e. either $s \in (r)$ or $t \in (r)$. Hence (r) is prime.

Remark 1.14. (i) In case R is not a UFD, there will in general exist irreducibles r such that (r) is not a prime ideal.

(ii) In general, suppose that R is an integral domain and that $r \in R$, $r \neq 0$. If (r) is a prime ideal, then for all $s, t \in R$, if r divides st, then either r divides s or r divides t.

We turn now to the study of a PID, with a view toward showing eventually that a PID is a UFD.
Theorem 1.15. Let \(R \) be a PID, and let \(r, s \in R \), not both \(0 \). Then a gcd \(d \) of \(r \) and \(s \) exists. Moreover, \(d \) is a linear combination of \(r \) and \(s \): there exist \(a, b \in R \) such that \(d = ar + bs \).

Note: For a general UFD, the gcd of two elements \(r \) and \(s \) will not in general be a linear combination of \(r \) and \(s \). For example, in \(F[x, y] \), the elements \(x \) and \(y \) are relatively prime, hence their gcd is 1, but 1 is not a linear combination of \(x \) and \(y \), where \(a, b \in F[x, y] \), then \(\text{ev}_{0,0}(f) = f(0, 0) = 0 \), but \(\text{ev}_{0,0}(1) = 1 \).

Proof. This argument is very similar to the corresponding argument for \(F[x] \), or for \(Z \). Given \(r, s \in R \), not both \(0 \), consider the ideal \((r, s) = \{ ar + bs : a, b \in R \} = (r) + (s) \).

Then \((r, s)\) is easily checked to be an ideal, hence there exists a \(d \in R \) with \((r, s) = (d)\). By construction \(d = ar + bs \) for some \(r, s \in R \). Since \(r = 1 \cdot r + 0 \cdot s \in (r, s) = (d) \), this says that \(d \mid r \). Similarly \(d \mid s \). Finally, if \(e \mid r \) and \(e \mid s \), then \(e \mid (ar + bs) = d \).

Corollary 1.16. If \(R \) is a PID, \(r, s \in R \) are relatively prime and \(r \mid st \), then \(r \mid t \).

Proof. Write 1 = \(ar + bs \) for some \(a, b \in R \). Then \(t = tar + tbs = r(at) + b(st) \). By assumption \(r \mid st \) and clearly \(r \mid r(at) \). Hence \(r \mid t \).

Corollary 1.17. If \(R \) is a PID, and \(r \in R \) is an irreducible, then for all \(s, t \in R \), if \(r \mid st \), then either \(r \mid s \) or \(r \mid t \).

Proof. By Lemma 1.7, if \(r \) does not divide \(s \), then \(r \) and \(s \) are relatively prime. Then, by the previous corollary, \(r \mid t \). Hence either \(r \mid s \) or \(r \mid t \).

The following proves the uniqueness half of the assertion that a PID is a UFD:

Corollary 1.18. If \(R \) is a PID, then uniqueness of factorization holds in \(R \): if \(p_i, 1 \leq i \leq n \) and \(q_j, 1 \leq j \leq m \) are irreducibles such that \(p_1 \cdots p_n = q_1 \cdots q_m \), then \(n = m \) and, after reordering, \(p_i \) and \(q_j \) are associates.

Proof. This is proved in exactly the same way as the argument we gave for \(F[x] \) (or, in Modern Algebra I, for \(Z \)).

Theorem 1.19. A PID is a UFD.
Proof. We have already seen that, if an irreducible factorization exists, it is unique up to order and associates. Thus the remaining point is to show that, if R is a PID, then every element $r \in R$, not 0 or a unit, admits some factorization into a product of irreducibles. The proof will be in several steps.

Lemma 1.20. Let R be an integral domain with the property that, if $(r_1) \subseteq (r_2) \subseteq \cdots \subseteq (r_n) \subseteq (r_{n+1}) \subseteq \cdots$ is an increasing sequence of principal ideals, then the sequence is eventually constant, i.e. there exists an N such that, for all $n \geq N$, $(r_n) = (r_N)$. Then every nonzero $r \in R$ which is not a unit factors into a product of irreducibles.

We can paraphrase the hypothesis of the lemma by saying that R satisfies the ascending chain condition (a.c.c) on principal ideals.

Proof of the lemma. Suppose by contradiction that $r \in R$ is an element, not zero or a unit, which does not factor into a product of irreducibles. In particular, r itself is not irreducible, so that $r = r_1 s_1$ where neither r_1 nor s_1 is a unit. Thus (r) is properly contained in (r_1) and in (s_1), by Lemma 1.2. Clearly, we can assume that at least one of r_1, s_1, say r_1, does not factor into irreducibles (if both so factor, so does the product). By applying the above to r_1, we see that (r_1) is strictly contained in a principal ideal (r_2), where r_2 does not factor into a product of irreducibles. Continuing in this way, we can produce a strictly increasing infinite chain of principal ideals $(r_1) \subset (r_2) \subset \cdots$, i.e. each (r_{i+1}) properly contains the previous ideal (r_i), contradicting the hypothesis on R. \qed

To complete the proof of the theorem that a PID is a UFD, it suffices to show that a PID R satisfies the hypotheses of the above lemma. First suppose that $(r_1) \subseteq (r_2) \subseteq \cdots$ is an increasing sequence of ideals of R. It is easy to check that $I = \bigcup_i (r_i)$ is again an ideal. More generally, we have the following:

Claim 1.21. Let R be a ring, not necessarily an integral domain, and let $I_1 \subseteq I_2 \subseteq \cdots$ be an increasing sequence of ideals of R. If $I = \bigcup_n I_n$, then I is an ideal of R.

