Cohomology and hypercohomology

0.1 Definition of cohomology

Let X be a topological space. We list some basic definitions concerning sheaves on X. If F is a sheaf of R-modules on X, we denote by $\Gamma(X; F)$ the R-module of global sections of F. For a complex (C^\cdot, d) of sheaves (of R-modules) on X, the convention will always be that d has degree $+1$. We will usually just write C^\cdot when the differential d is clear from the context. By convention, all complexes of sheaves will be bounded below. Finally, for a complex of sheaves as above, $H^i(C^\cdot, d)$, or just H^iC^\cdot when d is clear from the context, denotes the ith cohomology sheaf of the complex.

Definition 1. (i) Let (C^\cdot, d) and (D^\cdot, d) be two complexes of sheaves on X. A quasi-isomorphism $f: C^\cdot \to D^\cdot$ is a morphism of complexes of sheaves which induces an isomorphism on the cohomology sheaves. The complexes (C^\cdot, d) and (D^\cdot, d) are quasi-isomorphic if there exists some quasi-isomorphism $f: C^\cdot \to D^\cdot$.

(ii) Two morphisms $f: C^\cdot \to D^\cdot$, $g: C^\cdot \to D^\cdot$ are chain homotopic if there exists an R-module homomorphism $T: C^\cdot \to D^\cdot$ of degree -1 such that $f - g = dT + Td$.

(iii) A sheaf I on X is injective if it is an injective object in the abelian category of sheaves of R-modules on X: given sheaves F and G on X and a commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & F \\
\hspace{1cm} & f \downarrow & \hspace{1cm} \\
& I & \hspace{1cm}
\end{array}
\]

there exists a map $\tilde{f}: G \to I$ making the diagram commute.

(iv) A resolution I^\cdot of a sheaf F is a complex I^\cdot with $I^k = 0$ for $k < 0$, together with an injection $F \to I^0$, such that

\[
0 \to F \to I^0 \to I^1 \to \cdots
\]

is exact. In particular, the map $F[0] \to I^\cdot$ is a quasi-isomorphism, where $F[0]$ denotes the complex with a single term in degree 0 consisting of F. An injective resolution I^\cdot of F is a resolution such that I^k is injective for all k.

1
(v) More generally, if C^\cdot is a complex of sheaves, then an injective resolution of C^\cdot is an injective quasi-isomorphism $f: C^\cdot \to I^\cdot$, where I^k is injective for all k.

Lemma 2. (i) Let F be a sheaf on X. Then an injective resolution (I^\cdot, d) of F exists.

(ii) If I^\cdot is a resolution of F and J^\cdot is an injective resolution of F, then there exists a quasi-isomorphism $f: I^\cdot \to J^\cdot$ which is compatible with the two inclusions $F \to I^0$, $F \to J^0$.

(iii) If I^\cdot and J^\cdot are two injective resolutions of F and $f: I^\cdot \to J^\cdot$ and $g: I^\cdot \to J^\cdot$ are two quasi-isomorphisms compatible with the inclusions of F in degree 0, then f and g are chain homotopic.

Definition 3. If F is a sheaf of R-modules on X, let I^\cdot be an injective resolution of F and define

$$H^i(X; F) = H^i(\Gamma(X; I^\cdot), d).$$

It is independent of the choice of injective resolution I^\cdot by the above lemma, in the sense that if J^\cdot is another such, then there is a canonical isomorphism $H^i(\Gamma(X; I^\cdot), d) \cong H^i(\Gamma(X; J^\cdot), d)$. Finally the sheaf cohomology groups $H^i(X; F)$ satisfy the usual properties. In particular, $H^0(X; F) = \Gamma(X; F)$ and, given a short exact sequence $0 \to F' \to F \to F'' \to 0$ of sheaves on X, there is a long exact cohomology sequence

$$\cdots \to H^{i-1}(X; F'') \xrightarrow{\delta} H^i(X; F') \to H^i(X; F) \to H^i(X; F'') \xrightarrow{\delta} H^{i+1}(X; F') \to \cdots,$$

where the connecting homomorphisms δ are also functorial in a natural sense with respect to commutative diagrams of short exact sequences of complexes of sheaves on X.

Remark 4. The cohomology groups $H^k(X; F)$ are the derived functors of the global section functor Γ.

In practice, it is hard to work with injective resolutions, and we need other methods for computing cohomology.

Definition 5. Let K be a sheaf on X. Then K is acyclic if $H^i(X; K) = 0$ for all $i > 0$. An acyclic resolution (K^\cdot, d) of a sheaf F is a resolution $F \to K^\cdot$ such that K^i is acyclic for every i.

2
Lemma 6. Let \((K', d)\) be an acyclic resolution of a sheaf \(F\). Then, for all \(i \geq 0\),
\[
H^i(X; F) \cong H^i(\Gamma(X; K'), d).
\]

Proof. Since there is an exact sequence
\[
0 \to F \to K^0 \to K^1,
\]
and the global section functor is left exact, we see that
\[
H^0(X; F) = \text{Ker}\{d: H^0(X; K^0) \to H^0(X; K^1)\}.
\]

Also, using the exact sequence
\[
0 \to F \to K^0 \to K^0/F \to 0
\]
and the vanishing of \(H^1(X; K^0)\), we see that
\[
H^1(X; F) = \text{Coker}\{d: H^0(X; K^0) \to H^0(X; K^0/F)\}.
\]
Moreover, using the exact sequence
\[
0 \to K^0/F \to K^1 \to K^2,
\]
we see that
\[
H^0(X; K^0/F) = \text{Ker}\{d: H^0(X; K^1) \to H^0(X; K^2)\}.
\]
Thus \(H^1(X; F)\) is isomorphic to
\[
\text{Ker}\{d: H^0(X; K^1) \to H^0(X; K^2)\}/\text{Im}\{d: H^0(X; K^0) \to H^0(X; K^1)\} = H^1(\Gamma(X; K'), d).
\]
Finally, for \(k \geq 2\), we argue by induction on \(k\), assuming inductively that the result has been proved for all \(k - 1 \geq 1\) and all sheaves \(G\). Then, given the sheaf \(F\), there is the induced acyclic resolution of \(K^0/F\):
\[
0 \to K^0/F \to K^1 \to K^2 \to \cdots.
\]
Moreover, the long exact cohomology sequence associated to
\[
0 \to F \to K^0 \to K^0/F \to 0
\]
and the vanishing of \(H^i(X; K^0)\) for \(i \geq 1\) shows that, for \(k \geq 2\),
\[
H^k(X; F) \cong H^{k-1}(X; K^0/F) \cong H^{k-1}(\Gamma(X; K^{+1}), d) = H^k(\Gamma(X; K'), d).
\]
This completes the inductive step. \qed
0.2 Some examples of acyclic sheaves

To make use of Lemma 6, we need to produce some examples of acyclic sheaves. Of course, an injective sheaf I is acyclic, because the complex $I[0]$ which is I in degree zero and zero elsewhere is an injective resolution of I. Hence, $H^i(X; I) = 0$ for all $i > 0$. The following gives another very broad class of acyclic sheaves.

Definition 7. A sheaf F is *flasque* if, for every pair of open subsets $U \subseteq V$ of X, the restriction morphism $\Gamma(V; F) \to \Gamma(U; F)$ is surjective.

