1. Let $k = \bar{k}$ be an algebraically closed field, let $F \in k[x_0, \ldots, x_n]$ be a homogeneous polynomial of degree $d > 0$. Let $X = V_+(F) \subseteq \mathbb{P}_k^n$ scheme-theoretically, i.e. X is the closed subscheme of \mathbb{P}_k^n associated to the graded ideal (F). Show that the singular locus $X_{\text{sing}} = X - X_{\text{reg}} = \{ x \in X : \mathcal{O}_{X, x} \text{ is not regular} \}$ is the closed subset $V_+(F, \partial F/\partial x_0, \ldots, \partial F/\partial x_n)$. Using Euler’s lemma, that, for $F \in k[x_0, \ldots, x_n]$,
\[
 \sum_{i=0}^n x_i \frac{\partial F}{\partial x_i} = dF,
\]
conclude that, if the characteristic of k is 0, or more generally does not divide d, then $X_{\text{sing}} = V_+(\partial F/\partial x_0, \ldots, \partial F/\partial x_n)$. Is this necessarily true if $\text{char } k > 0$?

2. (i) Let X be a scheme and let Y be a closed subscheme defined by the ideal sheaf \mathcal{I}_Y. Let $\text{Bl}_Y X$ denote the blowup of X along Y. Suppose that \mathcal{I}_Y is a sheaf of nilpotent ideals, for example $Y = X$. Show that $\text{Bl}_Y X = \emptyset$.

(ii) Let X be an integral Noetherian scheme and let Y be a proper closed subscheme of X. Let $\pi : \widetilde{X} = \text{Bl}_Y X \to X$ be the blowup of Y and let E be the exceptional divisor. Let $Z \neq \emptyset$ be an integral subscheme of X not contained in Y and let $\rho : Z' \to Z$ be the blowup of Z at the subscheme
defined by \(\mathcal{I}_Y \mathcal{O}_Z \). Show that there is a morphism from \(Z' \) to \(\tilde{X} \) which embeds \(Z' \) as a closed subscheme of \(\tilde{X} \). (In fact \(Z' \) is the closure of \(Z' - E \approx Z - Y \) in \(\tilde{X} \) and is the unique component \(Z' \) of the inverse image \(\pi^{-1}(Z) \), the subscheme of \(\tilde{X} \) defined by the ideal sheaf \(\mathcal{I}_Z \mathcal{O}_{\tilde{X}} \), not contained in \(E \).)

(iii) In the situation of (ii), suppose that \(X = \mathbb{A}^n_k \), where \(k = \overline{k} \) is an algebraically closed field, and that \(Y = \{0\} \), i.e. that \(\mathcal{I}_Y \) corresponds to the maximal ideal \(\mathfrak{m} = (x_1, \ldots, x_n) \) of \(k[x_1, \ldots, x_n] \). Let \(I_Z \subseteq k[x_1, \ldots, x_n] \) be the ideal corresponding to \(Z \); note that \(Z \) is not contained in \(Y \) \(\iff \) \(I_Z \neq \mathfrak{m} \). Thus \(E \approx \mathbb{P}^{n-1}_k \). Show that, as schemes, \(Z' \cap E = V_+(\text{in}(I_Z)) \), where \(\text{in}(I_Z) \) is the homogeneous ideal in \(k[x_1, \ldots, x_n] \) defined by

\[
\text{in}(I_Z) = \{ \text{in}(f) : f \in I_Z \},
\]

and, for \(f \in k[x_1, \ldots, x_n] \), \(\text{in}(f) \) is the initial form of \(f \): if \(f = \sum_{\nu=0}^{\infty} f_\nu \) is the expression of \(f \) as a sum of homogeneous polynomials \(f_\nu \) of degree \(\nu \), then \(\text{in}(f) = f_\nu \), where \(\nu \) is the smallest nonnegative integer such that \(f_\nu \neq 0 \) (here \(\text{in}(0) = 0 \) by convention).

(iv) In the situation of (iii), suppose further that \(Z = V(F) \), where \(F \in k[x_1, \ldots, x_n] \) is homogeneous of degree \(d \geq 2 \). Suppose moreover that \(V_+(F) \subseteq \mathbb{P}^{n-1}_k \) is smooth in the sense of the previous problem. Show that \(Z_{\text{sing}} = \{0\} \), that \(Z' \) is smooth, and that \(Z' \cap E = V_+(F) \).

3. Let \(X = \mathbb{A}^2_k = \text{Spec} k[x, y] \), where \(k = \overline{k} \) is an algebraically closed field, and let \(Y \) be the closed subscheme defined by the ideal \((x, y^d) \). Let \(\pi : \text{Bl}_Y X \to X \) be the blowup of \(X \) with respect to the subscheme \(Y \) and let \(E \) be the exceptional divisor. Show that \(E \approx \mathbb{P}^1 \), but that \(\text{Bl}_Y X \) is not smooth if \(d > 1 \), and in fact it has a unique singular point with a Zariski open neighborhood isomorphic to

\[
V(z^d - xy) \subseteq \mathbb{A}^3_k = \text{Spec} k[x, y, z].
\]

4. Let \(X \) be an integral smooth projective curve of genus \(g \) over an algebraically closed field \(k = \overline{k} \), and let \(K_X \) be the canonical line bundle.

(i) Show that, for all closed points \(p \in X \), the line bundle \(K_X \otimes \mathcal{O}_X(p) \) has a base point. For \(g = 0 \), show that every point of \(X \) is a base point, but that there is a unique base point if \(g > 0 \).
(ii) Show that, for all closed points \(p, q \in X \), the line bundle \(K_X \otimes \mathcal{O}_X(p+q) \) is base point free. What is the dimension \(h^0(X; K_X \otimes \mathcal{O}_X(p + q)) \)?

(iii) Suppose that \(p \neq q \) in (ii). Let \(\varphi: X \to \mathbb{P}^N \) be the morphism corresponding to the line bundle \(K_X \otimes \mathcal{O}_X(p + q) \). Show that \(\varphi(p) = \varphi(q) \).

(iv) With notation and assumptions as in (iii), suppose also that \(g \geq 2 \). Show that either \(\varphi \) is birational, and in fact that \(\varphi(x) = \varphi(y) \) for two distinct points \(x, y \in X \iff \{x, y\} = \{p, q\} \), or \(X \) is hyperelliptic, \(\dim |p + q| = 2 \), and \(\varphi(x) = \varphi(y) \) for all \(x, y \) such that \(x + y \in |p + q| \), thus in this last case \(\varphi \) factors through the unique degree two morphism \(X \to \mathbb{P}^1 \) and the image of \(\varphi \) is a rational normal curve.