Proof. It suffices to show that I is nonempty, closed under addition and has the absorbing property. Since $I_n \subseteq I$ for all n and $I_n \neq \emptyset$, $I \neq \emptyset$. Given $a, b \in I$, there exists a j such that $a \in I_j$ and there exists a k such that $b \in I_k$. Setting $\ell = \max\{j, k\}$, we have $a \in I_j \subseteq I_\ell$ and $b \in I_k \subseteq I_\ell$. Hence
\(a, b \in I_\ell \), and since \(I_\ell \) is an ideal, \(a + b \in I_\ell \subseteq I \). Thus \(I \) is closed under addition. Similarly, if \(a \in I \), then \(a \in I_j \) for some \(j \). Hence, for all \(r \in R \), \(ra \in I_j \subseteq I \). Thus \(I \) is an ideal.

Returning to the proof of the theorem, given the increasing sequence of ideals \((r_1) \subseteq (r_2) \subseteq \cdots\), the claim implies that \(I = \bigcup_i (r_i) \) is again an ideal of \(R \). Since \(R \) is a PID, \(I = (r) \) for some \(r \in R \). Necessarily \(r \in (r_N) \) for some \(N \). But then \((r) \subseteq (r_N) \subseteq (r_{N+1}) \cdots \subseteq \bigcup_i (r_i) = (r) \). Thus all inclusions are equalities, and \((r_n) = (r_N) \) for all \(n \geq N \), i.e. the sequence is eventually constant. Hence \(R \) satisfies the hypotheses of the previous lemma, so that every \(r \in R \), not 0 or a unit, factors into a product of irreducibles.

The ascending chain condition and the arguments we have just given are so fundamental that we generalize them as follows:

Proposition 1.22. For a ring \(R \), not necessarily an integral domain, the following two conditions are equivalent:

(i) Every ideal \(I \) of \(R \) is finitely generated: if \(I \) is an ideal of \(R \), then \(I = (r_1, \ldots, r_n) \) for some \(r_i \in R \).

(ii) Every increasing sequence of ideals is eventually constant, in other words if

\[
I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots,
\]

where the \(I_n \) are ideals of \(R \), then there exists an \(N \in \mathbb{N} \) such that for all \(k \geq N \), \(I_k = I_N \).

If the ring \(R \) satisfies either of the equivalent conditions above, then \(R \) is called a Noetherian ring.

Proof. (i) \(\implies \) (ii): given an increasing sequence of ideals \(I_1 \subseteq I_2 \subseteq \cdots \), let \(I = \bigcup_i I_i \). Then by the claim above, \(I \) is an ideal, and hence \(I = (r_1, \ldots, r_n) \) for some \(r_i \in R \). Thus \(r_i \in I_{n_i} \) for some \(n_i \). If \(N = \max_i n_i \), then \(r_i \in I_N \) for every \(i \). Hence, for all \(k \geq N \), \(I = (r_1, \ldots, r_n) \subseteq I_N \subseteq I_k \subseteq I \). It follows that \(I_k = I_N = I \) for all \(k \geq N \).

(ii) \(\implies \) (i): Let \(I \) be an ideal of \(R \) and choose an arbitrary \(r_1 \in I \) (for example, \(r_1 \) could be 0). Set \(I_1 = (r_1) \). If \(I = I_1 \), stop. Otherwise there exists an \(r_2 \in I - I_1 \). Set \(I_2 = (r_1, r_2) \), and note that \(I_2 \) strictly contains \(I_1 \). If \(I = I_2 \), stop, otherwise there exists an \(r_3 \in I - I_2 \). Inductively suppose that we have found \(I_k = (r_1, \ldots, r_k) \) with \(I_k \subseteq I \). If \(I = I_k \) we are done, otherwise there exists \(r_{k+1} \in I - I_k \) and we set \(I_{k+1} = (r_1, \ldots, r_{k+1}) \). So if \(I \) is not finitely generated, we have constructed a strictly increasing
sequence $I_1 \subset I_2 \subset \cdots$, contradicting the assumption on R. Thus I is finitely generated.

Example 1.23. Clearly, a PID satisfies (i) and hence a PID is Noetherian. But there are many examples of Noetherian rings which are not PIDs. For example, the Hilbert basis theorem states that, if R is Noetherian, then so is $R[x_1, \ldots, x_n]$. Thus $\mathbb{Z}[x_1, \ldots, x_n]$ and $F[x_1, \ldots, x_n]$ are Noetherian (where F is a field). It is also easy to see that R Noetherian $\implies R/I$ is Noetherian for every ideal $I \subseteq R$. Thus rings of the form $\mathbb{Z}[x_1, \ldots, x_n]/I$ and $F[x_1, \ldots, x_n]/I$, which are the important rings arising in algebraic geometry and number theory, are Noetherian.

By analyzing the proofs of the the above results, one can show:

Theorem 1.24. Suppose that R is a Noetherian integral domain. Then every element $r \in R$, not 0 or a unit, factors into a product of irreducibles. Moreover, the following are equivalent:

(i) R is a UFD.

(ii) If $r \in R$ is irreducible, then (r) is a prime ideal.

2 Euclidean domains

We turn now to finding new examples of PID’s.

Definition 2.1. Let R be an integral domain. A **Euclidean norm** on R is a function $n: R - \{0\} \to \mathbb{Z}$ satisfying:

(i) For all $r \in R - \{0\}$, $n(r) \geq 0$.