The method of constructing injective resolutions given in Hartshorne shows that, given an arbitrary sheaf F, there exists an injective resolution $(I \cdot, d)$ of F such that all of the I^k are flasque. However, this is a somewhat superfluous argument since the following is easy to show directly:

Lemma 8. An injective sheaf is flasque. □

A Zorn’s lemma argument shows:

Lemma 9. Let F be flasque and suppose that there is an exact sequence of sheaves

$$0 \to F \to A \to B \to 0.$$

Then the induced map $\Gamma(X; A) \to \Gamma(X; B)$ is surjective, i.e.

$$0 \to H^0(X; F) \to H^0(X; A) \to H^0(X; B) \to 0$$

is exact. □

Straightforward arguments also show:

Lemma 10. (i) Given an exact sequence

$$0 \to F' \to F \to F'' \to 0,$$

if F' and F are flasque, then so F''.

(ii) Suppose that

$$0 \to F^0 \to F^1 \to \cdots$$

is an exact sequence of flasque sheaves. Then the associated sequence of global sections

$$0 \to \Gamma(X; F^0) \to \Gamma(X; F^1) \to \cdots$$

is also exact. □
Finally, we have:

Lemma 11. An flasque sheaf is acyclic.

Proof. There exists an injective sheaf I and an injective homomorphism $F \to I$. Thus we have an exact sequence

$$0 \to F \to I \to I/F \to 0.$$

By Lemma 9, the map $H^0(X; I) \to H^0(X; I/F)$ is surjective and thus $H^1(X; F) = 0$ since $H^1(X; I) = 0$. Now assume inductively that we have shown, for all $k - 1 \geq 1$, and for all flasque sheaves G, that $H^{k-1}(X; G) = 0$. For $k \geq 2$, we have an isomorphism

$$H^k(X; F) \cong H^{k-1}(X; I/F).$$

By (i) of Lemma 10, I/F is flasque. Hence, by the inductive assumption, $H^{k-1}(X; I/F) = 0$ for all $k \geq 2$. Hence $H^k(X; F) = 0$ as well, completing the inductive step.

The usefulness of flasque sheaves is that it enables us to construct a canonical flasque resolution (due to Godement).

Definition 12. Let F be a sheaf on X, and define $C^0_{Go}(F)$, the sheaf of germs of discontinuous sections of F, by: for every open subset U of X,

$$C^0_{Go}(F)(U) = \prod_{x \in U} F_x.$$

If $V \subseteq U$ are two open subsets, there is the obvious restriction map

$$C^0_{Go}(F)(U) \to C^0_{Go}(F)(V),$$

making $C^0_{Go}(F)$ a sheaf (not just a presheaf) of R-modules on X. Clearly, $C^0_{Go}(F)$ is flasque. There is a natural injection of sheaves $F \to C^0_{Go}(F)$, which associates to a section $s \in F(U)$ the element $(s_x) \in \prod_{x \in U} F_x$. Then we define

$$C^1_{Go}(F) = C^0_{Go}(C^0_{Go}(F)/F),$$

with a natural map

$$d: C^0_{Go}(F) \to C^0_{Go}(F)/F \to C^0_{Go}(C^0_{Go}(F)/F) = C^1_{Go}(F).$$

Inductively, suppose that we have defined $C^r_{Go}(F)$ and the map $C^{r-1}_{Go}(F) \to C^r_{Go}(F)$. Then set

$$C^{r+1}_{Go}(F) = C^0_{Go}(C^r_{Go}(F)/\text{Im } C^{r-1}_{Go}(F)).$$
We then have the composition

\[d_{\text{Go}} : C^r_{\text{Go}}(F) \to C^r_{\text{Go}}(F) / \text{Im} C^{r-1}_{\text{Go}}(F) \to C^{r+1}_{\text{Go}}(F), \]

with the first map surjective with kernel \(\text{Im} C^{r-1}_{\text{Go}}(F) \) and the second map injective. It follows that \((C^r_{\text{Go}}(F), d_{\text{Go}}) \) is exact except in dimension zero, and is a resolution of \(F \) by flasque sheaves. We will refer to it as the canonical flasque resolution or Godement resolution of \(F \).

We can view \((C^r_{\text{Go}}(\cdot), d_{\text{Go}}) \) as a functor from the abelian category of sheaves on \(X \) to the category of complexes on \(X \), because a homomorphism \(f : F \to G \) defines a morphism of complexes \(\tilde{f} : C^r_{\text{Go}}(F) \to C^r_{\text{Go}}(G) \) in a functorial way. Then:

Lemma 13. (i) The functor \((C^r_{\text{Go}}(\cdot), d_{\text{Go}}) \) is exact. In other words, given an exact sequence

\[F' \to F \to F'' \]

of sheaves on \(X \), the sequence of complexes

\[C^r_{\text{Go}}(F') \to C^r_{\text{Go}}(F) \to C^r_{\text{Go}}(F'') \]

is exact.

(ii) If \(\alpha : F' \to F \) is a homomorphism of sheaves and \(\tilde{\alpha} : C^r_{\text{Go}}(F') \to C^r_{\text{Go}}(F) \) is the induced homomorphism, then

\[\text{Ker } \tilde{\alpha} = C^r_{\text{Go}}(\text{Ker } \alpha) \quad \text{and} \quad \text{Im } \tilde{\alpha} = C^r_{\text{Go}}(\text{Im } \alpha). \]

(iii) The functor \((C^r_{\text{Go}}(\cdot), d_{\text{Go}}) \) commutes with taking cohomology. In other words, given a complex of sheaves on \(X \)

\[\ldots \xrightarrow{\delta} F^{i-1} \xrightarrow{\delta} F^i \xrightarrow{\delta} F^{i+1} \xrightarrow{\delta} \ldots, \]

and if \(\tilde{\delta} \) is the induced map \(C^r_{\text{Go}}(F^i) \to C^r_{\text{Go}}(F^{i+1}) \), then the corresponding cohomology sheaves satisfy

\[H^i(C^r_{\text{Go}}(F^i), \tilde{\delta}) = C^r_{\text{Go}}(H^i F^i). \]

Proof. (i) It suffices to show that the sequence

\[C^0_{\text{Go}}(F')/F' \to C^0_{\text{Go}}(F)/F \to C^0_{\text{Go}}(F'')/F'' \]

is exact. This is a straightforward exercise.
(ii) We have an exact sequence

\[0 \rightarrow \text{Ker} \alpha \rightarrow F' \xrightarrow{\alpha} F. \]

Using (i), the sequence

\[0 \rightarrow C_{\text{Go}}(\text{Ker} \alpha) \rightarrow C_{\text{Go}}(F') \xrightarrow{\tilde{\alpha}} C_{\text{Go}}(F) \]

is also exact. Thus \(\text{Ker} \tilde{\alpha} = C_{\text{Go}}(\text{Ker} \alpha) \). As for \(\text{Im} \alpha \), we have a commutative diagram

\[
\begin{array}{ccc}
F' & \longrightarrow & \text{Im} \alpha \\
\downarrow \alpha & & \downarrow \\
F & \longrightarrow & F
\end{array}
\]

Thus, using (i) again, there is a corresponding diagram

\[
\begin{array}{ccc}
C_{\text{Go}}(F') & \longrightarrow & C_{\text{Go}}(\text{Im} \alpha) \\
\downarrow \tilde{\alpha} & & \downarrow \\
C_{\text{Go}}(F) & \longrightarrow & C_{\text{Go}}(F)
\end{array}
\]

It then follows easily that the image of \(C_{\text{Go}}(\text{Im} \alpha) \) is contained in \(\text{Im} \tilde{\alpha} \) and that the corresponding homomorphism \(C_{\text{Go}}(\text{Im} \alpha) \rightarrow \text{Im} \tilde{\alpha} \) is both injective and surjective, hence an isomorphism.

(iii) This follows easily from (ii).

The other class of acyclic sheaves we will consider are the fine sheaves.

