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ABSTRACT. We prove that the probabilistic definition of the boundary three-point structure con-
stant in Liouville conformal field theory (LCFT) agrees with the formula proposed by Ponsot and
Techsner (2002). This formula also describes the fusion kernel of the Virasoro conformal blocks, an
important function in various contexts of mathematical physics. As an intermediate step, we obtain
the formula for the boundary reflection coefficient of LCFT proposed by Fateev, Zamolodchikov
and Zamolodchikov (2000). Earlier work by two of the authors has determined these quantities
when there is no bulk Liouville potential. To overcome the essential difficulty coming from the pres-
ence of both bulk and boundary Liouville potentials, we prove a Belavin-Polyakov-Zamolodchikov
differential equation for Liouville correlation functions on the disk, which only holds if the bulk
and boundary cosmological constants are coupled in an intriguing fashion. We also rely on an in-
tegrable input from the mating-of-trees theory for Liouville quantum gravity (LQG). Our method
can be used to derive the one-bulk-one-boundary structure constant, which completes the deter-
mination of all structure constants needed for the conformal bootstrap of boundary LCFT. Our
results also give the joint law of the area and boundary lengths of quantum triangles and two-
pointed quantum disks in LQG, which are quantum surfaces appeared naturally in LQG coupled
with Schramm-Loewner evolution.

1. INTRODUCTION

Liouville conformal field theory (LCFT) describes the law of the conformal factor of random
surfaces in Liouville quantum gravity. Introduced by Polyakov [Pol81] in theoretical physics, LCFT
was recently made rigorous in probability theory, first in the case of the Riemann sphere in
[DKRV16], and then in the case of a simply connected domain with boundary in [HRV18]; see also
[DRV16, Rem18, GRV19] for the case of other typologies. Following the framework of [BPZ84],
the correlation functions of LCFT can be solved by the conformal bootstrap program. In the
probabilistic framework, this was recently carried out on surfaces without boundary [KRV20],
[GKRV20, GKRV21]. The initial input of the conformal bootstrap is the structure constant. For
surfaces without boundary, it is the three-point correlation function on the sphere. It has an exact
expression called the DOZZ formula which was proposed in [DO94, ZZ96] and proved in [KRV20].

For LCFT on surfaces with boundary, the structure constants are the correlation functions on
the disk with three points on the boundary, or one point in the bulk and one on the boundary.
The theory involves both the bulk and the boundary Liouville potentials. When the bulk Liouville
potential is absent, the structure constants were obtained by Remy and Zhu [RZ21]. When there
is one bulk insertion and no boundary ones, the structure constant was obtained by Ang, Remy,
and Sun in [ARS21], confirming an earlier proposal of Fateev, Zamolodchikov and Zamolodchikov
(FZZ) in [FZZ00]. The conformal bootstrap is also applicable in the boundary case and Wu [Wu22]
recently proved a bootstrap formula for the annulus with one insertion at each boundary, where
the FZZ formula gives the needed structure constant.

In this paper we obtain the exact formula for the boundary three-point structure constant pro-
posed by Ponsot and Techsner [PT02], where both the boundary and bulk Liouville potential are
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non-zero. As an intermediate step, we obtain the formula for the boundary reflection coefficient
of LCFT proposed in [FZZ00]; see Section 1.1. Our results together with those in [ARS21] can
determine the bulk-boundary structure constant via known techniques. This completes the de-
termination of all structure constants required for the conformal bootstrap of boundary LCFT.
To overcome the essential difficulty coming from the bulk-boundary coupling, we prove a novel
Belavin-Polyakov-Zamolodchikov (BPZ) differential equation for LCFT on the disk, which is of
independent interest. We also rely on the exact law of the quantum disk from the mating-of-trees
theory for Liouville quantum gravity [DMS14, AG21]. See Section 1.2 for a summary of our method.

Besides its relevance to the conformal bootstrap, the boundary three-point structure constant
agrees modulo a prefactor with the fusion kernel of the Virasoro conformal blocks [PT02], an im-
portant special function with various interpretations in mathematical physics. Moreover, it gives
the joint area and boundary length distribution of natural random surfaces called quantum trian-
gles in Liouville quantum gravity coupled with the Schramm-Loewner evolution [Shel6, DMS14,
AHS20, ASY22].

1.1. Main results. We start by recalling the probabilistic construction of LCFT on the disk from
[HRV18], which is adapted from the construction on the Riemann sphere performed in [DKRV16].
By conformal invariance we will use the upper half plane H as the base domain. Our presentation
is brief with more details provided in Sections 2 and 3. Fix the global constants

2
(1.1) ~ve(0,2) and Q=242
2
In physics LCFT is defined using a formal path integral. Fix N points z; € H with associated
weights a; € R and similarly M points s; € R with associated weights 3; € R. The correlation

function associated to these points is given by the formal integral

N M N Mo
(1.2) <va<zz-> HBg;’“j+1<sj>> = [ peJ[eme [[et e o,
i=1 j=1 ¢ Jj=1

:H—R i=1

where here Sy, is the Liouville action given by:

1

(L3)  Su(é) =1 /H <|89¢>|2 +QRy6+ 47w67¢) g + ;ﬂ/R (QKggb + 2m3e%¢) dAog.

Here g is a background metric with R, and A, representing the curvature and volume in the bulk,
respectively, and (K4, \gg) being their boundary counterparts. The terms involving p and pp are
the bulk and boundary Liouville potentials, respectively. Here p > 0 and pp is a complex valued
function on R which is piecewise constant in between boundary insertions. We assume the s; are
chosen in counterclockwise order on R and set u; = pp(x) for x € (s;-1,s;), with convention
50 = —00, spr+1 = 00. We always assume Re(uj) > 0. To state the results below we will also need
the o; € C parameters related to the p; by the relation:

(1.4) pi = gloj) == % Cos <7T’)/(O'j — Q)) )
sin(m %) 2

We will now give a rigorous probabilistic meaning to (1.2) in the case N = 0 and M = 3.
Let Py be the probability measure corresponding to the free-boundary Gaussian free field on H
normalized to have average zero on the semi-circle D N H. Let the infinite measure LFy(d¢) be
the law of ¢(z) = h(z) — 2Qlog |z|+ + ¢, where |z|1 := max(|z|,1) and (h,c) is sampled according
to Py x [e”®¢dc]. We call the field ¢ sampled from LFy a Liouville field on H. This definition
of LFy corresponds to choosing the background metric in (1.3) to be g(z) = |z|3*. We define
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the bulk and boundary Gaussian multiplicative chaos (GMC) measures of ¢ as the limits (see
g. [Berl7, RV14]):

2
Ay =lime 52 / 7 (& g2 5 on H, and Ly =lime T / e3%(3)dz on R.
H R

e—0 e—0

Given three points s1, s2, s3 lying counterclockwise on R, let L; be the v4-length of the counter-
clock arc on OH from s; to s; + 1, where we identify s4 as s1. Fix g > 0 and pg, o, ug > 0. For
081, B2, B3 € R satisfying the Seiberg bound

3
d Bi>2Q and Bi<Q,

=1

the boundary three-point correlation function of LCFT on H with bulk cosmoligical constant p > 0
and boundary cosmological constants (u;)1<i<3 is defined by:

(1.5) <H B () > /Heﬂw cemms =S mili Py (dg).

Here although ¢ is only a generalized function, the factor H?Zl e%¢(si) in the integrand can be
made sense of by regularization and Girsanov’s theorem. Moreover, the Seiberg bound ensures that
the integration in (1.5) is finite. We will review this construction in full detail in Section 2.1.
Due to conformal symmetry, the 3-point boundary correlation function has the following form:
(1.6)
20— 51 52 B3

Hp
701,02 02,03 03,01 —
<Bﬁl (s1)Bg, ™ (s2) By (53)> T |51 — so|BitBeBs g, — sy[AitAsRa|g, — g4 BatAs A1

Here A; = B 5 (Q— ) and H only depends on 3; and m/f for 1 <7 < 3. We call H the boundary
three-point structure constant for LCFT. For simplicity, in the rest of the paper we will set the
(B1,82,83)

(p1,p2,43)"

Ponsot-Teschner [PT02] proposed a remarkable formula for H under the reparametrization

bulk cosmological constant to be =1 and write H as H

(17) H (ﬁlaﬁ%ﬁl’)) — H(/BIWBQ,BB) where g(a) —_ 1 — COS (71"')/(0' N Q)) )

01,092,038 (9(o1),9(02),9(03)) Sin(ﬂ'%) 2

The Ponsot-Teschner formula is expressed in terms of the Barnes’ double Gamma function I' ! (x)
Ly (z)

m, which are prevalent in LCFT. Both functions
3

admit a meromorphic extension on C with an explicit pole structure; see Section A.2 for more

details. Using these two functions and setting 8 = 31 + 2 + 3, the Ponsot-Teschner formula is

and the double sine function S 1 (x) =
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given by:
(1.8)
PN = 2
How (P152: 583 _ o m(3)* T T(Y)
01,02,03 F(l—%)

F%(2Q _ §>F%<51+ﬂ23*52 )F%(Q _ 51+%2*53)P%<Q _ 52+523*51)
I (Q)r2(Q — A1)l (Q — B2)I'3 (Q — B3)
o 1
S%(% + 01 — 02)5%(% + o3 — 01)5%(% 401+ 09 — Q)Sg(% —01—03+Q)

/ S%(—% +02+U3+7’)S%(Q— ’8724-03 —Ug—&-T)Sg(%—i—Ug—Jl —‘1-7’)5%(@— % + 03— 01 +7“)d7~
C S%(Q—F%—%—ng—(n—i-?“)»g%@@—%—%—ng—01—1-7“)5%(203—{—7“)5%(@4-7“) {
Here C is a properly chosen contour from —ioo to ico such that the integral is meromorphic in all

of the six variables in the entire complex plane. We provide more details on Hpr in Appendix A.3.

The first main result of our paper is the confirmation of Ponsot-Teschner formula.

Theorem 1.1. Let vy € (0,1/2), Z?:l Bi >2Q, B; < Q, and p; = g(o;) >0 fori=1,2,3. Then

(19) onH <Blaﬁ27/83> _ HPT (/BlaBQMB?)) )

01,02,03 01,02,03

Our second main result concerns the reflection coefficient for boundary LCFT. Formally speak-
ing, this quantity is defined as Ry, ,,,(B) := |s1 — s2|?2# <Bgl’a2(sl)BZQ’Ul(32)> for 8 € R, which

by conformal symmetry does not depend on s1, s2 € R. Although this is in the same spirit as (1.6),
there are multiple subtleties in the rigorous definition of Ry, ,,(8). First, instead of integrating

egd’(sl)egd)(”)LFH(dgb) following (1.5), we need to integrate against M$*X(3), which is the law
of the two-pointed quantum disk with S-insertion. This is because M$®¢(3) can be viewed as

e§¢(sl)e§¢(82)LFH(d¢) modulo the redudant conformal symmetries of H fixing s, s9. The mea-
sure M$®K(B) is first introduced in [DMS14] and implicitly used in [RZ21]. It describes the law
of a quantum surface with two boundary marked points. We will give its precise definition in
Section 2.2.

Another subtlety in defining R, ,.,(83) is that we cannot directly integrate e~ A-mli—ple gyer
M=K(B) as suggested by (1.5), where A and Ly, Ly are the area and the two boundary lengths
of a sample from MgiSk(ﬁ), respectively. In fact, there is no S such that this integration is finite.
The same issue arises in [ARS21] where the LCFT correlation function on the disk with one bulk
insertion is considered. In both cases, one needs to truncate the function e™* near x = 0, after
which the integral is finite for some range of 5. Concretely, for p; > 0, uo > 0, we define

2(Q@ — )

(1-10) RHI,MZ(B) = ~

- 2
Jle it _ e orse (2.Q)
8l
Then Ry, ;1,(B) is indeed finite. We will give the full detail of the integral in (1.10) in Section 2.2,
including its finiteness. Here we still use the convention that bulk cosmological constant =1 as

in the definition of H((fll’gz’ﬁig The prefactor @ is to match with [RZ20a].
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In the seminal work [FZZ00], Fateev, Zamolodchikov and Zamolodchikov proposed a formula
for the boundary reflection coefficient under the same reparametrization as in (1.7):

(1.11) R(B,01,02) := Ry(41),4(05)(B)  where g(o) = WCOS <7T’y(a — Q)) )
sin(m 1) 2

Their formula is

(1.12)
) Q-8
(P EE) | T T3(8-Q)S3(2Q - § —o1—02)S3 (01 + 02— 5)

r(1-7) T3(Q— B)S3(5 + 02— 01)S3(5 + 01— 02)
Our second main result is the confirmation of their proposal.

Theorem 1.2. Let v € (0,v/2), 8 € (%,Q), w1 >0, and pe > 0. Then

Ryzz(8,01,02) =

(1.13) R(B,01,02) = Rpzz(B,01,02).

A crucial step to our proofs of Theorem 1.1 and 1.2 is the following BPZ equations, which is
of independent interest. The key novel feature of the equation is an intriguing constraint on the
cosmological constants around the degenerate insertion; see Figure 1. It was conjectured in the
seminal paper of Fateev, Zamolodchikov and Zamolodchikov [FZZ00, Section 4] after the numerical
verification of some special cases.

Theorem 1.3. Consider (z;, a;)1<i<n € HXR, (55, 8j)1<j<m € RxR, and (s, —x) € Rx{-3, —%

satisfying the Seiberg bounds c; < Q, B; < Q, and 23, o+, B; > 2Q +x. When x = % let v €
(0,2) and when x = % assume v € (0,V/2). Assume further that there exists jo € {1,2,..., M +1}

such that sj,—1 < s < sj,, using here the convention sy = —o00, syr41 = +00. Then we have:
N M N M
1 1 1 1 A, Ag. Ag.
| 0. . —— d.. i i 5
<x2 *;(— s Zl)ﬂ.;s—sj “;((s—zn”<s—zi>2>+;<s—s]~>2>
(1.14) By >ﬁv () TT B ) BE ™ 3 (s) ) =0
' —X s " a;\Zi e B; Sj Bjg—1 530 - Y
= JFIo—
Q;
aq X N
X X
| X
o1 02 Tjo—1  Tjo =75  Tj Ojo+1 OM  O1

b1 Bjo—1 X B B

FIGURE 1. Parameters in the BPZ equation in Theorem 1.3

Remark 1.4. In the above theorem due to a technical obstruction we have to restrict the parameter
v to (0,v/2) in the case where x = % This implies that we have so far only shown Theorems 1.1

and 1.2 in the range v € (0,+/2). In upcoming work in preparation M. Ang will derive Theorem
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1.3 in the full range of parameters by an alternative method. This will then allow to extend the
range of validity of Theorems 1.1 and 1.2 to ~y € (0,2).

1.2. Novelties in the proofs. Our proofs of Theorem 1.1 and 1.2 at the high level uses the same
strategy as in the proof of DOZZ formula [KRV15, KRV20], which consists of three steps.

Step 1 Derive the BPZ equation in Theorem 1.3.

Step 2 Specializing the BPZ equation to M = 3 gives a hypergeometric equation. Using the
solution theory for such equations and the asymptotic analysis of Gaussian multiplicative
chaos, one obtains a set of functional equations for the probabilistically defined H and R
called shift equations.

Step 3 Prove that Hpr and Rpyzz in Theorems 1.1 and 1.2 are the unique solutions to the shift
equations under certain conditions that are satisfied by H and R.