(ii) For all $a, b \in R$ with $a \neq 0$, there exist $q, r \in R$ with $b = aq + r$ and either $r = 0$ or $n(r) < n(a)$.

An integral domain R such that there exists a Euclidean norm on R is called a **Euclidean domain**.

Example 2.2. (1) $R = \mathbb{Z}$, $n(a) = |a|$; (2) $R = F[x]$, F a field, and $n(f) = \deg f$, defined for $f \neq 0$; (3) $R = F$ is a field, and $n(a) = 0$ for all $a \in F - \{0\}$. Here (3) is an easy exercise, and, for (1) and (2), Condition (i) of the definition is clear and (ii) is the statement of long division in \mathbb{Z} or in $F[x]$. 8
Remark 2.3. In the definition of a Euclidean norm, we do not require that the \(q, r \in R \) are unique. In fact, uniqueness even fails in \(\mathbb{Z} \) with the usual norm if we allow \(q \) and \(r \) to be negative. For example, with \(a = 3, b = 11 \), we can write \(11 = 3 \cdot 3 + 2 = 3 \cdot 4 + (-1) \).

Proposition 2.4. If \(R \) is a Euclidean domain, then \(R \) is a PID.

Proof. This argument should be very familiar. Let \(I \) be an ideal of \(R \). If \(I = \{0\} \), then \(I = (0) \) is principal. Otherwise, consider the nonempty set \(A \) of nonnegative integers \(\{n(r) : r \in I - \{0\}\} \). By the well-ordering principle, there exists an \(a \in I - \{0\} \) such that \(n(a) \) is a smallest element of \(A \). We claim that \(I = (a) \). Clearly \((a) \subseteq I \) since \(a \in I \). Conversely, if \(b \in I \), then there exist \(q, r \in R \) such that \(b = aq + r \) with either \(r = 0 \) or \(n(r) < n(a) \). As \(b, aq \in I \), \(r = b - aq \in I \). Hence \(n(r) < n(a) \) is impossible by the choice of \(a \), so that \(r = 0 \) and \(b = aq \in (a) \). Thus \((a) \subseteq I \) and hence \((a) = I \). \(\square \)

Some remarks on submultiplicative Euclidean norms: We describe some additional assumptions we can make for Euclidean norms (since many authors add these to the definition).

Definition 2.5. The Euclidean norm \(n \) is submultiplicative if in addition \(n \) satisfies: For all \(a, b \in R - \{0\}, n(a) \leq n(ab) \). It is multiplicative if \(n \) satisfies: For all \(a, b \in R - \{0\}, n(ab) = n(a)n(b) \). For \(R = \mathbb{Z}, n(a) = |a|, \) or \(R = F \) a field, and \(n(a) = 0 \) for all \(a \in F - \{0\}, n \) is multiplicative, whereas \(\deg: F[x] \to \mathbb{Z} \) is submultiplicative but not multiplicative.

Remark 2.6. In fact, a multiplicative norm is always submultiplicative. If \(n \) is multiplicative and \(n(a) > 0 \) for all \(a \in R - \{0\} \), then \(n \) is clearly submultiplicative. Suppose that \(n(a) = 0 \) for some \(a \). Then \(1 = aq + r \) with either \(n(r) < n(a) \) or \(r = 0 \). Since \(n(r) < 0 \) is impossible, \(r = 0 \), hence \(1 = aq \) and \(a \) is a unit. For every \(b \in R - \{0\}, n(b) = n(a)n(a^{-1}b) = 0 \), and then the above argument shows that \(n(b) = 0 \) as well. Thus \(n \) is identically zero, and hence is submultiplicative in this case as well. Note that, if \(n \) is multiplicative and \(n(a) = 0 \) for some \(a \in R - \{0\} \), then \(n \) is identically 0 and \(R \) is a field.

Lemma 2.7. Let \(R \) be an integral domain and let \(n \) be a submultiplicative Euclidean norm on \(R \). For all \(b \in R - \{0\}, \) exactly one of the following holds:

(i) \(b \) is not a unit, \(n(b) > n(1), \) and \(n(a) < n(ab) \) for all \(a \in R - \{0\} \).
(ii) b is a unit, $n(b) = n(1)$, and $n(a) = n(ab)$ for all $a \in R - \{0\}$.

Proof. We always have $n(a) \leq n(ab)$, and begin by showing that $n(a) = n(ab) \iff b$ is a unit. First, if b is a unit, then $n(a) \leq n(ab)$ and $n(ab) \leq n(ab^{-1}) = n(a)$, so that $n(a) = n(ab)$. Taking $a = 1$, we see that $n(b) = n(1)$. Conversely, suppose that $n(a) = n(ab)$ for some $a \in R - \{0\}$. Applying long division of ab into a, we see that $a = (ab)q + r$, with either $r = 0$ or $n(r) < n(ab) = n(a)$. We claim that r must be 0, since otherwise $r = a - abq = a(1 - bq)$ with $1 - bq \neq 0$, and hence

$$n(a) \leq n(a(1 - bq)) = n(r) < n(a),$$

a contradiction. Thus $r = 0$, so that $a = abq$ and thus $bq = 1$, i.e. b is a unit. \hfill \Box

Corollary 2.8. Let R be an integral domain and let n be a submultiplicative Euclidean norm on R. If $r \in R - \{0\}$ and $r = ab$ with neither a nor b a unit, then $n(a) < n(r)$ and $n(b) < n(r)$. \hfill \Box

For a Euclidean domain with a submultiplicative Euclidean norm, we can give a direct argument for the existence of a factorization into irreducibles (which we proved in Theorem 1.19 by a somewhat complicated argument):

Proposition 2.9. If R is a Euclidean domain with a submultiplicative Euclidean norm n and $r \in R$ is not 0 or a unit, then r is a product of irreducibles.

