Modern Algebra I: The Euclidean algorithm

As promised in the lecture, we describe a computationally efficient method for finding the gcd of two positive integers \(a \) and \(b \), which at the same time shows how to write the gcd as a linear combination of \(a \) and \(b \).

Begin with \(a, b \). Write
\[
a = bq_1 + r_1,
\]
with integers \(q_1 \) and \(r_1 \), \(0 \leq r_1 < b \). Note that \(r_1 = a + b(-q_1) \) is a linear combination of \(a \) and \(b \). If \(r_1 = 0 \), stop, otherwise repeat this process with \(b \) and \(r_1 \) instead of \(a \) and \(b \), so that
\[
b = r_1q_2 + r_2,
\]
with \(0 \leq r_2 < r_1 \), and note that \(r_2 = b - r_1q_2 = b - aq_2 + bq_1q_2 \) is still a linear combination of \(a \) and \(b \). If \(r_2 = 0 \), stop, otherwise repeat again with \(r_1 \) and \(r_2 \) instead of \(b \) and \(r_1 \), so that
\[
r_1 = r_2q_3 + r_3,
\]
with \(0 \leq r_3 < r_2 \). We can continue in this way to find \(r_1 > r_2 > r_3 > \cdots > r_k \geq 0 \), with \(r_{k-1} = r_kq_{k+1} + r_{k+1} \). Since the sequence of the \(r_i \) decreases, and they are all nonnegative integers, eventually this procedure must stop with an \(r_n \) such that \(r_{n+1} = 0 \), and hence \(r_{n-1} = r_nq_{n+1} \). The procedure looks as follows:

\[
\begin{align*}
a &= bq_1 + r_1 \\
b &= r_1q_2 + r_2 \\
r_1 &= r_2q_3 + r_3 \\
\vdots \\
r_{n-2} &= r_{n-1}q_n + r_n \\
r_{n-1} &= r_nq_{n+1}.
\end{align*}
\]

We claim that \(r_n \) is the gcd of \(a \) and \(b \). In fact, we shall show:

(i) \(r_n \) divides both \(a \) and \(b \);

(ii) \(r_n \) is a linear combination of \(a \) and \(b \).

(i) Since \(r_n|r_{n-1} \), the equation \(r_{n-2} = r_{n-1}q_n + r_n \) implies that \(r_n|r_{n-2} \), and then working backwards from the equation \(r_{k-1} = r_kq_{k+1} + r_{k+1} \), we see (with reverse induction) that \(r_n|r_{k-1} \) for all \(k < n \). The fact that \(b = r_1q_2 + r_2 \) and that \(r_n \) divides \(r_1 \) and \(r_2 \) implies that \(r_n \) divides \(b \), and then the equation \(a = bq_1 + r_1 \) implies that \(r_n \) divides \(a \) too.

(ii) Working the other way, we have seen that \(r_1 \) and \(r_2 \) are linear combinations of \(a \) and \(b \). By induction, if \(r_{k-1} \) and \(r_k \) are linear combinations of \(a \) and \(b \), then the equation \(r_{k-1} = r_kq_{k+1} + r_{k+1} \) implies that \(r_{k+1} = r_{k-1} - r_kq_{k+1} \) is also a linear combination of \(a \) and \(b \) (because as we saw in class the set of all linear combinations of \(a \) and \(b \) is a subgroup of \(\mathbb{Z} \) and thus is closed
under addition, subtraction, and multiplication by an integer). Thus \(r_n \) is a linear combination of \(a \) and \(b \) as well. But we have seen that if a linear combination of \(a \) and \(b \) divides \(a \) and \(b \) and is positive, then it is equal to the gcd of \(a \) and \(b \). So \(r_n \) is the gcd of \(a \) and \(b \).

The algorithm is easier to carry out than it is to explain! For example, to find the gcd of 34 and 38, we have

\[
\begin{align*}
38 &= 34(1) + 4 \\
34 &= 4(8) + 2 \\
4 &= 2(2).
\end{align*}
\]

This says that \(2 = \gcd(34, 38) \) and that \(2 = 34 - 4(8) = 34 - (38 - 34)(8) = 9(34) + (-8)(38) \).

It is often more efficient to choose \(q_{k+1} \) and \(r_{k+1} \) so that \(r_{k-1} = r_k q_{k+1} \pm r_{k+1} \), with \(r_{k+1} < r_k \) and the sign chosen so that \(r_{k+1} \) is as small as possible. In other words, we allow negative remainders of the form \(-r_k\) with the goal of minimizing the absolute value of the remainder. For example, to find the gcd of 7 and 34, we could write

\[
\begin{align*}
34 &= 7(4) + 6 \\
7 &= 6(1) + 1,
\end{align*}
\]

so the gcd is 1 and that \(1 = 7 - 6 = 7 - (34 - 4(7)) = -34 + 5(7), \) or we could see directly that

\[
34 = 7(5) - 1.
\]

A more complicated example is the following, to find the gcd of 1367 and 298:

\[
\begin{align*}
1367 &= (298)(5) - 123 \\
298 &= 123(2) + 52 \\
123 &= 52(2) + 19 \\
52 &= 19(3) - 5 \\
19 &= 5(4) - 1.
\end{align*}
\]

Thus the gcd is 1, and a little patience shows that

\[
\begin{align*}
1 &= 5(4) - 19 = 11(19) - 4(52) = 11(123) - 26(52) = \\
&= (63)(123) - (26)(298) = (-63)(1367) + (289)(298).
\end{align*}
\]