Although the global strategy is clear and has been successfully used in several works [Rem20,
RZ20b, RZ21] for boundary LCFT, the presence of the bulk potential poses several major difficul-
ties that we overcome in this paper.

(1). In previous works a handy fact is that the Liouville correlation functions can be written
as a moment of Gaussian multiplicative chaos times an explicit prefactor. Under this form
the probabilistic definition can be extended meromorphically to a range where the shift
equations make sense. This is no longer the case in our paper. We have to introduce proper
truncations in the spirit of (1.10) to extend the probabilistic definition of H and R, and
handle analytic issues coming with this complication.

(2). The most challenging step is the proof of the BPZ equation (1.14) in Theorem 1.3. As far
as we know, there is no conceptual calculation at the physics level of rigor which explains
the (oj, £ §,0j,) constraint around the degenerate weight. To prove Theorem 1.3, we
made a careful choice of regularization of the left hand side of (1.14) and showed that
exactly under the (oj, & %, 05,) constraint, subtle cancellations occur as the regularization
parameter vanishes.

(3). In the derivation of shift equations for R, we need the exact value of R for certain special
cases as input. In [RZ21] where the bulk potential is absent, a desirable input was supplied
by the main result of [RZ20b]. In our setting the counterpart of [RZ20b] seems as difficult
as the general case. What we use instead is the value of R(7y, 01, 02) coming from the mating
of trees framework [DMS14, AG21]. Similar to [ARS21], this is an instance where integrable
results from mating of tree is used in the derivation of Liouville correlation functions.

Our Sections 2, 3, and 4 are devoted to treating the above three difficulties, respectively.

2. DEFINITIONS AND MEROMORPHICITY OF H AND R

In this section we give the probabilistic definition of H and R in a range that is large enough
for our argument based on shift equations.

2.1. Definition of H under the Seiberg bound. Let h be the free boundary Gaussian free
field on the upper half plane H = {z € C: &(z) > 0} with covariance kernel

1
(2.1) E[h(z)h(y)] = Gu(z,y) := log z—ylz =3 + 2log |z|+ + 2log [yl+,
where |z|; := max(|z|,1) and in the sense that E[(h, f)(h,g)] = [[ f(z)E[h(z)h(y)]g(y)dzdy, for
smooth test functions f and g. Let Py be the law of h, so that Py is a probability measure on
the negatively indexed Sobolev space H!(H) ([She07, Dub09]). The particular covariance kernel
corresponds to requiring the field to have average 0 on the unit circle.
We now introduce the Liouville field on H, possibly with boundary insertions.
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Definition 2.1 (Liouville field). Let (h,c) be sampled from Py x [e~9%dc] and set ¢ = h(z) —
2Q log |z|+ +c. We write LFy as the law of ¢, and call a sample from LFy a Liouville field on H.
Definition 2.2 (Liouville field with insertions). Let (8;,s;) € R x OH for j = 1,..., M, where
M >1 and the s; are pairwise distinct. Sample (h,c) from C’Igﬂﬂj’sj)jPH X [e(% 2 BJ'_Q)Cdc] where

B;B

53 S5)j _ H |S] —Bi(Q@—~ H ekaGH(SjuSk).

1<j<k<M

Let ¢(z) = h(z) —2Qlog|z|+ —i—zj 15 GH(Z sj)+c. We write LF(ﬁ”sj 7 for the law of ¢ and call

a sample from LF[(H?J )i the Liouville field on H with insertions (Bj,85)1<j<M-

We can also define Liouville fields with an insertion at co. We will need the case LF(B 1,0):(82,1),(8s,00)

which can be defined by limg_, |$ |2A3LF[(H?1’O) (B2 (B59) ity Ay = %(Q — 7). Here we give a
more explicit definition without limiting procedure.

Definition 2.3. Fiz 1,082,083 € R. Set s1 = 0,89 = 1,83 = o0 and Gu(z,00) = 2log|z|+.
Sample (h,c) from Py X [e(lz'ﬁj_ )Cdc] We write LFI(HIBI’O)’(BQ’I)’(&”OO) for the law of ¢ where
3(2) = h(z) — 2Qlog 2|+ + X8, FGulz,5)) +c.

Given a sample h from Py, the associated quantum area and length measure are defined by
2
(2.2) Ap, = lim e%evhe(z)dzz, and L = hm €T e2h QF
e—0 —0

where the limits hold in probability in the weak topology of measures. The existence of limits is
well-known from Gaussian multiplicative chaos; see e.g. [Berl7, RV14].

Given a sample ¢ from LFy or as in LF]%? 7297 \ye similarly define Ag and Ly as in (2.2) with
h replaced by ¢. This allows us to rigorously define the function H in (1.6) for a certain range of
parameters called the Seiberg bound.

Definition 2.4. Let u; > 0 for i =1,2,3. Suppose 51, B2, B3 € R satisfy the Seiberg bound

3
(2.3) d Bi>2Q and B <Q,

i=1

Then the boundary three-point structure constant is defined by

(2.4) H((ilfjiz; _/e—A¢(H)—u1£¢(—oo,O)—u2£¢(0,1)—u3£¢(1,+oo) LF]%?LO):(B%U»(B&OO)(d(z)).

In general, correlation functions of LCFT can be defined using Liouville field with insertions
similarly as in (2.4). For example, the formal integral in (1.5) defining <H§’:1 B;j:0j+1(3j)> should

be understood as fe_“A¢(H)_Zz vrili LRy (Biz1)s ?(d¢). The inequality (2.3) is called the Seiberg

bound, which is the condition for which the 1ntegral in (2.4) is finite [HRV18]. Using the coordinate

change rule for Liouville fields (see e.g. [AHS21, Section 2.2]), Equation (1.6) holds as follows:
H(ﬁl’ B2, Bs) w

8 B B ) k
<671¢(31)672¢(32)673¢(33)> — VI VETVE .
’51 — 32|A1+A2*A3‘51 — 53|A1+A3*A2‘52 — 83 As+Az—Aq

Therefore throughout the paper we set = 1 without loss of generality.
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2.2. Meromorphic extension of H. To make sense of shift equations for H we need to mero-
morphically extend the range of its definition. To achieve this, we first give an alternative definition
of H from Definition 2.4.

Lemma 2.5. In the setting of Defintion 2.4, wm’tz’ng s = %ZBZ — Q, we have

2
T\ pr(B1.B2,83) _ 2l 2l § : , —A=Y, piL; 7 (81,0),(B2.1),(Bs,00)
s(sto)Hp, "2 = /(7(S+2)A+ 92 A( : pilLi) E pilLi) il LFy" ’ 7 (de)

2777 (1 p2,13)
where A = Ay(H), L1 = L4(—00,0), Ly = L4(0,1) and L3 = L4(1,00).

Proof. Let h be a Gaussian free field and h := h—2Qlog |- |4 + %GH(-, si), where (s1, s2,83) =
(0,1, 00). Write A = A; (H) and Ly =L; 7(—00,0), Ly= L5 (0, 1),Ls = L5(1,+00). Since A = €A
and L; = e/ QEi, by Definition 2.4, we have

H((Bhﬂzﬂs)) —-F [/ oS¢ . e_ewcﬁ—evcm S8 wiLi del .
1,02 13

For s > 0, a > 0 and £ € C with ¢ > 0, using integration by parts twice we have

/esC L PR /(1656)((76%0 - %GWC/%)e_ewa_eW/Qe) de
s

:’y/esc(e’Yca)eeWaeWc/zé de + ;/650(676/26)(6e"’cae“/zé _ 1) de
S

S
:Z/esc(evca)e—e“a eVC/Qéd + ;; —Z 7 /esc(evca)(670/26)6—67%—676/2( de (%)

+ e % /esc(e'yc/2€)26—ewa—e'yc/2€ de.

25 s+ %

Now setting s = %Zﬁl - Q,a= Aand (= > uiii we get
(2.5)

(B1,B2,83) _ 7 ’Y v —A-Y", wiL; 1 2(B1,0),(82,1),(B3,00
H(,U&,HQ,UB) - /( 285 A Z/‘LZ Z ZM’L ’L u LF (d¢)'

O
This alternative description of H allows us to extend the Definition 2.4 of H as follows.

Definition 2.6. Set V = {(p1, B2, 3) : Q — % 6 < WA%/\mini(Q—Bi) and B; < Q for each i}.
Given (B1, P2, 83) € V and Ru; > 0 fori=1,2,3, define

(2.6)

2
: k k ,y ’7 T 74 ? k) 7
H((fll,fz,izg = /(7(3+ §)A+ ?A(Z wili) + Z,U«z i) —A=>7, il LF(’Bl 0),(B2,1),(Bs,00 (dgzﬁ)
(2.7) B L (8188

(H1,p2.m8) (5 4 1) (15p2,3)°
where A = Agp(H), L1 = L4(—00,0), Ly = L4(0,1) and Lz = L4(1,00).

Proposition 2.7. In Definition 2.6, the integral in (2.6) defining H s absolutely convergent
in the given range of parameters. For each (p1,B2,03) € V, the function H is holomorphic on
{(p1, po, pg) : Rp; > 0} and continuous on {(u1, na, 13) : Ru; > 0}. For each (w1, pa, u3) satisfying
Ru; > 0, the function H can be analytically extended on a complex neighborhood in C3of V.
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We provide the proof Proposition 2.7 in Appendix B since our proof follows the same strategy
in [KRV20] for similar questions. Under the analytic extension of H given in Proposition 2.7, we
define

(B1,B2,83) _ _—1 TN—1 7 (B1.,82.83) B1, B2, B3\  _ pr(B1.82.85)
(2:8) H(ul,uz,#:a) =s (st 5) H(uhuz,,ua) and  H <0'1, 09,03) H(Q(Ul)vg(az):g(gs))

where

(2.9) (o) = /Sin(if)cos <m(a _ §)> |

Let B = (—%—I—%, %4—%) xR and B = [—%—i—%, %—l—%] x R. Then the function pu = g(o) is a
holomorhpic bijection between {i € C : Ru > 0} and B3. Moreover, g is continuous on B’. Under
this change of variable Proposition 2.7 yields the following.

Proposition 2.8. Suppose H is as in (2.8), and V and s are as in Definition 2.6. For each

(B1, B2, B3) € V, the function (01,09,03) — H is holomorphic on B® and continuous on B’. For
each (01,09,03) € B3, the function (B1, Ba, B3) — s(s+ 3)H is analytic on a complex neighborhood
in C3of V.

Proposition 2.8 is an intermediate step to prove Theorem 1.1, namely 27 H <

Hop (51, B2, B3

01,02,03
the variables 81, B2, 83, 01, 09, 03.

ﬂ1752,53> _

01,02,03

). Once establishes, Theorem 1.1 implies that H is in fact meromorphic on C° in

Remark 2.9. The meromorphic extension of H can also be done by truncations in the same spirit
of (1.10). Indeed, suppose p1,pa,us € C satisfy Ru; > 0 for i = 1,2,3, and (B4, P2, B3) satisfy
0<@— %Zﬁz < 3 Aming(Q — ), then

(210) H((fiygz)iig — / (e_AdJ(H)_Z?:l wil; 1) LF]%Iﬁl:O):(IBQ,l)’(BC‘MOO)(d¢)

If instead (B, B2, B3) satisfy 3 < Q — %Zﬁz <A % Amin;(Q — B;), then
3

(2.11) Hffiffiﬁi% — / (eAtﬁ(H)Z?_lﬂiLi 14 ZM&) LFOL B350 (g )
i=1

Both (2.10) and (2.11) follow from integration by parts. One can further extend the range of H
via further truncations of e=®. We left these details to interested readers.

2.3. Probabilitic definition of R via truncations. We first recall the definiton of two pointed
quantum disk used in the definition of R. It is most convenient to describe it using the horizontal
strip S = R x (0, 7). Let hs(z) = hm(e®) o exp where hy is sampled from Pyg. We call hs a free-
boundary GFF on S. The field hs can be written as hs = h¢ + h’, where h° is constant on each
vertical line, and h* has mean zero on all such lines [DMS14, Section 4.1.6]. We call k' the lateral
component of the free-boundary GFF on S.

Definition 2.10. Fiz 8 < Q). Let

Y_{@zt—(Q—B)t ift>0
Tl B+ (Q-B)t ift<0
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where (Bs)s>o s a standard Brownian motion conditioned on Bas—(Q—83)s < 0 for all s > 0," and
(Es)szo is an independent copy of (Bs)s>o. Let h'(z) = Y, for each z € S. Let h% be independent
of h' and have the law the lateral component of the free-boundary GFF on S. Let 1p = h' + h?S'
Let ¢ be a real number sampled from %e('g_Q)cdc independent of ¥ and ¢ = 1+ c. Let Mg”k(ﬁ) be
the infinite measure describing the law of ¢.

2 2
For ¢ in Definition 2.10, define Ay = lim._o €71 d2; on S and Ly = lime_,9 €T e3%(2)
on 0S. Write A = Ay (S) as the total Ay-area, and write Ly, Lo as the Lg-length of top and bottom
boundary arc of S, respectively. It appears that fe*A*’“Ll*“LQ dMSk(B) = co. For € (%, Q),
the correct definition is via truncation as in (1.10). We now extend the definition of R in the same
way as for H in Definition 2.6 and Proposition 2.7.

Definition 2.11. For 3 € ((% -3V I,Q) and Ruy, Rpe > 0, writing s = f — Q, we define
(2.12)

N _ 2 2 .
Ry (B) = 2@75) [0+ DA+ DA ) + (S L) AT aaaf(s),
1 .
(2.13) Ry e (B) = mRm,uz(ﬁ)-

Here we write A, Ly, Lo for the quantum area and boundary arc lengths of the quantum disk.
The integral in Definition 2.11 is absolutely convergent by Proposition B.4.

Proposition 2.12. In Definition 2.11, the integral in (2.12) defining R is absolutely convergent

in the given range of parameters. For 8 € (%,Q), it agrees with the definition of R in (1.10). For

each 8 € ((% - 1)V 3,Q), the function (p1, p2) — R is holomorphic on {Ruy > 0,Ruz > 0} and

continuous on {Ru1 > 0, Rue > 0}. For Ruy > 0, Rus > 0, the function B — R can be analytically
2 0l

extended on a complex neighborhood of ((; -3)VvI0).

We include the proof of Proposition 2.12 in Appendix B. Proposition 2.12 yields the following
counterpart of Proposition 2.8 on the change of variable.

Proposition 2.13. Recall g in (2.9) and B = (—% + %,% + %) x R . Let R(B,01,02) =

Ry(61),9(00)(B)- For each 3 € ((% -3V 1,Q), the function (o1,02) — R is holomorphic on B* and

continuous on B-. For each (01,09) € B2, the function B +— s(s + 2)R is analytic on a complex

neighborhood of ((% -3)Vvi0Q).

Remark 2.14. Similarly as in Remark 2.9, when € ((Q —v) V 3, %), we have

2
(214) RMLMQ(B) = 2(627_6)/ (6—14—212_1 wil; 1+ ZNlLl) dM%hSk(ﬁ)
i=1

3. THE BELAVIN-POLYAKOV-ZAMOLODCHIKOV EQUATIONS

We will prove the BPZ differential equations hold in a more general setting than the one required
for our purposes of deriving the formulas for H and R. Namely we will allow an arbitrary number
of spectator points along with the degenerate insertion on the boundary. Therefore we will start
by introducing the definition of the correlation function with arbitrary insertions, presented after

Here we condition on a zero probability event. This can be made sense of via a limiting procedure.