Proof. Given r, not 0 or a unit, if r is irreducible we are done. Otherwise, $r = r_1r_2$, with neither r_1 nor r_2 a unit. Hence $n(r_i) < n(r)$, $i = 1, 2$. If r_i is irreducible for $i = 1, 2$, we are done. Otherwise at least one of r_1, r_2 factors into factors: say $r_1 = ab$, with $n(a) < n(r_1) < n(r)$ and $n(b) < n(r_1) < n(r)$. Clearly this process cannot continue indefinitely.

A more formal way to give this argument is as follows: if there exists an $r \in R$, not 0 or a unit, which is **not** a product of irreducibles, then there exists an r such that $n(r)$ is minimal among all such, i.e. if $s \in R$ is not 0, a unit, or a product of irreducibles, then $n(r) \leq n(s)$, by the well-ordering principle. But such an r cannot be irreducible (since a single irreducible is by convention a product of one irreducible). So $r = r_1r_2$, with neither r_1 nor r_2 a unit, and so $n(r_i) < n(r)$, $i = 1, 2$. But at least one of r_1 and r_2 is not a product of irreducibles, since if both r_1 and r_2 were a product of irreducibles, then $r_1r_2 = r$ would also be a product of irreducibles. Say r_1 is not a product of irreducibles. Then by the choice of r, $n(r) \leq n(r_1)$. This contradicts $n(r_1) < n(r)$. Hence no such r can exist. \hfill \Box
The Euclidean algorithm in a Euclidean domain: Let R be a Euclidean domain with Euclidean norm n. Begin with $a, b \in R$, with $b \neq 0$. Write $a = bq_1 + r_1$, with $q_1, r_1 \in R$, and either $r_1 = 0$ or $n(r_1) < n(b)$. Note that $r_1 = a + b(-q_1)$ is a linear combination of a and b. If $r_1 = 0$, stop, otherwise repeat this process with b and r_1 instead of a and b, so that $b = r_1q_2 + r_2$, with $r_2 = 0$ or $n(r_2) < n(b)$. If $r_2 = 0$, stop, otherwise repeat again to find r_1, \ldots, r_k with $n(r_1) > n(r_2) > n(r_3) > \cdots > n(r_k) \geq 0$, with $r_{k-1} = r_kq_{k+1} + r_{k+1}$. Since the integers $n(r_i)$ decrease, and they are all nonnegative, eventually this procedure must stop with an r_n such that $r_{n+1} = 0$, and hence $r_{n-1} = r_nq_{n+1}$. The procedure looks as follows:

$$
a = bq_1 + r_1
b = r_1q_2 + r_2
r_1 = r_2q_3 + r_3
\vdots
r_{n-2} = r_{n-1}q_n + r_n
r_{n-1} = r_nq_{n+1}.$$

Then r_n is a gcd of a, b and tracing back through the steps shows how to write it as a linear combination of a and b.

3 Factorization in the Gaussian integers

We now consider factorization in the Gaussian integers

$$
\mathbb{Z}[i] = \{ a + bi : a, b \in \mathbb{Z} \}.
$$

We shall show that $\mathbb{Z}[i]$ is a new example of a Euclidean domain, hence $\mathbb{Z}[i]$ is a PID and a UFD. As a result, we shall describe which positive integers are a sum of two integer squares.

Consider the function $N: \mathbb{Z}[i] \to \mathbb{Z}$ defined by $N(\alpha) = \alpha \bar{\alpha}$, where if $\alpha = a + bi$, then $\bar{\alpha} = a - bi$ (i.e. $N(a + bi) = a^2 + b^2$). Since $\overline{\alpha} = \alpha$, clearly $N(\alpha) = N(\bar{\alpha})$. Note that, given $n \in \mathbb{Z}$, $n = N(\alpha)$ for some $\alpha \in \mathbb{Z}[i] \iff n$ is a sum of two integer squares.

Lemma 3.1. The function N satisfies:

(a) $N(\alpha) \geq 0$ for all $\alpha \in \mathbb{Z}[i]$, and $N(\alpha) = 0 \iff \alpha = 0$.

11
(b) For all \(\alpha, \beta \in \mathbb{Z}[i] \), \(N(\alpha \beta) = N(\alpha)N(\beta) \) (\(N \) is multiplicative). Hence, if \(n_1 \) and \(n_2 \) are two integers which are each a sum of two integer squares, then \(n_1 n_2 \) is a sum of two integer squares.

(c) \(N(\alpha) = 1 \iff \alpha \) is a unit.

(d) There is an extension of \(N \) to a function \(\mathbb{Q}(i) \to \mathbb{Q} \), which we continue to denote by \(N \), defined by \(N(\alpha) = \bar{\alpha} \bar{\alpha} \), and it satisfies (a) and (b).

Proof. (a) Clear. (b) \(N(\alpha \beta) = (\alpha \beta)(\bar{\alpha} \bar{\beta}) = \alpha \bar{\alpha} \beta \bar{\beta} = N(\alpha)N(\beta) \).