Definition 14. A sheaf \(K \) on \(X \) is fine if, for every open cover \(\{U_\alpha\} \) of \(X \), there exists a family \(\varphi_\alpha : K \rightarrow K \) of endomorphisms of \(K \), satisfying

1. The support of \(\varphi_\alpha \) is contained in \(U_\alpha \). In other words, there is a closed subset \(S_\alpha \) of \(U_\alpha \) such that \(\varphi_\alpha | X - S_\alpha = 0 \).

2. (Local finiteness). For all \(x \in X \), there exists an open neighborhood \(V \) of \(x \) such that there are only finitely many \(\alpha \) with \(\varphi_\alpha | V \neq 0 \).

3. \(\sum_\alpha \varphi_\alpha = \text{Id.} \) (Here the sum is meaningful by (2).)

The primary example of fine sheaves is given by:
Example 15. If M is a C^∞ manifold and $C^\infty_M = A^0_M$ denotes the sheaf of rings of C^∞ functions on M, then, for every open cover $\{U_\alpha\}$ of M, there exists a C^∞ partition of unity $\{f_\alpha\}$ subordinate to $\{U_\alpha\}$. Then, if K is any sheaf of C^∞_M-modules, multiplication by f_α defines an endomorphism of K satisfying the conditions of the above definition. Thus, such a K is a fine sheaf.

In particular, the sheaves A^k_M of C^∞ differential forms on M, as well as the sheaves $A^{p,q}_M$ in case M is a complex manifold, are fine sheaves.

Proposition 16. A fine sheaf K is acyclic.

Proof. Consider the Godement resolution $C\cdot_{Go}(K)$. We need to show that the complex $\Gamma(X; C\cdot_{Go}(K))$ has no cohomology in positive degrees. Given $k > 0$, let $\xi \in \text{Ker}\{\Gamma(X; C^k_{Go}(K)) \to \Gamma(X; C^{k+1}_{Go}(K))\}$. By local exactness, there exists an open cover $\{U_\alpha\}$ of X such that, for all α, there exists an $\eta_\alpha \in C^{k-1}_{Go}(K)(U_\alpha)$ such that $d_{Go}\eta_\alpha = \xi|_{U_\alpha}$. Let $\varphi_\alpha : K \to K$ be a family of endomorphisms of K satisfying (1)–(3) of Definition 14 for the open cover $\{U_\alpha\}$. Since $C\cdot_{Go}$ is functorial, the φ_α lift to endomorphisms $\tilde{\varphi}_\alpha$ of the complex $C\cdot_{Go}(K)$, and it is easy to check that the $\tilde{\varphi}_\alpha$ satisfy the same conditions as φ_α. Define

$$\eta = \sum_\alpha \tilde{\varphi}_\alpha(\eta_\alpha).$$

Here, $\tilde{\varphi}_\alpha(\eta_\alpha)$ is a priori only defined on U_α, but by the support condition it extends over X. Also, locally around every point x of X, the sum $\sum_\alpha \tilde{\varphi}_\alpha(\eta_\alpha)$ is actually a finite sum, and so the section η is well defined.

Then we compute (again with the understanding that this computation is meaningful on all sufficiently small open sets):

$$d_{Go}\eta = \sum_\alpha d_{Go}\tilde{\varphi}_\alpha(\eta_\alpha) = \sum_\alpha \tilde{\varphi}_\alpha(d_{Go}\eta_\alpha)$$

$$= \sum_\alpha \tilde{\varphi}_\alpha(\xi) = \xi.$$

Thus $H^k(\Gamma(X; C^\cdot_{Go}(K)), d_{Go}) = 0$ for $k > 0$, so that $H^k(X; K) = 0$ for $k > 0$ and K is acyclic.

Corollary 17 (de Rham isomorphism). If M is a C^∞ manifold, then $H^k(M; \mathbb{C}) = H^k(A^\cdot(M), d)$. More generally, if V is a flat vector bundle on M, then $H^k(M; V) = H^k(A^\cdot(M; V), d)$.

Proof. By the Poincaré lemma, (A^\cdot_M, d) is a resolution of \mathbb{C}. Example 15 shows that the A^k_M are fine sheaves, hence acyclic. By Lemma 6, $H^k(M; \mathbb{C})$
is computed by taking the cohomology of the complex of global sections
\(\Gamma(M; A_M) = A(M) \). The case of a flat vector bundle is similar. \(\square \)

Corollary 18 (Dolbeault isomorphism). If \(M \) is a complex manifold, then
\(H^q(M; \Omega^p_M) = H^p_{\bar{\partial}}(M) \). More generally, if \(V \) is a holomorphic vector
bundle on \(M \), then \(H^q(M; \Omega^p_M \otimes V) = H^p_{\bar{\partial}}(M; V) \).

Proof. The proof is the same as the proof of the de Rham isomorphism, using the \(\bar{\partial} \)-Poincaré lemma instead of the usual Poincaré lemma. \(\square \)

0.3 Čech cohomology and Leray’s theorem

Let \(\{ U_\alpha \}_{\alpha \in I} \) be an open cover of \(X \), where we assume the index set \(I \) to be
totally ordered, and let \(F \) be a sheaf on \(X \). We define the Čech cohomology
of \(F \) with respect to the cover \(\{ U_\alpha \} \) in the usual way: for each finite sequence
\(\alpha_0 < \alpha_1 < \cdots < \alpha_k \), define
\[
U_{\alpha_0, \alpha_1, \ldots, \alpha_k} = U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_k},
\]
and define the Čech complex \(\check{C}^* \) of \(F \) via
\[
\check{C}^k(\{ U_\alpha \}; F) = \prod_{\alpha_0 < \alpha_1 < \cdots < \alpha_k} \Gamma(U_{\alpha_0, \alpha_1, \ldots, \alpha_k}, F).
\]

We define the Čech differential \(\delta : \check{C}^k(\{ U_\alpha \}; F) \to \check{C}^{k+1}(\{ U_\alpha \}; F) \) by: for a
section \(t = (t_{\alpha_0, \alpha_1, \ldots, \alpha_k}) \) of \(\check{C}^k(\{ U_\alpha \}; F) \),
\[
\delta t_{\alpha_0, \alpha_1, \ldots, \alpha_{k+1}} = \sum_{i=0}^{k+1} (-1)^i t_{\alpha_0, \ldots, \hat{\alpha}_i, \ldots, \alpha_{k+1}}|_{U_{\alpha_0, \alpha_1, \ldots, \alpha_{k+1}}},
\]
where the notation \(\hat{\alpha}_i \) means that this term is omitted. It is straightforward
to check that \(\delta \circ \delta = 0 \). Then we define \(\check{H}^*(\{ U_\alpha \}; F) \) to be the cohomology
of the complex \(\check{C}^*(\{ U_\alpha \}; F) ; \delta \). By the sheaf axioms, it is easy to check
that \(\check{H}^0(\{ U_\alpha \}; F) = \Gamma(X; F) \).

There is also a sheaf version: define
\[
\check{C}^k(\{ U_\alpha \}; F) = \prod_{\alpha_0 < \alpha_1 < \cdots < \alpha_k} (j_{\alpha_0, \alpha_1, \ldots, \alpha_k})_* (F|_{U_{\alpha_0, \alpha_1, \ldots, \alpha_k}}),
\]
where \(j_{\alpha_0, \alpha_1, \ldots, \alpha_k} : U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_k} \to X \) is inclusion. There is also
a differential \(\delta : \check{C}^k(\{ U_\alpha \}; F) \to \check{C}^{k+1}(\{ U_\alpha \}; F) \) which is defined by analogy
with \(\delta : \check{C}^k(\{ U_\alpha \}; F) \to \check{C}^{k+1}(\{ U_\alpha \}; F) \). A combinatorial argument using
the sheaf axioms shows:
Proposition 19. The complex $(\check{C}^k(\{U_{\alpha}\}; F), \delta)$ is a resolution of F. \hfill \Box

Note that $\Gamma(X; \check{C}^k(\{U_{\alpha}\}; F)) = \check{C}^k(\{U_{\alpha}\}; F)$ (compatibly with δ).