PROOF OF THE PONSOT-TESCHNER FORMULA FOR BOUNDARY LIOUVILLE CFT 11

having applied the Girsanov theorem to all the insertions. This definition was first proposed in
[HRV18], modulo the fact that [HRV18] does not consider the varying boundary cosmological
constant.

Definition 3.1. (Correlation functions) Let z1,...,zy € H and s1 < --- < sp; be the marked

points on the boundary OH. For 1 < j < M, pu; =

L cos(my(oj — %)) is the boundary
sin(m )
cosmological constant between s; and sj1 (with so = —o0 and spr41 = 0o by convention). Assume
these parameters obey the constraint of the previous definition. Assume also the Seiberg bounds
(3.3) hold. Define

2

g4,0
Va, (zi HB HIIHY

1

<.
l

.,:12

Il
-

o? B 8, B2 2
2 — z| / deeZirait L, F-Q)ep [ g2 e XG0 SEX ()2 Hg )A8;/2 3 X (3) =~ FE[X (5))%]
R .

?

exp —e'yC/e'YX(m) 9(@ )7 dzx—egc/6%X(T)g(7‘)1/2d,u3(7") )
H |z —z| = R

where the boundary measure is defined by:
M—1

(3.1) dpp(r)/dr = pii1lecrcs; o + P legsr 500
j=1

In the following, we will denote e?X(*)d2z for the GMC measure on H and similarly e3 X gy for
the GMC measure on R. By applying the Girsanov’s theorem, we obtain an equivalent expression:

N M
<H Vai (Zz) H ngan+1 (S
i=1 j=1

2
T(p=1) /|y —
=Za:8(2; s)/dce2 ‘E exp(—e'yc/ AN g@) /|2 1:] X (@) 42,
i=1 1T —

zi[1oi | — Z |7 Hj:l |z — 5575

2 (—p-1)
c 8
e N o M ~5; egﬂmd/@(”)]’
BILL I =z [ T2 r —s5 72
where
Bj j’
Zap(z;8) = H|Zz—21\ H[z,—zzlo‘a/]z—zz\O"O"H]zz—s]%ﬁﬂH]s]—sj T,
1<’ J<y’

and with:

2SN i+ M B —2Q
(3.2) _ Dz i+ X B ‘

v

Definition 3.2. (Probabilistic range of p; and oy, B;) We assume Re(p;) > 0. Given parameters
a; €R, B € R, we assume the following Seiberg bounds from [HRV18]:

N M ﬂ
(3.3) S+ F>0 < §<Q

i=1 j=1
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We will now prove the BPZ equations of Theorem 1.3 with boundary degenerate insertion that
will be used to prove our main results.

Remark 3.3. Although we don’t need it, the BPZ equation with a bulk degenerate insertion is the
following. Define (z,z;, 8;) = (eX?() Hf\i1 ei®(z:) H]]Vil P96y with 2 € H, z; € H, and s; € R.
Then this quantity obeys the followz’ng PDE

< 8ZZ+ +Z (z — z) szz +Z (z—s; +sz =

N M
Y ot Y a,) (V@ T Ve o) [T B (s) ) =
—~Z-7 r Z—8j Pl i

¥ 2
where X equals 5 or =

3.1. Regularization. Before applying the differential operators to the correlation function we
will introduce a regularization procedure that will depend on two small parameters €, > 0. Let

0 > 0 and consider the function ns = 527)(‘76| ) where 7 is a non-negative smooth function with

support in [%’ 1] and satisfies = fo (r)dr = 1. For x € C, we introduce the notations
1 1
@ Jer—mtm A2y dys,
()5 /(cz T — Y1+ Yo N5 (y1)ns(y2)d y1d "y

1 1
—i=c log ——————— dPyrdys ) .
P (/CQ g|x_y1+y2‘m(y1)775(y2) 1 y2)

Without loss of generality we can prove the BPZ equation holds in the case where s < s;. Let
Hs := {z € C|Im(z) > ¢} and —H; := {z € C|Im(z) < —d}. For the purposes of regularization, we
will actually assume that s is not on the real line but belongs to —Hls. In the case a real derivative
0s should now be viewed as the sum of the holomorphic and antiholomorphic derivatives ds + Os.
As a further smoothing we will make some assumptions about the GMC integrals. We will restrict
the GMC integration over H to H.

N
<B£X( H Zz HBO'] 1,07
=1

2 2
el g(\ T CPEEY o
=Z_\jo;(sl2; S)/dce(ﬁf?)CE exp —e’YC/ [z = 5|9 (@) Ul —alT xwge,
R Hs H

N e =zl e — 2 T o — 5507

2
s (—p+3-1)
e r— S| 2
_G’YQ /1% N’ | g( ) VB, ()duBe( ))]a

[LS Ir =zl H] 1= sils*

wu

where

~xlasp(s]2:9) le —s!X“LH\sJ—s\ : H|zz—zzr L s — el — s
1<t’
AL I

i<J’

Z
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and the boundary measure duf (r) is defined in terms of f by:

M
d#%,e(r)/dr = f(arg(r — s))Lr<s —c + Zuj15j+€<r<5j+1—€'
j=1
Let us explain the reasons behind this choice. The € regularization is used to smooth the bound-
ary in the neighborhood of the spectator insertions. This is standard from the earlier works [RZ20b].
On the piece r € (—00, s1 — €), we originally want the o; parameter to go from oy £ % to og when
r crosses s. But in the regularization procedure we actually choose s € —Hj.

We use a differentiable function f(arg(r —s)) for the cosmological constant on (—oo, s1 —€) with
f(0) = pp. Set f to be:

(3.4) £(0) = /Sin(lm cos(my(o0 — %) + W)

The point of using this f is the following. In the case where s € R, when r is in between s and s1,
one has arg(r — s) = 0 and therefore f(arg(r —s)) = pp. When r < s, then arg(r — s) = +m and
therefore f(arg(r — s)) gives a value corresponding to shifting oy by £%. Notice the two possible
choices of phase correspond to the two possible BPZ equations. One also has to choose the sigma
parameter to the right of the right most insertion to match with this value. The advantage of using
this f is when we choose s to be complex in the lower half plane, it provides a smoothing of the
shift on 0. Therefore when we let d tend to 0 and have s approach the real line, we will have:

N M Lx N M
(BL () [T Ve () [T B 7 (s30) = (B () [T Ve (=) [T B 7 (59)).
i=1 j=1 i=1 J=1

In the following it will be convenient to have a notation for the subset of R where we are using
this function f:

(3.5) I := (—o00, 51 —€).

3.2. Algebraic cancellation. In this subsection we will perform what we refer to as the algebraic
cancellation, which is in a sense the cancellation of the terms if one ignores the singular terms
coming from the regularization procedure. The singular terms coming from the regularization will
be cancelled in the next step.

When applying the differential operators of the BPZ equation to the correlation function we
will encounter terms like:

N M
(BL(5)By(0) [] Vau(zo) T BE 7 (59)) -
i=1 Jj=1

The notation By(v) is a boundary insertion with parameter v, and inserting v between any s;
and sj;1 will keep the same boundary constant ;; on both sides of y, therefore we take out the
superscript in the notation. For simplicity, the above term will be noted as (s, v|z;s)¢s. We can
extend this notation to (s,y1,...,Ym,v1,...0n|2Z;8) 5, where y; € H represents an insertion V(y;)
and v; € R stands for an insertion B, (v;).

In the following, we will work with s € —Hj. In Theorem 1.3, the Oy is a second order real
derivate with respect to a real s on R. But since for the regularization purpose we are choosing
s € —Hy, we will actually represent below the real derivative with respect to s by ds + ds where
these two derivatives are respectively holomorphic and anti holomorphic with respect to s.

We now apply BPZ operator to the regularized term (s, v|z;s). 5. We break the calculation into
two lemmas.
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Lemma 3.4. The following holds

(3.6)

1
50+ 05 (slzis)es = —Cos + St 5 + 0550(1),

where Ce 5 is given by:

(3.9)

(3.10)
(3.11)
(3.12)
(3.13)
(3.14)
(3.15)

(3.16)

a; 1 B; 1 ) |
ZQ(zi*s Zl*_)—i_zél(s]—s 5 )| (s|z;s)e
' J
QO 1 1 B; 1 )
2 o .
' Zi:2(2i_s EZ_§)+ : 4(sj—8 55— 8
X ! 1 2 ’7/ 1
X — ot . J ¥
( Z/H[S(y_Ser_SNS,yIz,s% ytg | Gt =
Y 1 1 ,
Y 53 s5,y|z;s)d7y
2x H(g((y 52 (y— 8)2)< |Z; S) e
2
Y 1 )
+/’I/7 i) S,yz;se
4 Hg(y_s y < ’ >
2
27 1 1 1 1 , )
ey :8)dxd
M 4 Hg(l‘*s+'1_;7§)(y78+g7§)<8,l‘,yyz7s>e xd“y
2
R ey )
+N4 /Ha /R(y_s"‘g_g)(v_s—l-U_g)(s,y,v]z,s>6 MB7€(U) y
Y 1 1

T A R((v — 8)2 + (U — 5)2)<5?U‘Z;S>€dﬂsB,e<v)

2
0 1 1
+ 16 R(U . T,z §)2<37U’Z;S>€dﬂsB,e(v)
72 1 1 1 1

)

16 Jpo2u—s uwu—38 ' v—8 v—35

_) <57 u, U|Z; S>€dlusB,e(u)d:usB,e (U),
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and
(3.17)

105 == g || 7 =) ) = ) s
(318 + - | a9 L) s vl s)edud
319 gz [ et ) orslo = )~ T e vl e
(3200 + 12/ P ara(o — 5))(- L Ui§)2<s,vlz;s)€75dv

(3.21) + /f argv—s)( ! + 1_)( LI 1§)<s,v|z;s>575dv.

21)( v—8§ v—8 v—8§ v-—

Proof. One starts the computation with the following derivative, whose expression is obtained by
Gaussian integration by parts.

Lemma 3.5. The following identity holds:

(3.22)

O+l == | D+ s D ) Gl
323)  +ul <yis+ yisxs )ty + 2 [ (s s vl )iy (0
(3.24) / (arg(o — 9))(- L - L (s, vl ) s

with

Proof. The three lines above respectively correspond to applying the derivatives to the s dependent

part of the prefactor ], |z; — s[X* H |sj — s] 3, applying the derivatives to the s insertion present
in the GMC integrals over bulk and boundary, and lastly to applying the derivatives to the s
dependence contained in the function f in the boundary GMC integral. To compute this last case
one needs to use the identity:

(3.25) (as+ag)arg(v—s):1,8_3:1,< LR >

2i(v—s)(v—3) 20\v—8 wv-—s
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We now want to apply another times (95 + 05). For this we need to compute the action of (95 + 0s)
on the terms (s, y|z;s)es and (s,v|z;s). 5, the results are given below:

(0s + 05)(5,9|2; 8)e,s

(3.26)
B XY 1 1 X 1 1 LBJ 1 1 '
=— {5 <y_s+y_s)+§; 5 (Zi_s+2i_s>+§j: TG T e os) | vlmshes
(3.27)
X 1 1 2 vx/ 1 1 s
e ) € d i s Uy ) € d
+H 9 H5(13—5 + a—j_§)<sal‘7y|zas> ,0 T+ 4 R(U—S + U—§)<S v y|Z S> ,0 HB,&(U)
(3.28)

1 1

v—S v —

+ 57 [, £ (angto = )

§)<s, v,y|2;8)c sdv,

and:

(as + 837) <57 U|Z; S>E,6

(3.29)
_ xv, 1 1 xei, 1 1 B, 1 1 '
N 4(v—s+v—s)+zi: 2(zi—s+zi—s)+zj: 4(sj—s+sj—§) S
(3.30)

X 1 1 2 'yx/ 1 1

- s Y, N d - — y Wy ; d I
T e e L R e A e ML)
(3.31)

1 1

v S)(s,u,v|z; S)e sdu.

+ g [ S onsu = o)

Using these results we get the list of terms given by —C.. We briefly state how each term arises.
The term (3.7) comes from differentiating the prefactor in front of (s|z;s)cs in (3.22). The term
(3.8) and half of (3.9) come from differentiating (s|z;s) s in (3.22) which gives either (3.22) with the
prefactor squared or a cross term of (3.22) and (3.23). The term (3.10) comes from differentiating
the integrand of the fH(s term of (3.23). The next three terms (3.11), (3.12), (3.13) come from
applying the formula (3.26) to differentiate the (s,y|z;s).s under the integral st term of (3.23).
More precisely the right hand side of (3.26) gives both the term (3.11) and half of the fH,; term of
(3.9), while (3.27) gives both (3.12) and half of (3.13). The term (3.14) comes from differentiating
the integrand of the [ term of (3.23). Lastly the last two terms (3.15) and (3.16) as well as half
of (3.13) come from applying the formula (3.29) to compute the derivative of (s, v|z;s) s under
the integral [, term of (3.23).
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We now collect all the terms we get that involve f when applying (9s + 95)2. Some of the terms
obtained vanish in the limit as § goes to 0.

Pt DR )| [ e -G - s
fary [ Gt fw@w—$xvis—v_ngywstMy
+;/fR(Uig—Ufﬁ)(Uis+Ui§n%mav—s»@wmwxﬂmgxw

i [ ) (= $) (-~ ) (5,1, vl ) pcludpy (0)
3] Frso =) = ) sy

+ % /[E f'(arg(v — 8))((1) —15)2 " _18)2)(s,v]z; S)e.odv

g [ S -G - )

(s,v|2;8) ¢ sdv

xvy, 1 1 xey 1 1 xBi, 1 1
( R R D e 5>+Z4(~s+ )

4 ‘v—s w S§;— 8
1 , B 1 'yx/ 1 1 ] 9
- / f'larg(v =) (— - —)n5 Hé(y_s+g_§)<87y,v!Z,S>e,5d ydv
1 1 YX 1 1 ) s
/f arg(v — s )(U_S 0—5) 1 /R(u_s+u_§)<57U7U|ZaS>E,5d/~LB,e(u)dU
[ (ans P(—— - D — —L (s, u, o]z 8)e pdud
Ireg(v — S S, U, V|\Z: € uav
4 g v—s U— 3 U—3 s Wy ) 0

The expression for (05 +0s)(s|z; s). s has four terms. In the above list, when applying an additional
(Os + 05), the first term comes the first term of (05 + 0s)(s|2; s). s, the second from the second, the
third and fourth from the third, and the last six from the last term of (05 + 0s)(s|2;s)cs. It turns
out that in the limit of 6 — 0, the first two terms and the second to last term in the above list
automatically converge to 0 and therefore can simply be ignored. The same holds for the o, 53;

part of the seventh term. Collecting all of these terms we get the desired expression of S§1€) P

Now we will prove the following lemma giving the rest of the operator.