(c) While this follows from (c) of Lemma 2.7, we can see this either directly (\(N(\alpha) = 1 \iff \alpha = \pm 1 \) or \(\alpha = \pm i \)) or as follows: if \(N(\alpha) = 1 \), then \(\alpha \bar{\alpha} = 1 \) and hence \(\alpha \) is a unit with \(\alpha^{-1} = \bar{\alpha} \). Conversely, if \(\alpha \) is a unit, then \(\alpha \beta = 1 \) for some \(\beta \in \mathbb{Z}[i] \), hence \(N(\alpha \beta) = 1 = N(\alpha)N(\beta) \). Thus \(N(\alpha) \) is a positive integer dividing 1, so \(N(\alpha) = 1 \). (d) Clear.

Proposition 3.2. In the integral domain \(\mathbb{Z}[i] \), the function \(N(\alpha) = \bar{\alpha} \bar{\alpha} \) is a multiplicative Euclidean norm.

Proof. Given \(\alpha, \beta \in \mathbb{Z}[i] \) with \(\alpha \neq 0 \), we must show that we can find \(\xi, \rho \in \mathbb{Z}[i] \) with \(\beta = \alpha \xi + \rho \) and \(\rho = 0 \) or \(N(\rho) < N(\alpha) \). Consider the quotient \(\beta/\alpha \in \mathbb{Q}[i] \). Write \(\beta/\alpha = r + si \) with \(r, s \in \mathbb{Q} \). Then there exist integers \(n, m \in \mathbb{Z} \) with \(|r - n| \leq \frac{1}{2} \) and \(|s - m| \leq \frac{1}{2} \). Set \(\xi = n + mi \) and \(\gamma = \beta/\alpha - \xi \). Then \(\beta = \alpha \xi + \alpha \gamma = \alpha \xi + \rho \), say, where \(\rho = \alpha \gamma \). Since \(\rho = \beta - \alpha \xi, \rho \in \mathbb{Z}[i] \).

Moreover,

\[
N(\gamma) = N(\beta/\alpha - \xi) = (r - n)^2 + (s - m)^2 \leq \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} < 1.
\]

Then \(\beta = \alpha \xi + \rho \) with either \(\rho = 0 \) or

\[
N(\rho) = N(\alpha \gamma) = N(\alpha)N(\gamma) < N(\alpha).
\]

Hence \(N \) is a Euclidean norm, and it is multiplicative by (b) of Lemma 3.1.

Corollary 3.3. \(\mathbb{Z}[i] \) is a PID and a UFD.

Now that we know that \(\mathbb{Z}[i] \) is a UFD, we can try to describe all of the irreducibles in \(\mathbb{Z}[i] \) and relate the answer to the problem of deciding when a prime number \(p \) is a sum of two squares. The first step is:

Lemma 3.4. (i) If \(N(\alpha) = p \), where \(p \) is a prime number, then \(\alpha \) is irreducible.
(ii) If \(p \) is a prime number, then \(p \) is not irreducible in \(\mathbb{Z}[i] \) \(\iff \) \(p = N(\alpha) \) for some \(\alpha \in \mathbb{Z}[i] \) \(\iff \) \(p \) is a sum of two integer squares. In this case, if \(\alpha \) divides \(p \) and \(\alpha \) is not a unit or an associate of \(p \), then \(p = N(\alpha) \) and hence \(\alpha \) is irreducible.

Proof. (i) If \(\alpha = \beta \gamma \), then \(p = N(\alpha) = N(\beta \gamma) = N(\beta)N(\gamma) \), and so one of \(N(\beta) \), \(N(\gamma) \) is 1. Hence either \(\beta \) or \(\gamma \) is a unit, so that \(\alpha \) is irreducible.

(ii) If \(p \) is not irreducible, then \(p = \alpha \beta \) where neither \(\alpha \) nor \(\beta \) is a unit, hence \(N(\alpha) \) and \(N(\beta) \) are both greater than 1. Then \(p^2 = N(p) = N(\alpha)N(\beta) \), so that \(N(\alpha) = N(\beta) = p \), and \(\alpha \) is irreducible by (i). Conversely, if \(p = N(\alpha) \), then \(p = \alpha \bar{\alpha} \) with \(N(\alpha) = N(\bar{\alpha}) = p \), so that neither \(\alpha \) nor \(\bar{\alpha} \) is a unit. Hence \(p \) is not irreducible in \(\mathbb{Z}[i] \). \(\square \)

Lemma 3.5. If \(\pi \) is an irreducible element of \(\mathbb{Z}[i] \), then there exists a prime number \(p \) such that \(\pi \) divides \(p \) in \(\mathbb{Z}[i] \). If the prime number \(p \) is also irreducible in \(\mathbb{Z}[i] \), then \(\pi \) and \(p \) are associates, so that \(\pi = \pm p \) or \(\pm ip \). If the prime number \(p \) is not irreducible in \(\mathbb{Z}[i] \), then \(p = N(\pi) \) and every irreducible factor of \(p \) is either an associate of \(\pi \) or an associate of \(\bar{\pi} \).