Lemma 20. If F is flasque, then $\check{H}^k(\{U_{\alpha}\}; F) = 0$ for $k > 0$.

Proof. Let U be an open subset of X, and let $i: U \to X$ be the inclusion. An easy argument shows that, if F is a flasque sheaf on X, then $F|U$ is a flasque sheaf on U, and that, if G is a flasque sheaf on U, then i_*G is a flasque sheaf on X. Thus, the sheaves $\check{C}^k(\{U_{\alpha}\}; F)$ are flasque, so that $(\check{C}^k(\{U_{\alpha}\}; F), \delta)$ is a flasque resolution of F. It follows that

$$\check{H}^k(X; F) = H^k(\Gamma(\check{C}^k(\{U_{\alpha}\}; F), \delta)) = \check{H}^k(\{U_{\alpha}\}; F).$$

Thus $\check{H}^k(\{U_{\alpha}\}; F) = 0$ for $k > 0$. \hfill \Box

By (ii) of Lemma 2, if I is an injective resolution of F, there is an induced morphism of complexes $\check{C}^k(\{U_{\alpha}\}; F) \to I$. Taking global sections, there is a morphism of complexes $\check{C}^k(\{U_{\alpha}\}; F) \to \Gamma(X; I)$ and hence an induced homomorphism

$$\check{H}^k(\{U_{\alpha}\}; F) \to H^k(X; F).$$

With an appropriate notion of refinements, we can define

$$\check{H}^k(X; F) = \lim_{\to} \check{H}^k(\{U_{\alpha}\}; F).$$

The homomorphisms $\check{H}^k(\{U_{\alpha}\}; F) \to H^k(X; F)$ fit together to give a homomorphism $\check{H}^k(X; F) \to H^k(X; F)$.

Theorem 21. For every open cover, $\check{H}^0(\{U_{\alpha}\}; F) \cong H^0(X; F)$. Moreover, $\check{H}^1(X; F) \cong H^1(X; F)$ via the natural homomorphism. If X is paracompact, then, for every k, $\check{H}^k(X; F) \cong H^k(X; F)$. \hfill \Box

The really computationally useful version of Čech cohomology is the following:

Theorem 22 (Leray’s theorem). Let F be a sheaf on X and let $\{U_{\alpha}\}$ be an open cover such that, for every sequence $\alpha_0 < \alpha_1 < \cdots < \alpha_k$ and for every $k > 0$, $H^k(U_{\alpha_0,\alpha_1,\ldots,\alpha_k}; F) = 0$. Then $\check{H}^k(\{U_{\alpha}\}; F) \to H^k(X; F)$ is an isomorphism.
Proof. Choose a flasque resolution K^\cdot of F and consider the double complex $(\check{C}^\cdot (\{U_\alpha\}; K^\cdot), \delta, d)$, where δ is the Čech differential and d is induced by the differential on K^\cdot. For the associated single complex $(s(\check{C}^\cdot (\{U_\alpha\}; K^\cdot), D)$, with $D = \delta + (-1)^p d$, we can consider the two spectral sequences associated to the double complex $\check{C}^\cdot (\{U_\alpha\}; K^\cdot)$. For the one with $E^{p,q}_1$ given by taking the cohomology first with respect to δ, we get

$$E^{p,q}_1 = \check{H}^q(\{U_\alpha\}; K^p) = \begin{cases} 0, & \text{if } q > 0; \\ \Gamma(X; K^p), & \text{if } q = 0, \end{cases}$$

where we have used Lemma 20 to conclude that $\check{H}^q(\{U_\alpha\}; K^p) = 0$ for $q > 0$. Thus the $E_2 = E_\infty$ term is $H^p(\Gamma(X; K^p), d) = H^p(X; F)$.

Looking at the other spectral sequence, the E_1 term is the d-cohomology of the complex

$$\check{C}^\cdot (\{U_\alpha\}; K^0) \to \check{C}^\cdot (\{U_\alpha\}; K^1) \to \cdots.$$

Since $K^\cdot|U_{\alpha_0,\alpha_1,\ldots,\alpha_k}$ is flasque, it is an acyclic resolution of $F|U_{\alpha_0,\alpha_1,\ldots,\alpha_k}$. Then $H^p(\check{U}_{\alpha_0,\alpha_1,\ldots,\alpha_k}; F)$ is the cohomology of the complex $\Gamma(\check{U}_{\alpha_0,\alpha_1,\ldots,\alpha_k}; K^\cdot)$. But then the d-cohomology of $\check{C}^p(\{U_\alpha\}; K^0)$ in degree q is

$$\prod_{\alpha_0 < \alpha_1 < \ldots < \alpha_p} H^q(\check{U}_{\alpha_0,\alpha_1,\ldots,\alpha_p}; F).$$

Since $H^q(\check{U}_{\alpha_0,\alpha_1,\ldots,\alpha_p}; F) = 0$ for $q > 0$, the d-cohomology of the complex $\check{C}^\cdot (\{U_\alpha\}; K^\cdot)$ is just $\check{H}^\cdot (\{U_\alpha\}; F)$ and the E_2 term is $\check{H}^\cdot (\{U_\alpha\}; F)$. Comparing, we see that $\check{H}^\cdot (\{U_\alpha\}; F) \cong H^\cdot (X; F)$.

Remark 23. Even without the hypothesis that $H^k(U_{\alpha_0,\alpha_1,\ldots,\alpha_k}; F) = 0$ for $k > 0$, the proof exhibits a homomorphism

$$E^{p,0}_2 = \check{H}^p(\{U_\alpha\}; F) \to E^{p,0}_\infty \to H^p(X; F)$$

which is the homomorphism described in the remarks before the statement of Theorem 21.

As another application, recall that we previously wanted to compare a class in $H^1(C; \mathcal{O}_C^*)$ which came from a class in $H^1(C; \mathcal{O}_C^*)$ with a corresponding class in $H^{0,1}_\partial (C)$, where C was a compact Riemann surface. Let us discuss a very general procedure of which this is a special case: X is a topological space, $\{U_\alpha\}$ is an open cover of X, F is a sheaf on X, and (A^\cdot, d) is an acyclic resolution of F. More precisely, we assume that $A^\cdot|U_{\alpha_0,\alpha_1,\ldots,\alpha_k}$
is acyclic for every open subset U_{a_0,a_1,\ldots,a_k}. Note that Leray’s theorem then implies that

$$\tilde{H}^0({\{U_\alpha}\}; \mathcal{A}^k) = 0$$

for all $q > 0$ and all k. We want to pass from an element of $\tilde{H}^1({\{U_\alpha}\}; \mathcal{F})$ to an element of $H^1(\Gamma(X; \mathcal{A}); d)$.

Claim 24. The recipe for doing so is as follows: given an element $h_{\alpha\beta} \in \check{C}^1({\{U_\alpha}\}; \mathcal{F})$ inducing a class $\xi \in \check{H}^1({\{U_\alpha}\}; \mathcal{F})$, let $t_{\alpha\beta} \in \check{C}^1({\{U_\alpha}\}; \mathcal{A}^0)$ be its image, and write $t_{\alpha\beta} = s_\alpha - s_\beta$ for some $s = (s_\alpha) \in \check{C}^0({\{U_\alpha}\}; \mathcal{A}^0)$, which is possible since $\check{H}^1({\{U_\alpha}\}; \mathcal{A}^0) = 0$. Then ξ corresponds to the image of the element $ds_\alpha = ds_\beta \in H^0(X; \mathcal{A}^1) = H^0(X; \mathcal{A}^1)$ in $H^1(\Gamma(X; \mathcal{A}); d)$, at least up to a sign.