Lemma 3.6. One has

N
1 1 A, Aq,
(Z <3—Zz'azi T —Eiaz - (s — 2i)? " (s — Zi)2>

N 1 Ag, 2 2
+3 (5t =)0y + g ) | (slmis)es = Cos + S5 + 557, + 050(1),
)2 1vy 9
=1

2's—s; 5—s; (s —sj
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where Ce 5 is as in the previous lemma,

1 1
3.32 S() =0 72“/ 5,Y|z;8)esd
( ) I, 9 ]R—H'é(y_ g_ )( y‘ > say
2 —
v 5—35 1 9
3.33 +u— 5,Y|2;8)e,5d°y
(3.33) H; [y — 8[* (U — y)< l=:5)
1/, B 1 1 11 .
B30 g [ Pl - )G G ) lm s
1 1 1, . ,
(3.35) ( 8X) G ) (s vlzss)edu (v)
2
7 11 11 . ) \
(3.36) 16 R2(U_S ) T o) s w vl s)edpp (u)dup ()
Gan L Ll S)esdis ()i (0
’ 8 Jrpz (u—s)(v—35) (u—38)(v—23) fu—v|<815,©, ¥ 0. (1) dp (v

and

M
2 Z Mi—1 [
S}I)E a ((Sj —s P €)€<8’ % elms)et (85 — s)(Sj — s+ e)6<8’ s el s>€> '

= )(sj—s

Proof. This computation is more involved than the previous as it involves performing integration
by parts on certain terms. We first compute the derivatives with respect to z, z; and s;:

o, Qg Bjo X Ok
) . — ¢ J _ .
wbles)es =\ 2 gy Y B ) P By ) B )

Yok / 1 1 9 Yok / 1 s
- + = 5,Y|z;8)esd”y — 5,0|2;8)¢5d v),
"2 Hé((y —2)s (G- Zk>6)< SR r (V- Zk)5< 2 e i (0)

o iy i Bjozk Xtk .
0z,.(5|2;8)c5 = Z 3o — 2) + Z G + Z — 2(5 — %) (s]Z;8)c.s

Zi— Z
i irith k) k)

'yak/ 1 1 2 70%/ 1 s
— + — 5,Y|z;8)csd”y — — 5,0|2;8)c sdup (v),
SERN e e e RA A 2 Jo (o= Ul Sl (0]

and

D fslzshos = [ Ly Ly 3 A XL ) ).

2 ‘z;— s Zi— 8 S;i — 8 4 ‘s—s 5—s
p 7 k 7 k itk (] k) k k

Wﬁk/ 1 1 2 75k:/ 1 s
— + $,Ylz;8)esdy — — | ————(s,0|2z;8)csdup (v
3 e s T a— s BSOS b )

— (fik—1(5, sk — €|z;8)e — 1K (S, Sk + €]Z;8)e),

where fi, = p for 1 <k < M, and fig = f(arg(sy — s —€)).
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Lets first collect all the terms without integrals. We focus first on all the terms containing a z;
variable, the corresponding terms are:

N 1 fe1e} fe1e} Bia NooA
10k 10k Ol _ Bay,
— 4 — + - +
= s — 2 l%;k 2(z; — zi) 21:2(29—2’;{) Z2(sj—zk) 2s—zk kZ:l (s — 21)?
N M
1 oo 1 1 1 aiffy 1
+ZIS—Zk - 2(Zi—zk)+2];(8—8k+8—8k); 2 ZZ'—Sk.

We recombine the terms using:
[e710%% < 1 1 1 1 > [e7107%% 1 1
+ - 5
2 S—ZpZi— 2k S — % 2k — Zi 2 s—zis— 2k
o0 ( 1 1 N 1 1 > _oiay, 1 1

— — — -
2 S— 2L Zi— 2k S—Zi 2k — Zi 2 s—zLs— 2z

and similarly for the s; part. Using this we correctly recover the z; terms given in C s:

67} 1 (67} 1 ﬁj 1 1
;2X(zi—8)2 (l 22’—5) Zazz—s - 2§i—§+z4(sj—s+5j—§)

A i 7

Now we move to the terms containing integrals over Hy and R. Lets first collect all the terms
with a single integral over Hgs. We get the following terms:

Yo / 1 1 1 9
— + — 5,1|2;8),5d
ry Hés—Zk((y—Zk)a (y—zk)5)< Yylz;8)esdy

’yak/ 1 1 1 9
— — — = S,Y|2;8)csd7y
2 Ju, s— Zk((y —Zr)s (U — Zk)6)< 12:5)<

’Yﬂk/ 1< 1 1 ) 1 1 ,
TRy 5 + = + = s,y|z; 8)esd°y.
H 2 H; 2\s— 5; 5 — s ((y IR Sk)é (y — 3k)6)< y’ > 0aYy

Notice that one has:

'yal-/ 1 1 1 9
— — = — 5,Y|z;8)c5d"y = 05 1).
;M 92 ]HI(;(S_ZZ' S_Zi)(y_zi)6< | >6 —>0( )

Hence we can transform the terms above containing z; to

N 0 L s ylz:s). sd?
Z / S—Z,( —zz) + (g_zi)(ﬂ—zi)5)< 7Z/| ) >e,6d Yy

2 g <19 —a)s - 5)(15 0, (vl dy
gle7} Y — 2z 1 J— 2 . )
+Zi:M 2 /[HI(;((ZZ'—S)(y—S) (y—zi)(g T (Zi—E)(g—g) (g_zi)§)<87y‘z7 >E’§d Y.

In the above answer we are going to integrate by parts over y the first integral and keep the second
as it appears in the answer C,s. Of course we can perform the same manipulation for the terms
containing z; and sj. Combining the three cases we are now going to perform an integration by
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parts on the terms

vy 1 1 1 1 1 1 > )
7 + — )+ —=(= + = $,Y|2;8)esd"y
2@: 2 Hg(y_s(<y_zi)5 (y_2i>6) y—S((y—Zi)zs (y_zi)6)< [=:2)
VB; 1 1
+Zu2j/H§( +—— )(s, |2 S)e,5d°y
J

(y—s)y—s5)s (T—35)(Y—s)s

To do this we must take in account the explicit prefactor infront of the GMC expression in
(s,yl|z;8)e,5 given by:

ly — s[7X

Z_viaa(8|Z;s).
_ ﬁ N i -~ i M IB X‘a7ﬂ ’
ly—yl= [Lii vy - Zi|ga ly — Zi|ga Hj:l ly —s; g ’
Remark that 0y (ly — zil; ™|y — zil; ') = —ng((y 121) + - zl )y — Zi|5 ‘ly = zil; 7 and
Oy — zils 'y =zl ) = —73"(@7121)5 + o5 )\y — zils "y — zi]; 7. We also have similar

relations with |y — sj] 5 7% Recall Green’s theorem, which states that for a domain D C H and
two functions f, g defined on D one has:

/ 0.1z / £(2)09( )d22+2 [ 1
/ e / O O OO

The integrations along 0D are in the counterclockwise direction. Then we proceed with an inte-
gration by parts to obtain:

you 1 1 1 1 1 1 &) P
(3.38) Zi:M 5 /Hé <y—8((y—zi)5+(y—Zi)5)+y—8((y—Zi)5+(y—Zi)zS)) (s,ylz;s)esdy

Lﬂj . L s,ylz;s 2
+ZM 2 /Hé((y_s)(y_sj)ts * (g_g)(g—sj‘)[g)< ’y| ’ >€’5dy

_ﬁu/ 1 1 X 1 1
=5"T — ——)(s,ylz; S)esdy + p(—1+ 5 + 5 Y17 8)c.0d”y
2 R+z‘5(’y—3 y—3)< =) ( 2) H5<(ZU—5)2 (¥ —3)? )< =)
7 1
4o - 5,Y|z;8)e,5d
ng Hé(yfs 7 S)( )< ylz;s)e,sdy

2 1 1 1 1 1 1
_le / ( ( + — )+ ——( — + — )) (s,,y|z;8)c sd*zd®y
y—saz—y T-y y-sa—y T—F

= uf /HE/ ( — G- 5)1(1) ﬂ)) (s,y, 0]z 8)c sdpis () dy.
1

2
Lets analyse the terms in the answer of (3.38) one by one. Note that 6~ = L& fR+i5(y75 —%) (5,9|2;8) e sdy
is the boundary integration term coming from the boundary contribution in Green’s theorem. The
power of § in front comes from the hyperbolic metric at the boundary of Hy. We add this term to

the list of singular terms Sﬁ) s The second term is expected in C¢ 5. Next we analyse the term:

2 2
1 1 1 11
Ry ) (s, Yl S)egdy = ——(5,y]z; 8)e 5%y
2 Ju, y—s Y—-8y-—y 2 Ju, y—sy—s
’y s—38 1 9
+ = / ————— (s, y|z:8)c 5d°y.
2 (y—s)y—5y—y ‘
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Out of these two terms obtained, the first one will go in C¢s and the second one in the list of
(2)

singular terms S}/ ;. Next we move to the term containing the double integral over Hg. Notice
here that the singularity %_y is integrable since we are integrating over Hg. We can write:

2 1 1 1 1 1 1
—uzé/( ( + = )+ ——( — 4 — )) <s,x,y|z;s>6,5d2xd2y
m\y-—sr—y T-y Yy-sr-y Ty
1

_ 272 1 1 . d2 d2
=K Z ( + )( + = _)<S,l‘,y|Z,S>€ ra'y
H2 4

N
8
|
Vo)
S]]
|
]
<
|
®
|
»

<$7 €L, y|Z7 S>ed2$d2y + 05—)0(1)'

2 Juz e = )G —5) (&~ )

Lastly the term containing an integral over Hs and one over R will be combined with a similar
term coming from the integration by parts on the boundary term (see below) to get in the limit
the following term present in C¢ s:

% [ S (G =) sy,

Similarly we need to perform an integration by parts on one of the boundary integral terms.
Starting from the terms

Q; 1 1 Q; 1 1
= (5,018 (0) = 5 | vl she g )

2 s— 2z (vV—z)s s—2zi (v—Z)s

S () e ol ),

s—s; 5—s5;/(v—55)s

we add minus times the terms expected in our answer

Yoy 1 1 v8; 1 / 1 1
0|25 8) e sdpip (),
4 (Zi—8+zi—5>+ j 4 sj—s R ’U—S+v—§ (s, v]2; 8)es #B’E(v)

which then gives up to a o(d) error, also adding the term in s:

1 1 Yoy V6 1
; oy .
() (2 (e ) T ) e

1B
i i i i - _ 1B
One has dy|v—z|; '™ = (*%(v_lzi)g - %(U 121 ) [v—z]5 7" and Oy v—s;s * = 7’)/7](11—15]')6‘7)7
"/6
sjls 2 . Here the 9, is a real derivative. We record the formulas:
1 1 1 1 1
Dylv — 8|2 = RS + N jo—s|Z, Oyargv —s) = — — - .
4 \v—s5 v-—35 2t\v—8 wv—35

For this computation, before integrating by parts the integral over v, we are going to smooth the
GMC measure e2X®)dy. For this purpose, for v € R, we introduce the field:

1 [ :
= / X (v + 6e)ds.
™ Jo
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We can then compute the following covariance, for u,v € R

E[X (1) X;5(v)] = = /O "E[X(w) X (0 + 5¢i?)]d

™

2 (7 1 2 [T ,
= / log0d9+2log|v|++/ log [u + 0|, df
T Jo |u — v + det?| T Jo

Notice then that %foﬂ log mdﬂ is equal to —2log|u — v| if § < |u — v| and to —2log ¢ if
d > |u — v|. We also record the computation:

ﬁ( 1 n 1 )+ 'yozi( 1 1 )+Z'yﬂj;

B 'S)es =
v(S,U|Z,S>e76 4 ‘v—g v—3§ - 2 (zi—v)(; T (Zl-—v)(s

2 2
Y 1 1 ~ 1
_ M? Hé(y Y + ﬁ)@, y,v|z; S>e,5d2y — Q/R py— (s,u,v|z; S>E,5d/j,sB’€(u).

Then by integration by parts we obtain:

1 1 1 Yoy 1 1 v8 1 _ s
2/R <v—s + v—s) Z 2 ((v — Zi)s + (U—Zi)(g) +Zj:2](v— ;)5 <S’U‘Z’S>E’6duB’€(U)

)

1 1 1 Xy, 1 1 B . s
- /(v—s+v—s)<4(v—s+v—s) 8”><S’UIZ’S>€’6dMB‘(U)

1 1 1 1
. / ) (o G tm syt [ b st ol sy (10)

=) LS
A i)(_ ) sl (0

=)

1

/ (5+om) (o] G+ s smtmshonty s [
2 [ (ot ) e s
+4%. g (U LE ) <U Lo ) f(arg(v — ) (s, v|2;8)c sdp (V).

1
Lo ol () ) d

— S v— 8 — S vV— S8

Lets look at how these terms are going to recombine to obtain the C, s terms and the singular

(2)

terms given by S; 5. First lets look at the simple integrals over R. The terms we want for C 5 are:

g 1 1 72 1 1
L [t sl (0 + 25 [ s vl ()

Taking the difference between the terms we have and these terms we want to get:

Ao [l

4 8 Jpv—8 v—35

-)%(s, 0]z 8)edpuis o (0).
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Lets analyse the term with the double integral over R. We compute
g

A W<vis+vig>@iuowbﬂ&%ﬂzﬁmm@gwm@Aw
78 R2((u - 8)1(v —s) + (u— s)l(v _ 5))1|U v|>6(8: U, v]25 8)e sdpp (W) dup ()
_ﬁ R2 U i s + u i 5)(1) i s + v i §)<S’u?”’Z3S>€dﬂsB,e(U)dﬂsB,e(U)
YZRJuiSuingisUi§N&%UW$MMEJwW%Aw
2

1 1
L7

3 RQ((U — S)(’U — S) + (u — S)(’U — 8))1\u v\<5<5 u, U‘Z S>€ 5dMB e( )d:u’sB,e(v)

In this last line, the first term will go into C¢ s and the last two will be singular terms

O

3.3. Vanishing of singular terms. To prove Theorem 1.3, it remains to be shown that S} )

+
€,0
S}gﬁ + S}I?e — 0 as e and § go to 0. We first state the following result.

Lemma 3.7. Forall1 <j <M, when e — 0, €(s,s; — €|z;s). = 0 and €(s, s; + €|z;s). — 0.

Proof. This is done in the paper [RZ20Db].

This result implies that we have S’ﬁ) cs — 0ase— 0. Next S}le) st Sﬁ) s is given by:

g / 1 1 1 1 S do
_%(/Icf(arg(v_S))(U_ + —)( — (s, v|z;8)cd

S v—S8§ v—S8 v—S

v ' 1 1 1 1 '
g el = D arsto = ) = =) ) vl edudy

1 , : L LIV L
_ W /[62 f (arg(u — s))f (arg(v — S))(u - )( -

— S u—S8 v—sS vV— 8

+412/ " (arg(v — 8))( i — ! 7)2<s,v\z;s)€,5dv

)(s, u,v|z; 8)cdudv

1 1 1 1
el /J’Mgv—SM b ) (o — ), vl s)esdy
P 1
4+ / — 5,Y|z;8)e sdy
57 Rm(y - —) (s, y|z;8)e
2
y s—38 1 9
+ p—= —(5,y[z;8)esdy
2 Ju, ly—sl* (@ —v) ‘

2
v 1 1 1 1
——fR2u_s—u_ng_s—U_gxawvamw34MM@Am

/f (arg(v — ))( i + 1,)( L 1§)<s,v\z;s)edv

s v—8 'v—8 V-
1 1
_(,_7

—_ 2 . S
178 o= w=s) WlEs)duh o)
+l2 ( ! + 1 )1 <s |ZS> d ()dS()
8 Jrpz (u—s)(v—35) (u—38)(v—23) lu—v|<8\S, U, U 6,0 :U’Be HB.e(V)-
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We start with an integration by parts formula that will be use to combine all the terms in
S?E) s+ Sﬁ) s With a single integral into a single term involving a double integral.