Proof. Consider \(N(\pi) \in \mathbb{Z} \). Since \(\pi \) is not a unit, \(N(\pi) > 1 \), and hence \(N(\pi) \) is a product of prime numbers \(p_1 \cdots p_r \) (not necessarily distinct). Since \(\mathbb{Z}[i] \) is a UFD and \(\pi \) is an irreducible dividing the product \(p_1 \cdots p_r \), there must exist an \(i \) such that \(\pi \) divides \(p_i \), and we take \(p = p_i \). If \(p \) is also irreducible, then \(\pi \) and \(p \) are associates, and hence \(\pi = \pm p \) or \(\pm ip \). If \(p \) is not irreducible, then we have seen that \(p = \alpha \bar{\alpha} \) for some \(\alpha \in \mathbb{Z}[i] \), where both \(\alpha \) and \(\bar{\alpha} \) are irreducible. Hence \(\pi \) divides \(p = \alpha \bar{\alpha} \). It follows that \(\pi \) divides either \(\alpha \) or \(\bar{\alpha} \), say \(\pi \) divides \(\alpha \), and hence that \(\pi \) is an associate of \(\alpha \) since \(\alpha \) is irreducible. Since units have norm 1, it follows that \(N(\pi) = N(\alpha) = p \). \(\square \)

Note that 2 is not irreducible in \(\mathbb{Z}[i] \), and in fact \(2 = N(1 + i) \). The irreducible factors of 2 are \(\pm 1 \pm i \), and they are all associates, since \(-1 - i = (-1)(1 + i) \), \(1 - i = (-i)(1 + i) \), and \(-1 + i = (i)(1 + i) \). Up to a unit, 2 is a square since \(2 = (-i)(1 + i)^2 \) (but it is not an actual square in \(\mathbb{Z}[i] \)). For other primes \(p \) of the form \(N(\alpha) = \alpha \bar{\alpha} \), this does not happen: For any Gaussian integer \(\alpha = a + bi \), the associates of \(\alpha \) are \(\pm (a + bi) \) and \(\pm (a - bi) = \pm (-b + ai) \). Hence, if \(a, b \neq 0 \), \(\alpha = a - bi \) is an associate of \(\alpha \) \(\iff \) \(a = \pm b \). If moreover \(\alpha \) is irreducible, then since \(a|(a \pm ai) \), \(a = \pm 1 \) and \(p = 2 \).

We may now describe the irreducibles in \(\mathbb{Z}[i] \) as follows:

Theorem 3.6. The irreducible elements in \(\mathbb{Z}[i] \) are:
(i) $1 + i$ and its associates $\pm 1 \pm i$;

(ii) Ordinary prime numbers $p \in \mathbb{Z} \subseteq \mathbb{Z}[i]$ congruent to 3 mod 4 and their associates $\pm p, \pm ip$;

(iii) Gaussian integers $\alpha = a + bi$ such that $N(\alpha) = a^2 + b^2 = p$, where p is a prime number congruent to 1 mod 4. Moreover, for every prime number p congruent to 1 mod 4, there exists an $\alpha = a + bi$ such that $N(\alpha) = a^2 + b^2 = p$.

Proof. Let π be an irreducible in $\mathbb{Z}[i]$. We have seen that either π is an associate of a prime p which is irreducible in $\mathbb{Z}[i]$, or $N(\pi) = p$ is a prime number and that the irreducible factors of p are exactly the associates of π or $\bar{\pi}$. Moreover, 2 is not irreducible and the only irreducibles dividing 2 are $1 + i$ and its associates. If p is an odd prime, p is not irreducible in $\mathbb{Z}[i] \iff p = a^2 + b^2$, where $a, b \in \mathbb{Z}$. Since p is odd, a and b cannot be both odd or both even, so one of them, say a, is odd and the other, say b, is even. Then $a^2 \equiv 1 \mod 4$ and $b^2 \equiv 0 \mod 4$, so that $p = a^2 + b^2 \equiv 1 \mod 4$. In other words, if p is an odd prime which is not irreducible in $\mathbb{Z}[i]$, then $p \equiv 1 \mod 4$. Hence, if p is an odd prime with $p \equiv 3 \mod 4$, then p is irreducible in $\mathbb{Z}[i]$ and its irreducible factors are its associates $\pm p, \pm ip$.

Thus we will be done if we show that every odd prime number congruent to 1 mod 4 is not irreducible in $\mathbb{Z}[i]$, for then the remaining irreducibles of $\mathbb{Z}[i]$ will be the nontrivial factors of p for such primes p, which are necessarily irreducible and of norm p. To see this statement, we use the following:

Lemma 3.7. If $p \equiv 1 \mod 4$, then there exists a $k \in \mathbb{Z}$ such that $k^2 \equiv -1 \mod p$.

Proof. The assumption $p \equiv 1 \mod 4$ is exactly the statement that $4|p - 1$. Now we know that $(\mathbb{Z}/p\mathbb{Z})^*$ is a cyclic group of order $p - 1$. By known results on cyclic groups, there exists an element k of $(\mathbb{Z}/p\mathbb{Z})^*$ of order 4. In other words, $k^4 = 1$ in $(\mathbb{Z}/p\mathbb{Z})^*$ but $k^2 \neq 1$ in $(\mathbb{Z}/p\mathbb{Z})^*$. Since k^2 is then a root of the polynomial $x^2 - 1 = (x + 1)(x - 1)$ in the field $\mathbb{Z}/p\mathbb{Z}$, we must have $k^2 = \pm 1$, and since by assumption $k^2 \neq 1$, $k^2 = -1$. This says that there is an integer k such that $k^2 \equiv -1 \mod p$.

To complete the proof of the theorem, if $p \equiv 1 \mod 4$, then we shall show that p is not irreducible in $\mathbb{Z}[i]$. Let $k \in \mathbb{Z}$ be such that $k^2 \equiv -1 \mod p$, so that p divides $k^2 + 1$. In $\mathbb{Z}[i]$, we can factor $k^2 + 1 = (k + i)(k - i)$. If p were
an irreducible, then since \(p \) divides \(k^2 + 1 = (k + i)(k - i) \), \(p \) would divide one of the factors \(k \pm i \). But

\[
\frac{k \pm i}{p} = \frac{k}{p} \pm \frac{1}{p}i.
\]

Since \(\pm 1/p \) is not an integer, the quotient \((k \pm i)/p \) does not lie in \(\mathbb{Z}[i] \). Hence \(p \) does not divide either factor \(k \pm i \) of \(k^2 + 1 \), and so cannot be an irreducible.