Proof. Consider the double complex $(\check{C}^\bullet({\{U_\alpha}\}; \mathcal{A}); \delta, d)$, where δ is the Čech differential and d is induced by the differential on \mathcal{A}. We have the associated single complex $(s(\check{C}^\bullet({\{U_\alpha}\}; \mathcal{A}); D))$, with $D = \delta + (-1)^p d$. We will examine this complex directly, as a concrete way of understanding the associated spectral sequences. Note that, for $(c_\alpha) \in \check{C}^0({\{U_\alpha}\}; \mathcal{A}^0)$,

$$D(c_\alpha) = (c_\alpha - c_\beta, dc_\alpha) \in \check{C}^1({\{U_\alpha}\}; \mathcal{A}^0) \oplus \check{C}^0({\{U_\alpha}\}; \mathcal{A}^1),$$

and, for $(b_{\alpha\beta}, \varphi_\alpha) \in \check{C}^1({\{U_\alpha}\}; \mathcal{A}^0) \oplus \check{C}^0({\{U_\alpha}\}; \mathcal{A}^1),$

$$D(b_{\alpha\beta}, \varphi_\alpha) = (\delta(b_{\alpha\beta}), -db_{\alpha\beta} + (\varphi_\alpha - \varphi_\beta), -d\varphi_\alpha)$$

$$\in \check{C}^2({\{U_\alpha\}; \mathcal{A}^0}) \oplus \check{C}^1({\{U_\alpha\}; \mathcal{A}^1}) \oplus \check{C}^0({\{U_\alpha\}; \mathcal{A}^2}).$$

We can then see directly that

$$H^1(s(\check{C}^\bullet({\{U_\alpha}\}; \mathcal{A}); D) = H^1(\Gamma(X; \mathcal{A}); d) = H^1(X; \mathcal{F})$$

as follows: if $D(b_{\alpha\beta}, \varphi_\alpha) = 0$, then $\delta(b_{\alpha\beta}) = 0$. Since $\check{H}^1({\{U_\alpha}\}; \mathcal{A}^0) = 0$, we can write $b_{\alpha\beta} = \delta(c_\alpha)$ for some $(c_\alpha) \in \check{C}^0({\{U_\alpha\}; \mathcal{A}^0})$, unique up to adding a $\sigma \in H^0(X; \mathcal{A}^0)$. Thus, after modifying $(b_{\alpha\beta}, \varphi_\alpha)$ by $D(c_\alpha)$, we can assume that $b_{\alpha\beta} = 0$ for all α, β, and that φ_α satisfies: $\varphi_\alpha = \varphi_\beta$ for all α, β, hence φ_α is the restriction of $\varphi \in \Gamma(X; \mathcal{A}^1)$ such that $d\varphi = 0$. Hence there is a representative for the class $(b_{\alpha\beta}, \varphi_\alpha)$ of the form $(0, \varphi)$, and it is unique up to adding $D\sigma = (0, d\sigma)$ for an arbitrary $\sigma \in \Gamma(X; \mathcal{A}^0)$. This identifies $H^1(s(\check{C}^\bullet({\{U_\alpha}\}; \mathcal{A}); D)$ with $H^1(\Gamma(X; \mathcal{A}); d)$.

Going back to the original construction, given a class $\xi \in \check{H}^1({\{U_\alpha}\}; \mathcal{F})$ represented by $h_{\alpha\beta} \in \check{C}^1({\{U_\alpha}\}; \mathcal{F})$, with image $t_{\alpha\beta} \in \check{C}^1({\{U_\alpha}\}; \mathcal{A}^0)$ and such that $t_{\alpha\beta} = s_\alpha - s_\beta$ for some $s = (s_\alpha) \in \check{C}^0({\{U_\alpha}\}; \mathcal{A}^0)$, we have

$$D(s_\alpha) = t_{\alpha\beta} + ds_\alpha \in \check{C}^1({\{U_\alpha}\}; \mathcal{A}^0) \oplus \check{C}^0({\{U_\alpha}\}; \mathcal{A}^1).$$
Also \(D t_{\alpha\beta} = ds_{\alpha} - ds_{\beta} = 0 \), and likewise \(D(ds_{\alpha}) = 0 \). Thus, \(t_{\alpha\beta} \) and \(-ds_{\alpha}\) both define classes in \(H^1(s(\mathring{C}'\{U_\alpha\};A'),D) \), and these classes are equal. Tracing through the various identifications shows that \(t_{\alpha\beta} \) is the image of \(\xi \in \mathring{H}^1(\{U_\alpha\};F) \) under the map \(\mathring{H}^1(\{U_\alpha\};F) \to H^1(X;F) \), and that it is equal to the class corresponding to \(-ds_{\alpha}\). \(\square \)

0.4 Hypercohomology

We begin by collecting some basic results about injective resolutions of complexes.

Proposition 25. Let \(K' \) be a complex of sheaves on \(X \), let \(f : K' \to L' \) be an injective quasi-isomorphism, and let \(g : K' \to I' \) be a morphism of complexes, where \(I' \) is injective. Then there exists an extension of \(g \), i.e. a morphism \(\tilde{g} : L' \to I' \) with \(g = \tilde{g} \circ f \), and any two such extensions of \(g \) are chain homotopic. \(\square \)

Recall that an injective resolution of a complex \(K' \) is an injective quasi-isomorphism of complexes \(f : K' \to I' \), where \(I' \) is injective.

Proposition 26. Let \(K' \) be a complex of sheaves on \(X \).

(i) An injective resolution \(f : K' \to I' \) exists.

(ii) If \(f : K' \to I' \) and \(g : K' \to J' \) are two injective resolutions, then \(I' \) and \(J' \) are quasi-isomorphic, via an quasi-isomorphism \(\phi : I' \to J' \) such that \(\phi \circ f = g \).

(iii) With \(I', J', f, g \) as in (ii), any two quasi-isomorphisms \(\phi_1 : I' \to J' \) and \(\phi_2 : I' \to J' \) such that \(\phi_i \circ f = g \), \(i = 1, 2 \), are chain homotopic. \(\square \)

Definition 27. For \(K' \) a complex of sheaves on \(X \), we define the hypercohomology \(\mathbb{H}(X;K') \) to be the cohomology of the complex \((\Gamma(X;I'),d) \), where \(I' \) is an injective resolution of \(K' \). By the previous proposition, \(\mathbb{H}(X;K') \) does not depend on the choice of an injective resolution, up to a canonical isomorphism. Its properties are similar to those of ordinary cohomology: it is functorial, and given a short exact sequence of complexes of sheaves, there is a long exact sequence of hypercohomology groups, with functorial connecting homomorphisms.

For example, if \(K' = K[0] \) is a single sheaf \(K \) in dimension 0, then \(\mathbb{H}(X;K[0]) = H^0(X;K) \).