Lemma 3.8. For x = 3 or %, the following identity holds:

1 YX , 1 1 1 1 - S) do
Ul L e e LRI
oy, s = N i o
1 1 1
= i / flarg(u — s)) f'(arg(v — s)) =) (v T §)1‘u_v‘>5<s,u,v|z; S)e,sdudv + 050(1).

Proof. Record the identity 0, arg(v — s) = L (L - i§> We then perform the integration by
parts in the following way:

1 1
M/ﬂmwm< s, vl ) g

1 1

= —ﬂ 8 f(arg(v—s))(v_s v_§)<8,0|z;s>675dv

B _i , _ 1 B 1 1 1 )

- lejwmav Nt = L)t s )
K2 , _ 1 )
. f'(arg(v s))(v oo g)av(s, v|z;8)c sdv.

We then need to compute the derivative 0,(s, v|z;s). s, keeping in mind that several terms will be
included in the 05_0(1). We obtain:

1 1 1 1

e R e L X
, 1 1 1
% /13 flarg(u — s)) f'(arg(v — s)) =) (v T 5)1|u,v|>5<3, u,v|2; 8)¢ sdudv 4+ 050(1).

This gives us the desired result. O
At this stage we are going to look separately at the cases x = 4 and x = %

3.3.1. The case of x = % When y = %, the argument will be simpler because the relation on o

will be simpler and many of the singular terms directly vanish in the limit § — 0. The ones that
will remain are:

2 1 1
(3.39) i [ st =N (I - T s vl
1 1 1 1 1
+ 1 /IE f/(arg(v — 3))(1) . + I §)(U T o §)<s,v‘z;s>€dv

2
G- [ = vl (o),

RU—S v—3§
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Notice also the integration by parts formula written above up to an o5_,(1) reduces to:

1 1 1 1 1
1/] f'(arg(v — S))(v — to 5)(1) T g)(s,v|z;s>edv
= _/Ie f(arg(v — S))(v i s v i §)2<57U|Z;S>676dv = /Ie(v i ST i 5)2<s,v|z;s>e75dv_

Combining this identity with the fact that for y = % one has f” = —f, one obtains that the list of
terms in (3.39) sums to 0.

3.3.2. The case of x = 3. We will now focus on x = 3 where one has this time f” = —#f =

—% f. Let us state the integration by parts for this case. one can combine all the terms in S}le) st

Sﬁ) s With a single integral over R to obtain the single term:

2
2,’32(1 - é)/l f(arg(v — 8))(v i . + ” i §)(v i ST i §)<8,’U|Z;S>Edv
+ 712/[ 1 (arg(v — S))(v i ST i §)2<s,v|z;s>e75dv

= *1. flarg(u — 8)) f'(arg(v — s)) L 1 1

o 1y, s, u,v|z;8)e sgdudv.
v 12 (U—U) vV— 8 U_g) lu ”|>5< ’ | ) >6,6
The last equality is obtained by applying the integration by parts lemma. Adding this last term

to the remaining terms of S1(~1€) st S}QE) s containing derivatives of f we get the sum of three double
integrals:

(3.40)

Zj g cos(lf arg(u — s)) sin(l2 arg(v — s)) (w i 0) (v i P i g)l\u_v\>5<$,u,v|z;s>5,5dudv

- gj p Sin(zf arg(u — s)) cos(zl2 arg(v — S))(u i P i 5)(11 i S + ” i g)(s,u, 0|2 8)Ljy—y|>sdudy
— gj p sin(’zl2 arg(u — s)) cos(zl2 arg(v — S))(u i P i 5)(@ i . + ” i g)(s,u, 0|2 8)1jy—y|<sdudy
— Z; p sin(42 arg(u — s)) sin(’zl2 arg(v — S))(u i P i 5)(@ i P i §)<S’ u, v|2; 8)cdudv.

Now we also need to add the two missing terms which do not involve derivatives of f

2
gl 1 1 1 1 ) .
41 - _ _ .
(3.41) 16 R2(U—S u—§)(v—s v—§)<S’u’v|z’S>€dﬁ‘8,e(u)dﬂa,e(v)
+72 ( 1 n 1 )1 < |S>d5()d$()
) S, U, V|Z;S)e (u (v),
5 Jele— )0 —9) T o) =5 Hhevlea (ot vl Slesdith ()i,
and
2 S 2
y s— 5§ 1 9 2 1 1
3.42 ,u/ T o (S lEs)esdy + 0772 / — ——=)(5,¥|2;8)esdy.
G4 0y o =P G-y V= % Jovisy—s g3 s
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Lets try to simplify all the terms above. First combing the last term of (3.40) with the first term
of (3.41):

(3.43)
2 2 2 1 1 1 1
- % p cos(fyz arg(u — s) — Vzarg(v - s))(u_ P 5)(0 T g)(s,u,v|z;s>educlv
2 2
2 ol Jo
_ _7/ e argu—s)-ifargo—s) L Ly b 1 umslElo—sE G
16 /2 u—s u—8 v—8 vV—35§ | ‘“/7
: ju sl o= 5| *
_ _l ié arg(u—s)—i% arg(v—s) 1 _ 1 1 o 1 u—Ss/ijv—s1 . 1 dud
16 126 (u—s u—§)(v—s v—§) | ‘g 8t 0l ) el S50
€ U_U6
2 2 2 1 1 1 1| \ﬁ| \ﬁ
i i are(u—s)—ide are(v— Uu—S/4|v—S8|4 )
~%5 /. oi Y arg(u—s)—i% arg(v S)(u—s - u_g)(v_s - v_g) | |§ (8,1, 0|2 8)edjy_y)>sdudv.
€ U—v
0

Next we recombine the first terms of (3.40) with the second term of (3.40) with the indicator
1|u—v|>5 added:

2 2 2 1 1 1
% g cos(’yz arg(u — s)) sin(’yz arg(v — s)) =) (v T g)l‘u,vb(;(s,u,v|Z;s>e,5dudv
2 2 2 1 1 1 1
— 27 p sin(’yz arg(u — s)) cos(fyz arg(v — S))(u S 5)(11 — + o 5)1|u—v|>6<37U7U’Z3 s)cdudv
2 2 2 g
_ [ % arg(v—s)- 2 arg(u—s) 5 1 ;8)cdud
3 1626 4 4 (u—v)(v—s)(u—E) |u_v|>§<8,u,U’Z,S>€ uav

+ 12 €i§ arg(v—s)—i% arg(u—s) (S - 5)2

16 12 mllu_vl>6<5,u,v|z;S>6dudv.

The second term in the last line above cancels with the similar term found in (3.43).
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Next we regroup the terms all containing the indicator 1j,_,|<s coming from the second line of
(3.40), the last line of (3.41), and the last line of (3.43):

2 2 2 1 1 1 1
— g—z i sin(’yz arg(u — s)) cos(ryz arg(v — S))(u T 5)(11 — T 5)1|u,v|<5<s,u,vlz; s)edudv
+ f cos(12 arg(u — s)) cos(,y—2 arg(v — s))( ! + ! )1 (s,u,v|z;8)csdp (u)dps
8 4 4 (u—s)(v—=s)  (u—s5)(v—25) o< e00Ha,\B)0HD,
2 2 42
y 2 2 1 1 1 1 _
-1 g et arg(u—s)—i- arg(v— S)(u—s _u—§)(v—s _ U_§)1‘u—v‘<(5<57u7U|Z7S>EdUdU
lz ” arg(u—s) i arg(v- N — 1 s5(s,u,v|z;s)dudv
8 Jiz (v—5)(u— ) Tuvl<a> B IS
7—2 “ arg(u—s)+i7y arg(v— ) — 1 s(s,u,v|z; 8)cdudv
16 12 (u IR S)(U I S) lu—v|< [ad) )
2 2
’Y W e 3 1
E ; ot arg(u—5)+i% arg(v s)m1|u vl<5(8; U, v|2; 8)cdudv
2
l F arg(u—s) i arg(v- ) 1 _uics(S, u, 0|2 S)edudo.
8 (v—5)(u—s) [evl<® B IS

To sum up, we are left with the last line of the above express, together with

s— 8§

8 Jr2 (u—v)(v—s)(u—E)

Ljy—o|>5(8, u, v|z; 8)cdudv

and the two terms of (3.42). To analyse these final four terms, we have to divide into two cases

based on the value of v, namely v € (0,v/2) or v € (v/2,2). The case v = v/2 can be easily recovered
at the end by continuity.

3.4. The case x = 3, v € (0, v2). To summarize the list of terms we need to cancel is the
following:

ST [ o st i 1 (s, u,|2z; S)edudv
8 12 (u—v)(v—s)(u— 35) lu—v|>6\9; U, 38)e
2 2 2
v s _ -y - 1
+ g ; el arg(u—s)+iX- arg(v S)mh?i*vké@’U’U’Z;S>€dUdv
2 _
y s— 35 1 ,LL 1 1
+M/ 5\, Y|Z; S gdy—i—é / _ s, y|z:8) e sdy.
2 Ju, ly — s|? (y—y)< |23 8)e, 21 R+i6(y_ J—3 —)(s,y|Z; S)e,

In this case we start with the following localization lemma.

Lemma 3.9. For vy < /2, the following localization holds,
lim (s, s + 0u, s + 0v|z;s)e = lim(s, s + 0y, |z; ) = (s, s, 5|2; S)e.
0—0 0—0

Next we give the following result.
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Lemma 3.10. The following identity holds, when v < \/2:

2 ) _
Y e - arg(v s)— - arg(u—s) §—8

1 dud
5 Jiz (u—v)(v—38)(u—235) lu—v|>5(8; U, V|Z; 8) cdudv

2 _

v §—35§ 1 9

+u/ (5, Y|2;8)c,5d%y
2 IHL; ly — 52 (¥ —y)

42 1 . 2
[ i /dul/ dfe™" U1—|—726 04T l(ul—iieze—i)%_l

2
4sm 71'7?
3 . 1 . 2 1 . 2
e~ / dul/ ’ O(uy + 22’620 +i) TNy — iieze — )T (s, s, s|lz;s) + 0s(1).

The other term in (3.42) can be rewritten

2 1 1
572;1/ — 5, Y|z;8)c sdy
i Lo g e
3 N DN
== [y TG =) s slans) + o)
+5
3 9.22_
= =3 | dy(y? + )T s, slzis) + 0s(1),
R
and also we have left
H 72/ eiﬁarg(ufs)Jri%arg(va) 1 <S u U’Z'S> dudv
sin(n %) 8 Jrz (0= 8)(u—s) s A

which equals as ¢ goes to 0:

2 2

i édmu+nf4<m+1—@1-4u—1—@1>@ﬁﬁm$%+%uy

2sin(m )

The following lemma then completes the proof in the case where v < v/2.

Lemma 3.11. For v < \/2, the following identity holds:

lL2%édwu+0f_10u+l—ﬂf—{u—1—0ﬁ>

2sin(m -

[V

2 2 2 1 . 2 ) 2
p BT e / dul/ dhe 0 (uy + Zie? + )T (uy — Zie? — i) T
in(rL) R 0 2

4sin(m

2 -3 2 1. 2 1 2
— eI / dul/ dhe7 0 (uy + 52’6’6 i) T Ny — Zie? — i)l_ll
R 0

=0.

The proof of this lemma will be carried out in Appendix F.
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4. SHIFT EQUATIONS FOR H AND R

In this section we derive a set of functional equations known as the shift equations on the
functions H and R that will then completely specify their value. The main input to derive these

shift equations is the BPZ equation from the previous Section 3. We introduce two global notations:
q= 2Q=b1=P2=B3+X 514
¥

(4.1) gy (0) = <sin(“f )) o0 cos (%X(U - §)> .

Theorem 4.1 (Shift equations for H). Let x = 3 or % and fix o3 € [—% + %, % + % - I xR.
The function HBB2B3) o pe jointly meromorphically extended to a complex neighborhood of R3

(01,02,03)

in (B1, Ba, B3) and to C? in (01,03). It obeys

(42) H(51752—X153) _ F(X(Bl - X))F(l B XBQ + X2) H(Bl—X752753)

(10208) D(x(B1 — x +a3))T(1 = xBz + x2 — ¢5F) " (Tro2tios)
2rd PO =xBOP = xB + ) (gxlon) = gulon + 2))

(B1+x,82,83)

+ : ’
(1 — 25 sin(mx(x = AL+ 02 = x(Br + B2 — 2x +¢3)) (01,025 ,03)
and
9 X1 i
X mY 2 R ,Bs
43)  ——— Tl —xA) (9)((‘73) = gx(o2 + 2)> Héff,fji%,i?)
ra—3I)»
_ I'(x(B1 = x)) 77(B1=x2.3)
T(—q%)D(=1+ x(B1 + B2 — 2x + ¢3)) (Fvo203)
2x _ _ By x _
n XQT[‘ v (gX(al) gX(U2 2 + 2)) P(l Xﬁl) (BI‘FX»/BZ’BS)'

r(1 - 2)5 sin(mx (e = BT = x(B1 = x +a3)T(xB2 = X* + %) (10279

Theorem 4.2 (Shift equations for R). Let x = 3 or % The function R(S,01,02) can be jointly
meromorphically extended to a complex neighborhood of R in B and to C? in (01,09). It obeys

R ) )
(4.4) R +(§ Zi fzx) ) = e (NT(=1+ xB — x*)L(1 = xB) <9x(02) — gy(o1 — §)> :
) 29
R(ﬁaUhO-Q) _ 2 B
(4.5) Rt o1t 00 (ML 4+ X8 = XL = xB) { gx(02) = gx(o1 +3) |,
’ 2
where c3 (7) = ——25 and c2 () is an unknown function of .

L(-2) ¥
Theorem 4.2 yields the exact formula for R claimed in Theorem 1.2.

Proof of Theorem 1.2 given Theorem 4.2. By combining both shift equations of Theorem 4.2 we
obtain

(4.6)
R(B1,01,02)
R(B1 + 2x,01,02)

=& (MT(=1+xB1 — X)L = xB1 — x*)I(1 = xS (=1 + xB1)

X 4sin(7rx(§ —01—02+Q)) Sin(ﬂx(g +o1+02—-Q)) sin(wx(g + o2 —01)) sin(ﬂx(g + 01— 02)),
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1
2

sin(r 220 (—22)2

Consider now the ratio f(8) = %f()ﬁ)' By using the shift equations (A.10), (A.11), (A.13)

satisfied by I’ 1 and S 1, one can show that Rpyz(f) satisfies the same shift equations satisfied by

R, except that the constant ¢z is now an explicit function of 7. From this we obtain that
il

FB+) =10), FB+ j) = c()(B),

where ¢y (v) = and where again ¢z () is an unknown function of ~.
vy

for an unknown function c(vy) of v. It is actually possible to see that ¢(vy) = 1. Indeed, when

01,09 € Band 3 € (%, @), by using (2.12) one can see that Rm,uz (B) is a positive function. Since
for B € (%,Q), s=0F-Q <0and s+ 73 >0, equation (2.13) implies that R(8,01,02) = Ry, u,(5)
is then negative for g € (%, Q). This interval has length 3, and by using the reflection identity
(4.29) it extends to an interval of length ~. The same claim can be checked on Rpzy directly on
the exact formula. Therefore the function f is positive on an interval of length ~, which by using
the ~-periodicity implies that it is positive on R. This in turn implies that the unknown constant
c(7) is real and positive. Then for 42 ¢ Q, since any real number can be approximated by a linear
combination n3 — m2 for n,m € N arbitrary large, this implies that c¢(y) = 1 and that f is a
constant function of 5. One can then show f(5) = 1 by using the fact that R and Rpzz are known
to match at 3 = Q. Lastly the case 72 € Q is easily recovered by a simple continuity argument. [

Proof of Theorem 1.1 given Theorem 4.1. It is less straightforward to see than in the case of R
that the shift equations on H completely determine its value, since they contain three terms
instead of two. We will use the following result proved in [RZ21, Section 3.3.3]: the solution space
of the system comprised of the two shift equations (4.2), (4.3) combined with the reflection identity

FrBrB2:Bs) R(p1,071, 02)H(2Q751752ﬁ3) proved in Lemma 4.9 is at most one dimensional. Note that

(01,02,03) (01,02,03)
in our case since we are working with both bulk and boundary Liouville potentials the coefficients
in the shift equations (4.2), (4.3) are different than the ones in [RZ21], but the result of [RZ21]
still applies since the proof does not rely on the precise expression of these functions.