It follows that the prime numbers which are sums of two integer squares are exactly the primes 2 and the odd primes \(\equiv 1 \mod 4 \). The following describes all positive integers which are sums of two integer squares:

Corollary 3.8. Let \(n \in \mathbb{N} \), \(n > 1 \), and write \(n = p_1^{a_1} \cdots p_r^{a_r} \), where the \(p_i \) are distinct prime numbers and \(a_i \in \mathbb{N} \). Then \(n \) is a sum of two integer squares if and only, for every prime factor \(p_i \) of \(n \) such that \(p_i \equiv 3 \mod 4 \), \(a_i \) is even.

Proof. \(\iff \): If \(n \) is as described, then every prime factor \(p_i \) of \(n \) which is either 2 or \(\equiv 1 \mod p \) is a sum of two squares, hence so is \(p_i^{a_i} \) for an arbitrary positive power \(a_i \). If \(p_i \equiv 3 \mod 4 \), then, if \(a_i \) is even, \(p_i^{a_i} \) is also a square since it is an even power. Thus \(n = p_1^{a_1} \cdots p_r^{a_r} \) is a sum of two squares since it is a product of factors, each of which is a sum of two squares.

\(\implies \): Suppose that \(n \) is a sum of two squares. Then \(n = N(\alpha) \) for some \(\alpha \in \mathbb{Z}[i] \), not 0 or a unit. Factor \(\alpha \) into a product of irreducibles: \(\alpha = u\pi_1^{b_1} \cdots \pi_s^{b_s} \), where \(u \) is a unit, the \(b_i \) are positive integers, and \(\pi_i \) is not an associate. If \(\pi_i \) is not an associate of a prime \(p_i \equiv 3 \mod 4 \), then \(N(\pi_i) \) is either 2 or a prime \(\equiv 1 \mod 4 \). If \(\pi_i \) is an associate of a prime \(p_i \equiv 3 \mod 4 \), then \(N(\pi_i) = p_i^2 \) and thus \(N(\pi_i^{b_i}) = p_i^{2b_i} \). Hence

\[
n = N(\alpha) = (N(\pi_1))^{b_1} \cdots (N(\pi_s))^{b_s}
\]

is a product of prime powers with the property that all of the primes \(\equiv 3 \mod 4 \) occur to even powers. It follows that the prime factorization of \(n \) is as claimed.

4 Examples where unique factorization fails

One can try to extend the above arguments to more general classes of rings. One natural ring to consider is \(\mathbb{Z}[^{\sqrt{-d}}] \), where \(d \in \mathbb{N} \). We usually assume that \(d \) has no squared prime factors, in other words that either \(d = 1 \) or
Note that, since \(\alpha \in \mathbb{Q} \), \(\omega \) is a subring of the field \(\mathbb{Q}(\sqrt{-d}) \), which is called an \textit{imaginary quadratic field}. Similarly, we could look at \(\mathbb{Z}((\sqrt{-d})) \), where \(d \in \mathbb{N}, d > 1 \), and \(d \) has no squared prime factors. In this case \(\mathbb{Z}(\sqrt{d}) \) is a subring of the field \(\mathbb{Q}(\sqrt{d}) \), which is called a \textit{real quadratic field}.

There is a natural multiplicative function \(N: \mathbb{Z}(\sqrt{-d}) \to \mathbb{Z} \) defined by, if \(\alpha = a + b\sqrt{-d} \in \mathbb{Z}(\sqrt{-d}), \)

\[
N(\alpha) = \alpha \bar{\alpha} = a^2 + db^2.
\]

Just as in the case \(d = 1 \), \(N \) is multiplicative, i.e. \(N(\alpha \beta) = N(\alpha)N(\beta) \), and \(N \) extends to a function from \(\mathbb{Q}(\sqrt{-d}) \) to \(\mathbb{Q} \) which is a homomorphism of multiplicative groups from \(\mathbb{Q}(\sqrt{-d})^* \) to \(\mathbb{Q}^* \). Adapting the arguments in the preceding section for \(\mathbb{Z}[i] \), it is not hard to show:

Proposition 4.1. \(\text{In the integral domain } \mathbb{Z}(\sqrt{-2}), \text{ the function } N(\alpha) = \alpha \bar{\alpha} \text{ is a multiplicative Euclidean norm.} \)

However, this fails for every \(d > 2 \): If \(d > 2 \), the norm \(N: \mathbb{Z}(\sqrt{-d}) \to \mathbb{Z} \) fails to be Euclidean, and in fact \(\mathbb{Z}(\sqrt{-d}) \) is not a UFD.