As before, we would like to compute hypercohomology by using acyclic sheaves.
Proposition 28. Let K^\cdot be a complex of sheaves on X, and let $f: K^\cdot \to L^\cdot$ be a quasi-isomorphism, where the complex L^\cdot is acyclic. We call such a quasi-isomorphism an acyclic resolution of K^\cdot. Then

$$\mathbb{H}(X; K^\cdot) \cong H(\Gamma(X; L^\cdot), d).$$

Note: in the above we do not need to assume that f is injective. It is then easy to show:

Corollary 29. If $f: K^\cdot \to L^\cdot$ is a quasi-isomorphism of complexes of sheaves, then f induces an isomorphism

$$\mathbb{H}(X; K^\cdot) \cong \mathbb{H}(X; L^\cdot).$$

We can also use the Godement resolutions of each K^i to construct an acyclic resolution of the complex K^\cdot. In fact, we get a double complex $(C^\cdot Go(K^\cdot), d_{Go}, d)$, where d_{Go} is the differential $C^i_{Go}(K^\cdot) \to C^{i+1}_{Go}(K^\cdot)$ coming from the Godement resolution for K^\cdot and $d: C^i_{Go}(K^j) \to C^i_{Go}(K^{j+1})$ is the differential induced by the functoriality of the Godement resolution. Note that, in this case, d_{Go} and d commute, so if we want to form the associated single complex $(s(C^\cdot Go(K^\cdot)), d)$, we have to use $D = d_{Go} + (-1)^p d$.

Lemma 30. The associated single complex $(s(C^\cdot Go(K^\cdot)), D)$ is an acyclic resolution of K^\cdot.

Proof. Quite generally, we have the following lemma (whose statement and proof could have come much earlier):

Lemma 31. Suppose that K^\cdot is a complex, that A^\cdot is a double complex, and that $K^\cdot \to s(A^\cdot)$ is a morphism of complexes such that, for each p, (A^p, d'') is a resolution of K^p. Then $K^\cdot \to s(A^\cdot)$ is a quasi-isomorphism.

Proof. Working in the abelian category of sheaves on X, we look at the spectral sequence of the double complex $s(A^\cdot)$ whose E_1 term is $E_1^{p,q} = \mathcal{H}^p_{d''}(A^{q,\cdot})$. By assumption, this is 0 for $q > 0$ and $\mathcal{H}^0_{d''}(A^{p,\cdot}) = K^p$. Viewing K^\cdot as a filtered complex of sheaves with the trivial filtration in degree zero, the morphism $K^\cdot \to s(A^\cdot)$ is then a morphism of filtered complexes inducing an isomorphism on the E_1 terms of the corresponding spectral sequences. Hence $K^\cdot \to s(A^\cdot)$ is a quasi-isomorphism.

Returning to the proof of Lemma 30, we see that $K^\cdot \to s(C^\cdot Go(K^\cdot))$ is a resolution of K^\cdot, and it is acyclic since the terms of $C^\cdot Go(K^\cdot)$ are flasque.

Corollary 32. $\mathbb{H}(X; K^\cdot) \cong H(\Gamma(X; s(C^\cdot Go(K^\cdot))), D)$.

14
Looking now at the double complex of global sections \(\Gamma(X; s(C_{Go}(K^-))) \), with its two differentials \(d_{Go} \) and \(d \), we have the following:

Theorem 33. There are two spectral sequences abutting to \(\mathbb{H}(X; K^-) \). The first has \(E_1 \) term given by

\[
E_1^{p,q} = H^q(X; K^p),
\]

and the differential \(d_1 \) is induced by \(d: K^p \to K^{p+1} \). The second spectral sequence has \(E_2 \) term given by

\[
E_2^{p,q} = H^p(X; \mathcal{H}^q(K^-)).
\]

Proof. The first statement follows by looking at the spectral sequence which has \(E_0^{p,q} = \Gamma(X; C_{Go}^p(K^p)) \) and \(d_0 = d_{Go} \). Then \(E_1^{p,q} = H^q(X; K^p) \).

For the second spectral sequence, consider the spectral sequence which has \(E_0^{p,q} = \Gamma(X; C_{Go}^p(K^q)) \) and \(d_0 = d \) (up to a sign). For the \(E_1 \) term, we have to compute the cohomology of the complex \((\Gamma(X; C_{Go}^p(K^q)), d) \). An easy argument using Lemma 13 shows that

\[
H^q(\Gamma(X; C_{Go}^p(K^-), d)) = \Gamma(X; \mathcal{H}^q(C_{Go}^p(K^-), d)) = \Gamma(X; C_{Go}^p(\mathcal{H}^q(K^-))),
\]

with the differential equal to \(d_{Go} \). Then the \(E_2 \) term satisfies

\[
E_2^{p,q} = H^p(X; \mathcal{H}^q(K^-))
\]
as claimed.

Remark 34. We can recover the above theorem in the general context of injective resolutions by using Cartan-Eilenberg resolutions.

Finally, we discuss the hypercohomology of filtered complexes of sheaves. Suppose that \(K^- \) is a complex of sheaves on \(X \), with a decreasing filtration \(F^-K^- \) by subcomplexes of of sheaves. Then there is an induced filtration of the Godement resolution, \(F^-C_{Go}(K^-) \), by defining

\[
F^-C_{Go}(K^-) = \text{Im} \{ C_{Go}(F^-K^-) \to C_{Go}(K^-) \}.
\]

Note that \(C_{Go} \) preserves injections. Also, by the exactness of the functor \(C_{Go} \),

\[
\text{gr}_F^p C_{Go}(K^-) = C_{Go}(\text{gr}_F^p K^-).
\]

There is then an induced filtration on \(\Gamma(X; s(C_{Go}^p(K^-))) \) and hence a spectral sequence with

\[
E_1^{p,q} = \mathbb{H}^{p+q}(X; \text{gr}_F^p K^-) \implies \mathbb{H}^{p+q}(X; K^-).
\]

Of course, we can also work this out via injective resolutions of the appropriate kind (filtered injective resolutions, cf. Stacks 13.26).
Example 35. There are two general filtrations on a complex K:

1. The trivial or naive or stupid filtration (French: filtration bête):

$$\sigma \geq p K^q = \begin{cases} 0; & \text{if } q < p; \\ K^q; & \text{if } q \geq p. \end{cases}$$

Thus the associated graded complex $\text{gr}^p K^q$ is the complex $K^p[-p]$ with a single nonzero term K^p in degree p (and hence all differentials are 0).

2. The canonical filtration, which is an increasing filtration defined by:

$$\tau \leq p K^q = \begin{cases} 0, & \text{if } q > p; \\ \text{Ker} \{d: K^p \to K^{p+1}\}, & \text{if } q = p; \\ K^q; & \text{if } q < p. \end{cases}$$

Thus the associated graded complex $\text{gr}^p K^q$ is the complex $K^{p-1}/\text{Ker} d \to \text{Ker} d$,

where the first $\text{Ker} d$ is the kernel of $d: K^{p-1} \to K^p$ and the second is the kernel of $d: K^p \to K^{p+1}$, and the two terms are located in degrees $p - 1$ and p respectively. Note that the map $\text{Ker} \{d: K^p \to K^{p+1}\} \to (\mathcal{H}^p K^-)[-p]$ defines a quasi-isomorphism from $\text{gr}^p K^q$ to the complex $(\mathcal{H}^p K^-)[-p]$ (viewed as a complex with the single nonzero term $\mathcal{H}^p K^q$ in degree p).

Each of the above filtrations defines a corresponding spectral sequence. The spectral sequence arising from the filtration $\sigma \geq p K^q$ has

$$E^{p,q}_1 = H^{p+q}(X; K^p[-p]) = H^q(X; K^p).$$

In fact, it is easy using the definitions to identify this spectral sequence with the first hypercohomology spectral sequence of Theorem 33.