Now we already know H satisfies the system comprised of (4.2), (4.3) and (4.28). By the results
of Lemmas A.4 and A.5 proved in Appendix A.3, we also know that Hpr satisfies the same
three equations. Therefore the result of [RZ21] implies H and Hpr are a constant multiple of one
another. To pin down this multiplicative constant, we will simply look at the pole of both functions
at f1 = 2Q — Py — B3. It is easy to establish the following fact about H:

lim (é o Q)H <517/82753> =1.
B1—2Q—P2—P3 2 01,02,03

This can be seen directly on the expression of H given in Lemma 2.5. In the notations of Lemma
2.5, computing the residue of interest corresponds to multiplying H by s and then setting s = 0.
By Lemma A.5, Hpr has the same residue at that point. This completes the proof of Theorem
1.1. 0

(4.7)

We now turn to the proof of Theorems 4.1 and 4.2 which is based on the BPZ equations with
the so-called operator product expansions (OPE). This type of argument has been carried out for
p = 0 case in [RZ21]. The same shift equations as above are derived there except that the function
gy is replaced by e2xmi(0=%) We highlight two places where additional work is required. The first
is contrarily to [RZ21] where H and R can reduce up to a prefactor to moments of GMC (denoted
by H and R in [RZ21]), this is not possible in our case. We are forced to work with the truncation

of Definitions 2.6 and 2.11 which introduces extra constraints on the parameters. The second is
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that at one step in the derivation of [RZ21] the value of R(8,01,02) at u1 = 0 is used, which was
known from [RZ20b]. For us this is not available. Instead we use the mating of trees input to get
an explicit formula for R(vy,01,0) See Section 4.5.

The rest of this section is organized as follows. In Section 4.1 we introduce the specialization of
the BPZ equation of Theorem 1.3 that we will need for our derivation. In Sections 4.2 and 4.3 we
establish respectively Theorems 4.1 and 4.2 in the case x = 3 and in a limited range of parameters.
In Section 4.4 we prove the reflection principle for H and R and show they can be meromorphically
extended to the full range of parameters claimed in Theorems 4.1 and 4.2. Then finally in Sections
4.5 and 4.6 we establish Theorems 4.2 and 4.1 in the case x = %

4.1. A deformation of H. Our starting input is the BPZ equation given by Theorem 1.3 of
Section 3. For the purpose of proving our main theorem we will need the following special case
of the boundary BPZ equation, which corresponds to having three spectator boundary insertions
along with the boundary degenerate insertion. By conformal invariance we can place the boundary
spectator insertions at 0,1, 00. The degenerate insertion is then at a point ¢ on the real line, and
we will assume ¢ € (—o0,1). Recall B = (—% + %, % + %) x R and B = [—% + %, % + %] x R.
For x = 3 or %, consider the following range of parameters:

(4.8) Bi € (=00,Q), 1+ P2+ b3 >2Q+x, 01-% € B, 02—% €B, 01€B, 0o€B, 03€B.

Notice these constraints can all be simultaneously satisfied. Indeed, if all three 3; are close to @
then 81 + B2 + B3 > 2Q + x is true. For the oy, the band with its boundary included B has width
%. Therefore it is possible to have both o1 — % and o7 in B, but in the case y = % this means that

01— % and o are exactly on the boundary of B. The same is true for o5. Now under the constraint
of (4.8) consider the functional

Hx(t)—/Rdce_

ygc

2 E

Lo 7
exp | — e’yc/ |z —t|™g(z)a (@ 1)/’37 —z|> X (@) g2,
o || 71|z — 1|7P2

g [ =TT s
€2 81 B2 €2 d:u’B (T) )
I e
where the boundary measure dul;(r) is defined by:

93(01 = 3)lrco + 92 (02 — 5)Lo<r<t + 91 (02)Licr<1 + g2 (03) e, for £ € (0,1),

9%(01 - %)1r<t + 9%(01)1t<r<0 + 97 (02)Llo<r<1 + 9%(03)1r>1, for ¢ < 0.

dpuip(r) /dr = {

Since the change of o on the left and right or ¢ can be either +% or —%, we similarly consider

the function H, (t) with the other choice, which is given by the same expression as H,(t) except

one needs to replace du'y(r) by the following measure

djity (r) /dr = 91(01+ 5)Lrco + g3 (02 + 3)lo<r<t + 97 (02)Licr<1 + g2 (03) 151, for t € (0,1),
Hb ] 92(01+ 3) <t + 93 (01) Licr<o + 93 (02)Lo<r<1 + 93 (03) 1751, for t <0,

under this time the parameter contraints:
(4.9) Bi € (=00,Q), 1+ P2+ 53 >2Q+x, 01+§ € B, 02+§ €B, o1€B, 03€B, 03€B.

We could also of course define in a similar manner H, (t), H,(t) for t € (1,00), but this will
not be needed. By a direct change of variable applied to the differential operator of Theorem 1.3,
H,(t) and H,(t) obey the hypergeometric equation. We state this in the next proposition.
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Proposition 4.3. Under the parameter contraint of (4.8), the function H,, obeys

(4.10) t(1 - )97 Hy + (C — (A+ B+ 1)t)9,H, — ABH, =0,
with A, B,C given by:
(4.11) A=—q%, B:_1+X(/31+/32_2X+Q%)7 C=x(61—x)-

The exact same result holds for fIX under the parameter constraints (4.9).

We now state an analyticity result for H 1 and H 1 which will be used in the proof of Lemma
4.9 below.

Lemma 4.4. Set x = % Fizx the o; in the parameter range (4.8) but with the boundary of the

band being excluded, namely oy — 3 € B, 03 — 7 € B, 01,02,03 € B. Then the function H, is
meromorphic in all three By, Ba, B3 in a complex neighborhood of the subdomain of R3 given by the
constraints ; € (—00,Q), Bi1 + P2+ B3 > 2Q + x. The same claim holds for Hy, except this time

the o; need to obey o1 + 5 € B, 0o+ € B, 01,02,03 € B.

Proof. This result follows from a direct adaptation of the proof of the claim of analyticity in the 5;
for H of Proposition 2.7, which is proved in Appendix B. The fact that we have an extra insertion
on the boundary poses no additional problem. Here we are also in the range of parameters where
the Seiberg bounds are satisfied and thus no truncation procedure is required. ([l

Lastly we recall here the range of parameters where the functions H and R are well-defined as
probabilistic quantities as performed in Section 2. For the H function the range on the 3; and o;
is given by:

(412) {(/Bluﬁ27183)0-150-270-3) : /BZ < Q7 Q - %Zﬁl < ')//\ j/ /\Hl’LlH(Q _/B’L)) g; € B} .

For the R function the range of 8 and o; is given by:

2

(4.13) {(5,01,02) : % (;—%)<ﬁ<@, aiEB}.

4.2. The I-shift equations for H. We start by proving the shift equations on H in the case of

X = 5. We therefore use the functions H 1 (t) and H 1 (t). For this first lemma the parameter range

is chosen such that the §; and o; parameters of each H in the shift equations belong to the domain
(4.12).

Lemma 4.5. Set x = % The shift equation (4.2) holds in the parameter range
(4.14)

2 1 2 .
B < ~ B2, B3 < Q, Q—§(51+5z+53—%) < VA;/\miln(Q—ﬂz‘% 01,02,03 € B, 02+% €B,
and the shift equation (4.3) holds in parameter range:
(4.15)

2 1 2 )
B1, B2 < 5 B3 < Q, Q—§(51+/32+53—g) < 7/\§/\mi1H(Q—ﬁi), o1,02,03 € B, 02+% € B.

Proof. Here we are always assuming x = 3. Lets first take a look at the parameter ranges given
by (4.14) and (4.15). For x = 3, the shift equation (4.2) contains the following three H functions:

(B1,82—3,83) (B1—%,B2,03) (B1+73,82,03)

(01,02,03) (01,02+7,03)° (01,0245 ,03)"
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The f; and o; parameters of each H must be in the range (4.12). This gives (4.14). Similarly, the
second shift equations (4.3) contains the H functions
H(ﬁl’ﬁ2+%ﬁ3) H(ﬁr%ﬁzﬁ‘&) (B1+3,62,63)

(01,02+7,03)° (01,02,03) (01,02,03)

and the f; and o; then need to obey the constraint (4.15). It is easy to check that these parameter
constraints are non-empty. The condition of (4.14) is weaker than (4.15), and (4.15) can be satisfied
if all the f8; parameters are chosen in the interval (% — €, %) for a small € > 0.

Lets now derive the first shift equation (4.2). We assume f;, o; obey (4.8) in order for H 1 to be
well-defined, plus the following extra constraint on Si:

v 2
4.16 —< B < -
(4.16) 5 B 5
By Proposition 4.3, the function ¢ — H% (t) obeys the hypergeometric equation for ¢ € (0,1).
Using the basis of solutions of the hypergeometric equation recalled in Section A.1, we can write
the following solutions around ¢ = 0 and ¢t = 1, under the assumption that neither C, C — A — B,
or A — B are integers:” For t € (0,1):

(4.17)
Hy(t) = CiF(A,B,C,t) + C3t'""“F(1+ A~ C,1+ B—C,2 - C,t)

= B F(A,B,1+ A+ B—-C1-t)+B;(1-t)*"4BF(C-AC-B1+C—-A-B,1-

The constants Cf, C;r ,B1, B, are the real constants that parametrize the solution space around
t =0 and t = 1, we will identify them by Taylor expansion. First we note that by setting t = 0:

(/8 717ﬁ 95 )
(0) = (011_12 022,09?)‘

4

(4.18) C,=H

[T

Next to find C;’ we go at higher order in the ¢ — 04 limit. For this we use the asymptotic expansion
of Hy (t)— Hy (0) given by Lemma E.1. Under the parameter constraints given by (4.8) and (4.16),
the lemma directly tells us that

(4.19) Hy(t) — Hy(0) = C5 '~ 4+ o(t'~),

where:

(4.20) Cf =—

T(—1+ 20— 2yp(1 — 1) v Bi A\ (B3 .82.65)
(gg (o1 — Z) — 91 (02 + o 4)> H(al—;crz,ffs)'

Similarly by setting t = 1 we get:
(B1,82—%,83)

(01—%,02—F,03)"

(4.21) Bi=H

The connection formula (A.8) between Cy, C5F, and By then implies the shift equation (4.2) for
X = 3 in the range of parameters constraint by (4.8) and (4.16), after performing furthermore the
replacement o1 — 01 + % and o9 — o9 + % (which also rotates the domain where o1, 02 belongs).
To lift these constraint we then invoque the analyticity of H as a function of its parameters given
by frop;sition 2.8. We have thus shown that (4.2) holds for y = 3 in the parameter range given
by (4.14).

2The values excluded here are recovered by a simple continuity argument in ~.
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Now we repeat these steps with H 1 to obtain the shift equation with the opposite phase. We
expand ﬁ% (t), for t € (0,1)
(4.22)
Hy(t) = CiF(A,B,C,t) + C3t'""“F(1+ A~ C,1+ B—C,2 - C,t)
= BF(A,B,1+ A+B-C,1-t)+ By (1-t)°"4BF(C—-A,C-B,1+C—A-B,1-1)

and compute in the same way the values of Cy, C’; , BQ_ :

(B1—3,62,03)

(c1+3,02,03)°

(423) Ci1=H

. T(-1+2 - 3)r( -2 gl ﬁl (B1+3.,82.55)
(4.24) Cf =~ T ;}) <g;(01 + ) —g3loe— o+ 4)) Higy i3 nirs)
L T(=1+ 22— (1 — 2 B (B1,Ba+1.55)
(4.25) By = — - jj) <g;(03) —gz(o2 + 2)) H(allé,g;;ag)
)

OO'J;

Then the connection formula (A.8) implies the shift equation (4.3) for x = 3. O

Remark 4.6. Notice that the two shift equations we derive using respectively H, and ﬁx do
not have exactly the same shape, the reason being that in the proof above we used the connection
formula between the coefficients C1, C;', By to derive (4.2) and we the connection formula between
C’l, 02 ,32 to derive (4.3). One may wonder why we did not use the connection formula between
01,02 By in the case of Hx as well. The main reason is that with this choice it is possible
to perform a certain linear combination of the shift equations (4.2) and (4.3) to obtain a shift
equation of H shifting only the parameter 51. This will be crucial to be able to argue a uniqueness
statement for the solutions to (4.2) and (4.3), see the proof of Theorem 1.1 at the beginning of this
section and [RZ21].

4.3. The J-shift equations for R. The next step is to derive the 3-shift equation for the reflec-
tion coefficient R. The key idea is to take a suitable limit of the 3-shift equations for H that we
have established in Lemma 4.5 to make R appear from H. For this purpose we give the following
result expressing R as a limit of H.

Lemma 4.7. Suppose the B; are in the range given by (4.12) and the o; in B. Suppose Q > (31 >
B2V 4 and p1 — Bo < B3 < Q. Then the following limit holds:

sl (Bt By = BOH( 2 = 2R (B, 01, 00).

The proof of this lemma is carried out in Appendix C. We are now ready to prove the 3-shift
equation for R.

Lemma 4.8. Consider 1 € (3 V (% -3, %) and 01,09 € C such that 1,092,092 + 7 all belong to
B. Then R(fB,01,02) obeys

(4.26)

R(p1,01,02) = — 2 1 7)) (gg(al)—gg(@—l-gl)) R(/31+%701,02+
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Similarly for 1 € (0V (% -), % — 1) and the same constraint on 01,02 as previously,

(4.27)

I(—1+20pQ -2 2
R+ Juonon+ ) = -H LSS 20 (g 00) - gy (02— 2 ) RO+ min,00)

4 r(-%) 2

Proof. Let us derive the first shift equation (4.26) which will follow from taking a limit of (4.2). Fix

afre(3V (% -3, %) Consider two parameters €, > 0 chosen small enough and set 3 = 81 — ¢,
B3 = B1— P2+ 3 +n = 3 +e+n. Notice that for this parameter choice the condition (4.14) required

in Lemma 4.5 is satisfied. By applying Lemma 4.7 we get:

_
lim (B2 + fs—f1 — %)H((ﬁl’62 28) _ 2R(B1,01,02),

B3lf1—P2+3 01,02,03)
2 2
lim  (BatfBs—Bi—2) L5 — D0 =22 + ) (h=35) _
2 2 o1,00+2,0 ’
B3l B1—P2+73 2 I‘(’YTﬁl + (g — 1)%)F(1 _ %62 —(q— 1)%)) (01,02+7,03)
2 2 2
lim (Bt fs— - )| PR GOP(L - 22 4+ IP(=1+ B - )T - 3
2 2 2
BslBr—Bo+3 2 L1402 = 361+ B2) — (¢ —2))T(=7)
B (B1+3,52,85)
S CTOETACRE ) rapicrs

- (gg(al) —93(o2 + 621)) R(B1 + %,01702 + %).