Example 4.2. The integral domain \(\mathbb{Z}(\sqrt{-3}) \) is not a UFD. In fact, in \(\mathbb{Z}(\sqrt{-3}) \),

\[
4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).
\]

We will show that 2 and \(1 \pm \sqrt{-3} \) are all irreducible, and that 2 is not an associate of \(1 \pm \sqrt{-3} \). First, arguing as for \(\mathbb{Z}[i] \), it is easy to check that \(\alpha \in \mathbb{Z}(\sqrt{-3}) \) is a unit \(\iff N(\alpha) = 1 \). Now suppose that 2 factors in \(\mathbb{Z}(\sqrt{-3}) \): say \(2 = \alpha \beta \). Then \(N(\alpha)N(\beta) = N(2) = 4 \). If neither \(\alpha \) nor \(\beta \) is a unit, then \(N(\alpha) > 1 \) and \(N(\beta) > 1 \), hence \(N(\alpha) = N(\beta) = 2 \). But if say \(\alpha = a + b\sqrt{-3} \) with \(a, b \in \mathbb{Z} \), then \(a^2 + 3b^2 = 2 \), hence \(b = 0 \) and \(a^2 = 2 \), which is impossible. Thus 2 is irreducible, and since \(N(1 \pm \sqrt{-3}) = 4 \) as well, a similar argument shows that \(1 \pm \sqrt{-3} \) is irreducible. Finally, 2 and \(1 + \sqrt{-3} \) are not associates, since if they were, then 2 would divide \(1 + \sqrt{-3} \) in \(\mathbb{Z}[\sqrt{-3}] \). But \((1 + \sqrt{-3})/2 = 1/2 + (1/2)\sqrt{-3} \notin \mathbb{Z}[\sqrt{-3}] \). Likewise, 2 and \(1 - \sqrt{-3} \) are not associates in \(\mathbb{Z}[\sqrt{-3}] \). Hence \(\mathbb{Z}[\sqrt{-3}] \) is not a UFD.

This example is slightly misleading, because \(\mathbb{Z}[\sqrt{-3}] \) is a subring of a somewhat more natural ring which is in fact a UFD: Let \(\omega = e^{2\pi i/3} = -\frac{1}{2} + \frac{i}{2}\sqrt{-3} \) be a cube root of unity. Note that \(\omega \) is a root of the monic polynomial \(x^2 + x + 1 \), since \(\omega \) is a root of \(x^3-1 \) and \(x^3-1 = (x-1)(x^2+x+1) \). Note that, since \(\omega^3 = 1, \omega^2 = \omega^{-1} = \bar{\omega} \). Hence \(\sqrt{-3} = \omega - \omega^2 \in \mathbb{Z}[\omega] \), so

\[
d = p_1 \cdots p_k
\]
that $\mathbb{Z}[\sqrt{-3}]$ is a subring of $\mathbb{Z}[^\omega]$. More generally, we say that an $\alpha \in \mathbb{C}$ is an algebraic integer if α is a root of a monic polynomial with integer coefficients, i.e. $f(\alpha) = 0$, where $f \in \mathbb{Z}[x]$ is monic. (It is easy to see that every algebraic number is a root of a polynomial $f \in \mathbb{Z}[x]$, but f is not necessarily monic.) Then if $E \leq \mathbb{C}$ is an algebraic extension of \mathbb{Q}, one can show that the set of algebraic integers in E is a subring of E whose quotient field is E, and this ring plays the role of the subring \mathbb{Z} of \mathbb{Q}. For $E = \mathbb{Q}(i)$, for example, the subring of algebraic integers is just $\mathbb{Z}[i]$, but for $E = \mathbb{Q}(\sqrt{-3})$, the subring of algebraic integers is $\mathbb{Z}[\omega]$. In this particular example, $\mathbb{Z}[\omega]$ is in fact a PID and hence a UFD. In fact, one can use this to give a fairly straightforward solution of Fermat’s Last Theorem for the case $p = 3$: The only solutions in integers to the equation $x^3 + y^3 = z^3$ are the trivial solutions, where one of x, y, z is 0.

However, unique factorization still turns out to be a rare occurrence. For example, $\mathbb{Z}[\sqrt{-5}]$ turns out to be the full subring of algebraic integers in $\mathbb{Q}(\sqrt{-5})$, but it is easy to check that

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

gives a factorization of 6 into a product of irreducibles in two essentially different ways. Hence $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, and hence it is not a PID.

More generally, a famous theorem due to Heegner-Stark says that there is a finite (and relatively short) list of imaginary quadratic fields whose rings of integers are UFD’s. It turns out that, for such a ring, being a UFD is equivalent to being a PID. However, not every such PID is Euclidean. Hence, the implications R Euclidean $\implies R$ is a PID $\implies R$ is a UFD are all strict, in the sense that none of them is an \iff statement. In other words, there exist rings R which are a UFD but which are not a PID and there exist rings R which are a PID but which are not Euclidean.

Much of the above discussion carries over to real quadratic fields. For example, for $\mathbb{Z}[\sqrt{2}]$, we have a multiplicative function $N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ defined by

$$N(a + b\sqrt{2}) = |a^2 - 2b^2|.$$

One can check that, at least in this case, N is a Euclidean norm. For general real quadratic fields, one can define an analogous multiplicative function N, which will usually not however be a Euclidean norm. It is unknown if there are finitely or infinitely many real quadratic fields whose rings of integers are UFD’s.

More general rings along these lines are studied in algebraic number theory. Historically, one major motivation was the attempt to prove Fermat’s
Last Theorem (which would be quite straightforward to prove if unique factorization always held in such rings). Ideals were originally introduced in this special context. If R is a UFD, then r is irreducible $\iff (r)$ is prime, and (r) uniquely determines r up to associates. In general, nonzero prime ideals can function to a certain extent as a substitute for irreducible elements. In fact, a basic theorem in algebraic number theory states that, if R is a ring of algebraic integers (correctly defined), and I is an ideal of R, with $I \neq \{0\}, R$, then I can be uniquely factored into a product of prime ideals (where ideal products were defined in the HW).