For the canonical filtration, we first have to reindex by $-p$ because $\tau \leq p K^q$ is an increasing filtration. Once we do so, we get a spectral sequence with E_1 term

$$E^{p,q}_1 = H^{p+q}(X; \text{gr}^p K^q) = \mathbb{H}^{p+q}(X; (\mathcal{H}^{-p})K^q[p]) = H^{2p+q}(X; \mathcal{H}^{-p} K^q).$$

Up to a shift in indices, this is the same as the E_2 term of the second hypercohomology spectral sequence. Note $d_1: E^{p,q}_1 \to E^{p+1,q}_1$ is a map

$$H^{2p+q}(X; \mathcal{H}^{-p} K^q) \to H^{2p+2+q}(X; \mathcal{H}^{-p-1} K^q).$$
which can be identified with d_2 for the second hypercohomology spectral sequence. And in fact one can show that the two spectral sequences agree after an appropriate shift.

0.5 Applications to complex manifolds and schemes

Let M be a complex manifold. By the holomorphic Poincaré lemma, the complex of sheaves (Ω_M, d) is a resolution of \mathbb{C}. Thus:

Theorem 36. For all k, $H^k(M; \mathbb{C}) \cong H^k(M; \Omega_M)$.

By Theorem 33, there is a spectral sequence with $E_1^{p,q} = H^q(M; \Omega^p_M)$ abutting to $H^k(M; \Omega_M) = H^k(M; \mathbb{C})$. Of course, we already know of such a spectral sequence, the Hodge spectral sequence. The following proposition states, somewhat informally, that these are the same spectral sequence:

Proposition 37. There is a natural identification of the hypercohomology spectral sequence for $H^k(M; \Omega_M)$ with the Hodge spectral sequence.

Proof. We have seen that we can identify the hypercohomology spectral sequence with the spectral sequence arising from the filtration $\sigma \geq p \Omega_M$. On the other hand, by Lemma 31, we have a quasi-isomorphism of complexes $\Omega_M \to s(A_M^\cdot)$, and the $\bar{\partial}$-Poincaré lemma implies that this induces a quasi-isomorphism of filtered complexes $(\Omega_M, \sigma \geq p) \to (s(A_M^\cdot), \bar{\partial}' F)$, where $\bar{\partial}' F s(A_M^\cdot) = \bigoplus_{r \geq p} A^F_r$. Hence we get a morphism of spectral sequences which is an isomorphism on the E_1 terms, hence an isomorphism on E_r for all r.

In particular, for M a smooth projective variety, or more generally the compact complex manifold associated to a smooth scheme proper over $\text{Spec} \mathbb{C}$, the above spectral sequence degenerates at E_1.

Let X be a smooth scheme over $\text{Spec} \mathbb{C}$, not necessarily proper, and let X^{an} be the corresponding complex manifold. We can define the coherent algebraic sheaves $\Omega^i_{X/\mathbb{C}}$ in the Zariski topology, as well as the de Rham differential d. Note however that d is not \mathcal{O}_X-linear, for the sheaves $\Omega^i_{X/\mathbb{C}}$ or the analytic sheaves $\Omega^i_{X^{an}}$. Thus we can consider the “algebraic” hypercohomology, i.e. the hypercohomology $\mathbb{H}^i_{\text{Zar}}(X; \Omega^i_{X/\mathbb{C}})$ computed with respect to the Zariski topology.
For formal reasons, we have a homomorphism of hypercohomology groups

$$
\mathbb{H}_{\text{Zar}}(X; \Omega_{X/C}) \to \mathbb{H}(X^{\text{an}}; \Omega_{X^{\text{an}}}).
$$

In fact, there is a morphism of filtered complexes $\Omega_{X/C} \to \pi_* \Omega_{X^{\text{an}}}$, where $\pi: X^{\text{an}} \to X$ is the identity map, but where X^{an} has the usual (Hausdorff) topology but X has the Zariski topology, and the filtrations on both complexes are the trivial filtration $\sigma \geq p$. Thus there is a morphism of the corresponding spectral sequences. For the E_1 term, this morphism is the corresponding morphism

$$
H^q_{\text{Zar}}(X; \Omega^p_{X/C}) \to H^q(X^{\text{an}}; \Omega^p_{X^{\text{an}}}).
$$

As a consequence, we obtain:

Theorem 38. Suppose that X is a smooth projective variety, or more generally is proper over $\text{Spec } \mathbb{C}$. Then the natural map

$$
\mathbb{H}_{\text{Zar}}(X; \Omega_{X/C}) \to \mathbb{H}(X^{\text{an}}; \Omega_{X^{\text{an}}})
$$

is an isomorphism.

Proof. In this case, by GAGA for X projective, and by Grothendieck’s generalization to the proper case, $H^q_{\text{Zar}}(X; \Omega^p_{X/C}) \to H^q(X^{\text{an}}; \Omega^p_{X^{\text{an}}})$ is an isomorphism for every p, q. Hence the map on the E_1 terms of the hypercohomology spectral sequences is an isomorphism, so the same is true for the abutments.

In fact, Theorem 38 holds without any assumption of properness. The main point is the following:

Theorem 39 (Grothendieck’s algebraic de Rham theorem). Let X be a smooth affine variety over \mathbb{C}. Then

$$
H^k(X^{\text{an}}; \mathbb{C}) \cong H^k(\Gamma(X; \Omega_{X/C}), d).
$$

Note that Theorem 38 implies in particular that, in case X is proper over $\text{Spec } \mathbb{C}$, the hypercohomology spectral sequence for $\mathbb{H}_{\text{Zar}}(X; \Omega_{X/C})$ degenerates at E_1.

One way to interpret Theorem 38 is that de Rham cohomology can be defined purely algebraically. In particular, suppose that k is a subfield of \mathbb{C}, for example a number field, and that X is a scheme defined over k, and for simplicity proper over $\text{Spec } k$. Let $X_{\mathbb{C}} = X \times_{\text{Spec } k} \text{Spec } \mathbb{C}$. Then we can
consider the finite dimensional k-vector space $\mathbb{H}_{\text{Zar}}(X; \Omega_{X/k})$, and general results imply that

$$\mathbb{H}_{\text{Zar}}(X; \Omega_{X/k}) \otimes_k \mathbb{C} \cong \mathbb{H}_{\text{Zar}}(X; \Omega_{X/\mathbb{C}}) \cong \mathbb{H}(X_{\mathbb{C}}^{\text{an}}; \Omega_{X_{\mathbb{C}}}) \cong H(X_{\mathbb{C}}; \mathbb{C}).$$

In other words, $H^k(X_{\mathbb{C}}; \mathbb{C})$ is the complexification of a k-vector space. But even if $k = \mathbb{Q}$, the rational structure induced on $H^k(X_{\mathbb{C}}; \mathbb{C})$ via this isomorphism is very different from the rational structure given by $H^k(X_{\mathbb{C}}; \mathbb{C}) \cong H^k(X_{\mathbb{C}}; \mathbb{Q}) \otimes \mathbb{Q} \mathbb{C}$. This difference accounts for the mysterious powers of $2\pi\sqrt{-1}$ in our discussion of Tate twists and polarizations. For example, suppose that $L = \mathcal{O}_X(D)$ is the line bundle on X associated to the divisor D, defined over k. Then the integral cohomology class of D, or equivalently $c_1(L)$, is given as follows: take the transition functions $h_{\alpha\beta}$ of L with respect to an open cover $\{U_\alpha\}$ of $X_{\mathbb{C}}^{\text{an}}$, where we can assume that the $U_\alpha \cap U_\beta$ are simply connected. Then