In the above three limits the second one is actually trivial, only the first and third involve using
Lemma 4.7. Putting these limits together using (4.2) leads to (4.26). By using the alternative
function ﬁ% (t) along the same lines we obtain the relation (4.27) between R(81 + 3,01,02 + )
and R(p1 + v, 01,02). Hence this implies the claim of the lemma. ]

4.4. Analytic continuation for H and R. In this subsection we will analytically extend the
functions H and R to a larger domain of parameters than the one we are currently working with.
For this purpose, we must first derive the so-called reflection principle for H and R which will be
obtain by performing the OPE with reflection in the case xy = 3. We rely extensively on Lemma
E.2 giving the Taylor expansion using the reflection coefficient. Finally we also extend the validity
of Lemma 4.7 to a larger range of parameters.

Lemma 4.9 (Reflection principle for H((fllfjfs))) Consider parameters o1, 09,03, 1, B2, B3 satis-
fying the parameter ranges (4.12) and (4.13) for H((fllfjf;)) and R(B1,01,02) to be well-defined.
Then one can meromorphically extend 1 H((fllfjfg)) beyond the point 51 = Q by the following
relation:

(B ’B 75 ) _ (2Q_5 76 76 )
(4.28) H(01170227J§’) = R(f, 01, JQ)H(017027;3)2 3)

The quantity HER—PLB2B) o ypas well-defined as long as the parameters ofH(ﬁl’Bz"BB) and R(B31,01,02)

(01,02,03) (01,02,03)

respectively obey the constraints of (4.12) and (4.13). Similarly, for 1,09 € B, we can analytically



36 MORRIS ANG, GUILLAUME REMY, XIN SUN, AND TUNAN ZHU

extend 1 — R(B1,01,02) to the range ((% -HVvI,Q+ (% A7) thanks to the relation:
(429) R(ﬁlaalaoé)R(QQ - 51701)02) = 1.

Proof. Throughout the proof we keep the same notations as used in the proof of Lemma 4.5 for
the solution space of the hypergeometric equation satisfied by H 1 (t) for t € (0,1). We assume the
parameters f3;, o; obey the condition (4.8) in order for H 1 (t) to be well-defined. We also add the

condition f; € (Q — By, Q) so that we can apply the result of Lemma E.2 and identify the value of
C5 to be:

(2Q—B1—%,82,83)

(01—7,02,03)

(4.30) Cf = R(B1,01 — %,ag - %)H

The key argument is to observe that since by Lemma 4.4 5y — H ! (t) is complex analytic so is the
coefficient C’; . By using this combined with the analyticity of R and H, we can extend the range of
validity of equation (4.30) from 31 € (Q — fo, @) to 51 € (%, @), still under the constraint of (4.8).
Now equation (4.20) derived in the the proof of Lemma 4.5 gives us an alternative expression for
C’; , which is valid for 5y € (%, %) The analycity of 51 — C’; in a complex neighborhood of % then
implies that one can “glue” together the two expressions for C’; . More precisely, after performing
the parameter replacement o; — o; 4 7 for i = 1,2,3, the equality

(4.31)

2

[V

B _ A2 181
2Q-p1-3.82.85)  D(—=1+ 15+ — 9)I'(1 - 2F) B (B1+%.82,83)
R(ﬁl’01’02)H(U1,02-¢%ff3-‘i%; - 2F(—i) : (g%(gl) —gg(dg—l— ) H(011,022+%2,0§+%)’
4

provides the desired analytic continuation of H. To land on the form of the reflection equation given
in the lemma one needs to replace 31 by 1 — 3. This transforms R(f1, 01, 02) into R(f1 — 3,01, 02)
which we can shift back to R(f81,01,02 + ) using the shift equation (4.26). Lastly we perform
the parameter replacement oo + % to o9 and o3 + % to o3. Therefore this implies the claim of the
reflection principle for H. The claim for R is then an immediate consequence. ([

At this stage we will use the shift equations we have derived to analytically continue H and R
both in the parameters 8; and o;. The analytic continuations will be defined in a larger range of
parameters than (4.12) and (4.13) required for the GMC expressions to be well-defined. The proofs
follow closely the ones of [RZ21]. We start with the case of R which is very straightforward.

Lemma 4.10. (Analytic continuation of R(f1,01,02)) For all 01,09 € B, the meromorphic func-
tion B1 — R(B1,01,02) originally defined on the interval ((% —3)V3,Q) estends to a meromorphic
function defined in a complex neighborhood of R and satisfying the shift equation:

(4.32)
2 2
R(fr,01,02) 1)4F(—1 + 2% O - % - Oy - Br(-1 + %)
R(B1+7,01,02) 2 sin(r2)0(1 — 22

x 4sin(g(§ —o1-02+Q)) sin(g(g + o1+ 02— Q) sin(g(g + 03— 01)) sin(g(g + 01— 02)).

Furthermore, for a fized 1 in the above complex neighborhood of R, the function R(fS1,01,02)
extends to a meromorphic function of (o1,02) on C2.

Proof. This proof is performed in [RZ21] but we sketch it below as it is quite short. Fix first
the parameters 01,09 in B. Thanks to Proposition 2.12, 81 — R(f1,01,02) is meromorphic in a
complex neighborhood of the real interval ((% —3)V 3,Q), and thanks to the reflection principle
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given by Lemma 4.9, it is meromorphic in a complex neighborhood of ((% -VvIQ+ (% A7)).
Note that the length of this interval is strictly greater than .

Combining the two shift equations of Lemma 4.8, we obtain the shift equation (4.32) relating
R(B1+7,01,02) and R(f1,01,02), which does not shift the o1, o9 parameters. Since R(/31, 01, 02) is
defined in a complex neighborhood of a real interval of length strictly bigger than -, the shift equa-
tion (4.32) can be used to meromorphicaly extend 1 — R(f1,01,02) to a complex neighborhood
of the whole real line.

Now for any S fixed in this complex neighborhood of R, we perform the analytic continuation
to C2 in the variables o1, o9. For this one can simply apply either of the shift equation of Lemma
4.8. This is possible since the band B has width strictly greater than 7. Hence the result. O
Lemma 4.11. (Analytic continuation of H((fllfjgg))) Fiz o3 € [—% + %, % + % — 3] xR and

fix 01,09 € B. Then the function (1, 52,03) — F(BrP2,8) originally defined in the parameter

(01,02,03)
range given by (4.12) extends to a meromorphic function of the three variables in a small complex

nez’ghborhood of R3. Now fiz 51, B2, B3 in this complex neighborhood of R3, keeping o3 still fized in
[—5 + 2 , 27 + 3 Q — 3] x R. The function (o1,02) — HPP2B3) ypen extends to a meromorphic

(01,02,03)
functzon of C2.

Proof. This proof follows exactly the proof performed in [RZ21] with one notable difference, which
is that we are not able to use an extra property on the o;. Indeed, in the case ¢ = 0 when H has
an expression reducing to a moment of a boundary GMC measure, if one adds a global constant to
each of the o; the function H is simply changed by a global phase. In our case this property does not
hold which is why we are not able to perform the extension in the variable 3. Notice though that
once Theorem 1.1 is established, the exact formula Hpr implies that H extends meromorphically
in all its parameters to CS. U

We finish this subsection by extending Lemma 4.7 to a larger range of parameters that will be
required for the next subsection. This is a novel difficulty that was not present in [RZ21] because
in our case we had to perform a truncation procedure to define H and R while in [RZ21] they
simply reduce to a moment of GMC.

Lemma 4.12. Suppose B1, B2, B3 satisfy QQ — %Zl B; < % Aming(Q — B;), @ > 1 > B2V 3 and
B1— B2 < B3 < Q. Let also o1 € B and 02,03 € B. Then the following limit holds

i _ (B1,82.83) __
53—1>1,§{1—ﬁ2 (IBQ + IBB Bl)H(Ul,og,o'g,) - 2R(/Bla a1, 0'2)7

where the function R should be understood by the analytic continuation given in Lemma 4.10.

Proof. Lets check one step of the proof. We will use the shift equation

(4.33)
2 2

(Bi.Ba—T1.8s) [(2% — 01— 222 + 2) (51=3.02.60)

01,02,0 - 2 2 01,09+1,0

R @ DI0A - 362~ (a = D) o)

T2+ 2 — 18970 + 2T (—1+ 2 - 21— 2 3 (Brt1 8o f
SpAChar p T > ke y LA e Tee (72 2 ((g;(al) 2 (o2 + 1)> H 2 QU:))

D1+ 20 5(51 + B2) — (¢ —2))I'(—F) R
(B1+73,52,63)

Lets assume that the parameters of H, are such that the range of Proposition 2.7 is

(01,0247 ,03)
satisfied and such that 1 € ((Q —v)V 3, Q). By taking a suitable limit, we can derive the limiting
statement for 51 € (Q —37) VvV 1,Q) which extends the probabilistic range.
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_
A few things to be careful about. First, the term H (B13.52.55)

(01,024 7F,03)
For this to happen, first the parameters must be such that there are no poles in the gamma
functions in the prefactor. This is true for 81 € (3,Q) and B2 < Q. The fact we really need to

double check is that H(ﬁr%’ﬁ%ﬁ?’)

(01,0247 ,03)

needs to disappear in the limit.

has no poles at the given point. This should be true thanks to
(B1—%,52,83)

has
(01,024 7F,03)

the shift equation as well, since there are no poles in the probabilistic range and H

been defined by the shift equation which prescribes all the poles.
O

4.5. The %-shift equations for the reflection coefficient. Finally we will derive the %—shift
equations on R(f1,01,02) that will completely specify its value.

Lemma 4.13. (%-shz'ft equations for R(f1,01,02)). For all 01,09 € C, the meromorphic func-
tion B1 — R(B1,01,02) defined in a complex neighborhood of R satisfies the shift equations in
Theorem 4.2 with x = %

We are now working exclusively with the choice y = % There are two steps that will each require
their own range of parameters. We first place ourselves in the following range that will allow us to
apply the OPE with reflection of Lemma E.2 around the (; insertion at 0:

1
(434) te (07 1)7 /Blaﬁ27/83 S (Q — € Q)) 01,02 S /LR"_ % + %, o3 € B

In the above € is chosen small enough, smaller than the constant 5y required to apply Lemma
E.2. We can thus expand Hz (t) on the basis, for t € (0,1)
Y

(4.35)
H:(t) = C1F(A,B,C,t) + Ct* " “F(1+ A-C,14+ B—C,2 - C,t)
Yy

= B F(A,B1+ A+ B—-C1-t)+B;(1-t)* 4 BF(C-AC-B1+C—-A-B,1-1),

where again Cf, C’; ,B1, B, are parametrizing the solution space around the points 0 and 1. As
before by sending ¢ to 0 and to 1 one obtains:

_2 . _2 3.
(4.36) C1 = H»(0) = H(ﬁl =.B2,83) Bi=H(1) = H(ﬁhﬁz =.83)
~

(01-3,02,03)’ 3 (01-3,02—73,03)"

Since the condition required for Lemma E.2, 81 € (Q — o, Q), is satisfied one then derives:

1 1 20— F1—2 s,
(4.37) CEZRWMH—MQ—H#QmW@&)

vy (01—%702703)

Similarly, we can apply Lemma E.2 around ¢ = 1 and get:

(51,2Q—52—%,53)

(01—%,02—%,03) ’

(438) B; = R(ﬁg, g9, O'3)H
The quantities Cy, B, , C; identified above are then related by the connection formula (A.8):

T'(C)T(A+B—C)
T(A)T(B)

I'(2—C)(A+B-C)

(4.39) By = [(A-C+1)[(B-C+1)

Ch + C;_
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We repeat the same procedure to identify the coefficients D; ,C5 using the same parameter
ranges as before except with ¢ € (—o0,0):

1
(4.40) t e (—O0,0), 51,ﬂ2,,@3 S (Q — G,Q), 01,09 € iR+ % + %, o3 € B.

For t € (—00,0), H2(t) can be expanded on the basis:
Y

(4.41)
Hs(t) = C1F(A,B,C,t) + Cyt" " “F(14+ A—-C,14+ B - C,2 - C,t)

2
5

= D1 ™ AF(A 14+ A-C 1+ A—-B,t™ )+ Df ™t BF(B,1+ B—-C,1+ B - A,t™}).

The coefficients Cy D; have expressions given by:

B —in(1-2814 4 (2Q—B1—2,82,83)

(4.42) 9 =€ ' v R(ﬁl’gl’o-Q)H(ol—%,UQZTS) ’
1 (B1,82,2Q—B3—2)
(4.43) D;_ = R(B3,01 — g’US)H(Ji,U;Uz&) e

Using the connection formula (A.7) we can write this time:

. T(O)(A-B) (2 — C)I(A - B)

4.44 Dy = ——F—1——°~ im(1-C) ;.
(444) 2 = FAyrC BT e TI-BT(A-C+1) 2
By eliminating the coefficient C; we obtain the relation:
(4.45)

I'(B) _ T(C-B),, re-o) I'(B) L em=9re-B)
N et R T e Gy = Cy
I'A+B-C) I'(A - B) rMA-C+1)\I'(B-C+1) I'(l1 - B)

Let us state this identity as a lemma where the constants B, , D; , C;r , and C5 have been replaced
by their explicit expressions in terms of H and R.

Lemma 4.14. The following identity holds:

(4.46)
I'(B) (B1,2Q—p2—2,8) T'(C' — B) 1 (B1,82,2Q—B3—2)
P(A + B — C) R<ﬁ2, 72 U3)H(U1—%702—%,03) o F(A _ B) R(Bfia 01 — ;’ U3)H(a1,02,03)
. T@2-0) [ Q-p1~2p.6) I'(B) 1 1
T(A—C+1) (o1=50203) r'(B-C+ 1)R(5l"’1 T 7)

eiﬂ(lfC)F(C o B) —iw(l—%
T(1—B)

44
v? )R(Bly 01, 0-2)>
This identity is originally derived in the range of parameters

1
(4.47) B1Bas By € (Q — €,Q), al,agez‘w%@, oy € B,

but it can be viewed as an identity of the meromorphically extended functions H and R, the exten-
ston being provided by Lemmas 4.11 and 4.10.
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The next step is to use again the limit H goes to R to derive from the above equation a relation
on R. This requires to change the parameter range on the 3; in order to apply Lemma 4.12 giving
R as a limit of H. Let us now take

. 1
(448) /81:/86(777)’ /82:%—1_777 ﬁ3:Q_B7 0162R+2,}/+§7 02703667

and study the asymptotic as n — 0. The functions H and R appearing are viewed as defined by
the meromorphic extension of Lemmas 4.11 and 4.10. For the above choice of parameters

4 4 2 4 2 4
Y R
and the two H functions that we are going to apply the Lemma 4.12 to are
(2Q—p1—2,52,53) _ H(QQ*/B*%,%JWLQ*@

H (B1,62,2Q—fB3—-2) H(ﬁ’%+n’%+ﬁ)
(01_%702703) (01—%70'2,0'3) .