$$c_1(L) = \frac{1}{2\pi\sqrt{-1}} \delta \log h_{\alpha\beta},$$

where δ is the Čech coboundary, a class in $H^2(\{U_\alpha\}; \mathbb{Z})$ which maps to an element of $H^2(X_{\mathbb{C}}^{\text{an}}; \mathbb{Z})$. However, using instead a cover by Zariski open subsets V_{ij} such that $L|_{V_{ij}}$ is (algebraically) trivial, with transition functions $g_{ij} \in \mathcal{O}_X^*$, then clearly $dg_{ij}/g_{ij} \in H^1(X; \Omega_{X/k}^1)$. In fact, there is an analogue $c(L)$ of the first Chern class $c_1(L)$ with values in $\mathbb{H}_{\text{Zar}}^2(X; \Omega_{X/k})$, more precisely in $F^1 \mathbb{H}_{\text{Zar}}^2(X; \Omega_{X/k})$, which we can see as follows: the map $\mathcal{O}_X^* \to \Omega_{X/k}^1$ defined by $h \mapsto dh/h$ gives rise to a morphism of complexes

$$\mathcal{O}_X^*[1] \to \sigma \geq 1 \Omega_{X/k}.$$

Here as usual $\mathcal{O}_X^*[1]$ means the complex with a single term in degree one, and hence trivial differential, and we get a morphism of complexes because dh/h is a closed form. There is thus an induced map on hypercohomology

$$c : \mathbb{H}_{\text{Zar}}^2(X; \mathcal{O}_X^*[-1]) = \mathbb{H}_{\text{Zar}}^1(X; \mathcal{O}_X^*) \to \mathbb{H}_{\text{Zar}}^2(X; \sigma \geq 1 \Omega_{X/k}) \to F^1 \mathbb{H}_{\text{Zar}}^2(X; \Omega_{X/k}),$$

which is compatible with the natural map $F^1 \mathbb{H}_{\text{Zar}}^2(X; \Omega_{X/k}) \to H^1(X; \Omega_{X/k}^1)$. However, the image of $c(L)$ in $F^1 \mathbb{H}_{\text{Zar}}^2(X_{\mathbb{C}}; \Omega_{X_{\mathbb{C}}/\mathbb{C}}^1) \cong H^2(X; \mathbb{C})$ only agrees with the integral class $c_1(L)$ after multiplying by the factor of $1/2\pi\sqrt{-1}$, which measures the difference between the k-structure and the integral (or rational) structure on $H^2(X_{\mathbb{C}}^{\text{an}}; \mathbb{C})$.

19
0.6 The Leray spectral sequence

In this section, we describe the Leray spectral sequence, one of the most important examples of the Grothendieck spectral sequence for the derived functors of a composition of two functors.

Let \(f : X \to Y \) be a continuous map of topological spaces. If \(F \) is a sheaf on \(X \), we have the direct image sheaf \(f_*F \). The functor \(f_* \) from sheaves on \(X \) to sheaves on \(Y \) is left exact, and we define the higher direct image sheaves \(R^if_* \) by: choose an injective resolution \(F \to I \). Then \(R^if_*F \) is the \(i \)th cohomology sheaf of the complex \(f_*I \). As before, this definition is independent of the choice of an injective resolution, and the \(R^i f_* \) are the derived functors of \(f_* \). A straightforward argument (cf. Hartshorne) shows that \(R^if_*F \) is the sheaf associated to the presheaf on \(Y \) defined by:

\[
U \mapsto H^i(f^{-1}(U); F).
\]

As in the case of cohomology, we would like to compute higher direct images using a broader class of sheaves than just injective ones.

Definition 40. A sheaf \(K \) is \(f_* \)-acyclic if \(R^i f_* K = 0 \) for all \(i > 0 \). For example, an injective sheaf is \(f_* \)-acyclic. An \(f_* \)-acyclic resolution \(F \to K \) of \(F \) is a resolution such that \(K^i \) is \(f_* \)-acyclic for all \(i \).

The argument of Lemma 6 then shows:

Lemma 41. Let \(K \) be an \(f_* \)-acyclic resolution of \(F \). Then, for all \(i \geq 0 \),

\[
R^i f_* F = \mathcal{H}^i f_* K^i.
\]

Similarly, the arguments of Lemma 11 show:

Lemma 42. If \(K \) is a flasque sheaf on \(X \), then \(K \) is \(f_* \)-acyclic. Thus a flasque resolution is \(f_* \)-acyclic.

Also, it is an easy exercise to show:

Lemma 43. If \(K \) is a flasque sheaf on \(X \), then \(f_* K \) is a flasque sheaf on \(Y \).

Theorem 44 (Leray spectral sequence). Let \(F \) be a sheaf on \(X \). There is a spectral sequence abutting to \(H^*(X; F) \) with \(E_2 \) term given by

\[
E_2^{p,q} = H^p(Y; R^q f_* F).
\]
Proof. Choose a flasque resolution C^\cdot of F, for example the Godement resolution, and consider the hypercohomology of the direct image complex f_*C^\cdot. The first hypercohomology spectral sequence has E_1 term

$$E_1^{p,q} = H^q(Y; f_*C^p).$$

By Lemma 43, f_*C^p is flasque for all p. Thus $H^q(Y; f_*C^p) = 0$ for $q > 0$. So $E_1^{p,q} = 0$ if $q > 0$, and $E_1^{p,0} = H^0(Y; f_*C^p) = H^0(X; C^p)$. The differential $d_1: E_1^{p,0} \to E_1^{p+1,0}$ is the differential induced by $d: C^p \to C^{p+1}$. Thus, $E_2^{p,0} = H^p(X; F) = E_\infty^{p,0}$, the spectral sequence degenerates at E_2, and the filtration on $\mathbb{H}^p(Y; f_*C^\cdot)$ is trivial. Hence $\mathbb{H}^p(Y; f_*C^\cdot) \cong H^p(X; F)$.

The second spectral sequence for $H^\cdot(\mathbb{H}^p(Y; f_*C^\cdot))$ has E_2 term

$$E_2^{p,q} = H^p(Y; \mathcal{H}^q f_*C^p).$$

By Lemmas 41 and 42, $\mathcal{H}^q f_*C^p \cong R^q f_*F$. Putting the results about the two spectral sequences together gives the statement of the theorem. \qed

Remark 45. The edge homomorphisms induce homomorphisms $E_2^{p,0} = H^p(Y; f_*F) \to H^p(X; F)$ and $H^p(X; F) \to E_2^{0,p} = H^0(Y; R^p f_*F)$.

We can also generalize the above to hyperdirect images: Let K^\cdot be a complex of sheaves on X. Choosing an injective resolution $K^\cdot \to I^\cdot$, we define

$$\mathbb{R}^i f_* K^\cdot = \mathcal{H}^i f_* I^\cdot.$$

Arguments similar to those given for the proof of Theorem 33 show:

Theorem 46. There are two spectral sequences abutting to $\mathbb{R}^k f_* K^\cdot$. The first has E_1 term given by

$$E_1^{p,q} = R^q f_* K^p,$$

and the differential d_1 is induced by $d: K^p \to K^{p+1}$. The second spectral sequence has E_2 term given by

$$E_2^{p,q} = R^p f_* \mathcal{H}^q K^\cdot.$$ \qed

Similar but slightly more involved arguments prove the existence of the Leray spectral sequence for hypercohomology:

Theorem 47. Let K^\cdot be a complex of sheaves on X. There is a spectral sequence abutting to $\mathbb{H}^p(X; K^\cdot)$ with E_2 term given by

$$E_2^{p,q} = H^p(Y; \mathbb{R}^q f_* F).$$ \qed

Remark 48. Later we shall also need to consider Čech versions of hypercohomology and hyperdirect images. But we shall wait until the appropriate moment.