(01,02,03) = 7 (01,02,03)

, and H

We compute the following limits, the last one is trivial and does not require using Lemma 4.12.
(4.50)

2R(ﬁ + %7 01, 03)

(ﬁ+Q70—1 - %,0'3)7

. 1 v
%I_IE%]UD;_ = QR(Q_ﬁ,Ul - 5703)R(/B+§7O_170’3) = R

(4.51)
_inr(1=284 4
lim nCy 2e_i”(1_¥+%)R(5 JR(2Q — B 2 ! ) 2e +W2)R(5701702)
= ,01,02 - - 01— —,02)= P
n—0 2 v vy R(ﬁJr%,Ul—%,Uz)

(4.52)
. 2p— 41 b
%1_1)1(1)77 B; = 4%1_%7]}%(2 +n,02,03).

Putting all these into (4.46), we get:

N2 - %) > (1-L+2) R _1
—4 . 4’y2 lim nR(l + n,02, 03) + ’);/B ( : ;— : ) (570’1’0’31 4) vy
D(=2) n0" 2 -2y -2 R@B+20-105-7)

2v(1 - % + %2) R(B,01,02)

F( _2) R(IB+%7017%702)'

After simplifications one obtains:

4.53 1 R(ﬂaalan) R(ﬁaalvag - %)
(4.53) P(-1+2 —4ra-2ZY\RB+2,01-L,00) RB+2,01—-L03-73)
7 AP v v 91T 02 7017 50371
2 . vy
=1 - :
%) lim (5, +1,02,03)

We want to determine the function on the right hand side of the above equation. It is natural to
use the 3-shift equation (4.26) on R to write:

r(-1+3ra-3 -3
( 5T ( r— %) (g%(02)_g%(g3+l+ﬂ)) R(’y+77702703+1)-

R(l+77,02703):— 113 1

2 P(=7)
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Simplifying the limit, one gets:

: v 21— v v
ggmm2+mwwa—7(Yn@g@>gy@+4Dmeﬁﬁ+4y
We now introduce the shorthand notation R(S3, 01, 02) = % By taking o3 = 09 — %

Y
n (4.53), since lim, o nR(F +n, 02,02 — ) = 0, we obtain that R(B,01,02) is 3-periodic in os.
At this point we will use an extra input form the mating-of-trees framework which will give us the
explicit value of R(v, 02, 03).

Lemma 4.15. Suppose ~? is irrational. For some constant cy depending only on -y we have:

cos(4Z (o — 2)) — cos(4 (o' — &
R(v,0,0") = ¢, il é)) (T —3))

cos(ym(o — %)) — cos(ym(o — %))

We defer the proof of this lemma to Appendix D.3. Using this lemma we can complete the proof
of Lemma 4.13. Below the constant ¢, of v can be different at every line. Using the previous lemma
we can compute:

lim nR( +1,02,03) = cy <COS(7T’Y( o3 — %)) — cos(my(o3 + % - g))) R(v, 09,03 + %)
27 ¥ s 2
. Ty Yy . ™y Y Sln(?( 3+Z_0'2))S (7(0'34- +O'2—*))
=cysimm(— (o2 + 03+ — — sin(— (o9 — 03 — =) —==
Y (2(2 37Ty Q)) (2(2 37 sin(34F (03 4+ 7 — 02))sin(G (03 +  + 02 — 3))
. 2T vy 27 2
=cysin(— (o3 + — — 09)) sin 03+ 4+ 09— =
sin( (o5 +  — o) sin(~ (0 + § 402 =)

27 2 2T 2
=cy (cos( S (209 — ;)) — cos(— 5 (203 + 5 - 7))) .

Therefore we land on:

(4.54) R(B,U1,02)—R(5,01703_%)

=c,I'(— B_4 _2% 00821 U—g —0052 o v_2
—er1+ 2= e - 2 (eos Pz - 2)) - eosE 2o + - 2).

By setting o3 to any fixed value, the above equation implies the following claim

26 4 20 2m 2
4.55 R(B,01,02) =c, I'(-1+ — — 5 )I'(1 — —) cos(— (202 — —)) + u(o1, 5,7),
(4.55) ( ) = I'(= S 72)( 7) (,y( 7)) ( )
where u(o71, 3,7) is an unknown function that does not depend on 9. It thus remains to evaluate
this function u. For this we will use the fact that we know that R(S,01,01 — g) = 0 which can be

easily deduced from the I-shift equation (4.26). Indeed, this is clear since the right hand side of
(4.26) is zero when oy = 01 — g Thus this implies that:

286 4 28 2 2

u(or, B,7) = —c,I(=1+ == — —)T(1 — ==) cos(— (201 — B — —)).

(01,8,7) A= y 72)( 7) (7(1 7))
Now renaming as cz () the unknown function of 7, we have thus shown that:

vy

R(B,01,02) 26 4 2 < 5)
4.56 =c N(—1+22 - -2 o) — o1 — V).
4%6) iy o = a1 2= =20 (g(om) — (o = )
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Similarly by working with auxiliary function I:IX(t) yields the shift equation:

(/8"1' 1 0'2) _ 28 23 4 5
e e S SUURE ) (5200 - 0301+ ).

This completes the proof of Lemma 4.13.

4.6. Proof of the %—shift equations for H. In this last step we complete deriving the shift

equation for H in the case where y = %

Proof of Proposition /.1. First the claim on the meromorphic extension of H has been obtained in
Lemma 4.11. Next the shift equations come from applying (A.8). The first comes from the relation

(4.57)
C(x(B1 = x)T(1 = xB2 + x*) L2 —xB1+ x*)T(1 = xB2+ x?) o

By = Ci + :
PTG X gD = xBe+x2— ) T T+ DOT(2 — x (B + B2 — 2x +43)) 2

and the second can be deduced by using:

(4.58)
XA =P+ X = X*) 4 P2 —xBi+xX*)0(=1+xB2 —X*) =4
0.4

- Cy.
e g )T (- 1+x(51+52—2x+q2)) ' F(l—x(ﬁl—x+q%)F(Xﬁz—x2+Q%) ?

We have already derived them in the case of x = 4 in Lemma 4.5. Setting now x = 3, we similarly

identify the constants By, Cq, 02 ,B2 ,Cy, C’2 . For C'2 ,32 ,C;r we use the result of Lemma E.2
which gives us an expression with both an H and an R function. For instance:

1 1 2Q— _27 )
C;:R(ﬁ17017702)H( Q—-p1 7,3253).

vy (0’1—%,02703)

(514%752753)

(91~ 72,03) and no R function, we will need to apply

R(f1,01— }v’ 2— 1)

R(ﬁﬁrwal*% o2)

reflection principle given by equation (4.28). The same strategy can be applied to CN';F and Bg_ .
This allows us to write:

To obtain an expression for C’; involving H

the shift equation on R given in Theorem 4.2 to simplify the ratio and then the

2 I(=1+xb1 — (1—-xp X B X ,
CF =xn ! QM) (g = %) = gyl + 2= X)) 50
r(1— 23 R
(4.59)
. a1 D(=1+ xB1 — xA)T(1 — xB X B B2,
O =R (o + ) -andon = + ) HEYRE)
P — 223 b
(4.60)
~_ 2 D(=1+xB2 — x*)I(1 - xfB) B2 Botx,
B2 —X27T’Y P( _’ﬁ)%{ gX(Ug) gx(02+ ) H(fllf%;;f%)ﬁg).

Putting all these into (4.57) and (4.58) proves the shift equations stated in the proposition. [
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APPENDIX A. BACKGROUND ON SPECIAL FUNCTIONS

A.1. The hypergeometric equation. Here we recall some facts we have used on the hyperge-
ometric equation and its solution space. For A > 0 let T'(A) = fooo tA=1e~tdt denote the standard
Gamma function which can then be analytically extended to C \ {—N}. Record the following
properties:

7T

(A1) T(A+1) = AT(A), TAN( - A) = 2o, TN+ %) = V721 2AD(24).

Let (A), :== Fgféjg)" ). For A, B,C, and t real numbers we define the hypergeometric function F by:

(A.2) F(A,B,C,t):=) Wt”.
n=0 n

This function can be used to solve the following hypergeometric equation:

2
(A3) ((1—t)$2+(0—(A+B+1)t)Z—AB) £(t) = 0.

We can give the following three bases of solutions corresponding respectively to ¢t € (0,1), t €
(1,400) and t € (—00,0). Under the assumption that C and C' — A — B are not an integers, for
€ (0,1) we can write:

(A.4) f(t)=C1F(A,B,C,t) + Cft' " F(1+ A-C,1+ B—-C,2 - C,t)
= BF(A,B,1+ A+ B—C,1—1t)
+B,(1-t)" 4 PF(C—-AC-B1+C—-A-B,1-1).
Moving next to ¢t € (1,+00), under the assumption that C' — A — B and A — B are not integers:
(A.5) f(t)=B1F(A,B,1+ A+ B—-C,1—-1)
+Bf(1-t)"4PF(C—-AC-B1+C—-A—-B,1-1)
=Dt A F(A,1+A-C,1+A—-B,t™
+D;t BFR(B,1+B—-C,1+B— At ™).
Lastly for ¢ € (—00,0), under the assumption that C' and A — B are not an integer:
(A.6) f(t)=C1F(A,B,C,t) + C; ' " F(1+ A—-C,1+ B—-C,2 - C,t)
=Dt A F(A,1+A—-C,1+A—B,t7}
+DJt PF(B,1+B—-C,1+B—A,t ™).

For each of the three cases we have four real constants that parametrize the solution space, namely
Cq, C;, By, By, By, B;‘, Dy, D5 and Dy, D;, C1,C5 . We thus expect to have an explicit change of
basis formula that will give a link between Cf, C; , B1, By, and similarly for the two other cases.
This is precisely what gives the so-called connection formulas,

F(1—C)[(A—B+1) T(1—-C)T'(B—A+1)
A7 Ci1\ _ [ Ta—cynra-s B—C+1)I( Dy
(A7) o)~ FgC—l)F(A—BJrl; I‘EC—l)I‘(Bf/Hl; Di)
2 T(A)T(C—B) T(B)I[(C—A)

I(C)I(C—A-B) T(2-C)[(C—A-B)

A8 By\ _ [ T(c=AT(C—B T(I-A)(1-B) C1

(A.8) B~ FEC)F(AJrchg I'(2—C)T'(A+B-C) ct )
2 T(A)T(B) T(A—C+1)I'(B—C+1) 2




44 MORRIS ANG, GUILLAUME REMY, XIN SUN, AND TUNAN ZHU

Note that in our present case we have Cy # Cy, By # By, D # D, which is why we must
be distinguish three cases based on which interval ¢ belongs to.

A.2. Double Gamma and Sine functions. We will now provide some explanations on the
functions F%(x) and 53 (x) that we have introduced. For all v € (0,2) and for Re(z) > 0, F%(l‘) is
defined by the integral formula,
Qt
0 It —xt _ — % Q—{L‘Q l‘—Q
(A.9) lan(m)—/ = S Gl 1
’ o tli-—eE)1-e7) 2 t

where we have Q = 3 + % Since the function I' 1 (z) is continuous it is completely determined by
the following two shift equations

Fl X x yr | 1
(A.lO) Fv(;«"("i')’zy) B \/zﬂr(é)(g)_2+27

Fy(z T 220 _ 1
(A.11) ) 1 p(l)(l) Y2,

Py(z+2) Vor v 2

and by its value in %, Ly (%) = 1. Furthermore z — I'y (z) admits a meromorphic extension to all

of C with single poles at © = —nJ — m% for any n,m € N and F%(az) is never equal to 0. We have
also used the double sine function defined by:
A s 3@
A2 =
(A12) O
It obeys the following two shift equations:
A3 —2 = = 2sin(— 2 - = 2sin(=—
( ) 5 @ sin( 5 x), 55 @ sin( 5 x)
The double sine function admits a meromorphic extension to C with poles at x = —ng — m% and

with zeros at x = Q + n3 + m% for any n,m € N. We also record the following asymptotic for

S%(x):

as Im(z) — oo,

—iZz(z—Q)
e '2
A4 S ~< x
( ) %(x) {612&7@_@) as Im(z) — —oc.

A.3. The Ponsot-Teschner function. We detail here some properties of the exact formula
Hpr given by equation (1.8). What needs to be understood properly is the contour integral in the
expression of Hpr, for convenience we introduce the notation:

(A.15)
7 /S;(—%+02+03+T)S;(Q—@2+03—02+7’)5g(@3+03—01+7’)5g(Q— B tos—a1+1)ar
PT =
C

S1(Q+ 3 —F+o03—01+71)5;2Q -G — B +o3—014+7)53(205+7)53(Q+r) P

The functions Hpr and Jpr are then related by an explicit prefactor containing the I' 1 and S 1
The contour of integration C in Jpr goes from —ioco to 100 passing to the right of the poles at

r= —(—%—i—ag—kag)—n%—m%, r= —(Q—%—FU?,—O'Q)—N%—TR%, r= —(%+03—01)—n%—m%,
r= —(Q—%—l—ag—al)—n%—m% and to the left of the poles at r = —(%1—%2—1-03—01)4-71%—1—771%,
r=—(Q- 52—1—%—1—03—01)—{—12%—#—171%, r= —(203—Q)+n%+m%, r= n%—i—m% with m,n € N2.

The following lemma verifies that the integral is converging at +ico.
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Lemma A.1. The integral in (A.15) is absolutely converging at +ioco.

Proof. We need to determine the asymptotic in 7 of the integrand of the contour integral as r goes
to +ico. For this we simply need to use the asymptotic of S 1 given by equation (A.14). Using this
fact, one obtains that the integrand as r — +ico is equivalent to ¢;e*™@" and as r — —ioco to
c2e 3@ for some constants ¢, ¢y € C independent of 7. Since @ > 0, the integral is absolutely

convergent. O

We now state a lemma giving the poles of Jpr, viewed as a meromorphic function over C% of
its six parameters 1, 82, 83,01, 02, 03.

Lemma A.2. The poles of the function Jpr occur when ¢ = ng + m% where n,m € N and ¢ is
equal to any of the following
B1

B1 52 B2

5 — 01— 02, Q-5 —o1—oy, —o2+o03—-Q, 5 — 02— 03,
—Q+U2+*—U1, o2 — 01 — '61 —2Q+&+03+02» —Q+72—03+027
b_B_5 Q_%_%_%a Q-2 +o3+01, —% o5+ 0y,
Q+8-24+58 BH_40_5& 2Q+5 to34+01, —Q+Z 0340
Proof. The proof exactly the same steps as the one given in [RZ21]. O

From here it is immediate that Hpr is a meromorphic function on CS.

Lemma A.3. The function Hpr is meromorphic on C® as a function of the siz parameters
B, B2, B3, 01,02, 03.

Proof. In Lemma A.2 we have established that Jpr is meromorphic on C® with prescribed poles.
Since Hpr is equal to Jpr times an explicit prefactor containing I’ 1 and S 1 functions which are
meromorphic, this implies the claim. ]

For the purpose of proving Theorem 1.1, we establish the following two facts about Hpr.
Lemma A.4. The function Hpr satisfies the shift equations of Theorem /.1 satisfied by H.

Proof. Recalling (1.8), we introduce a function ¢ in the following way

(A16) HPT (ﬂlaﬁ%ﬁi’a) _ /(p(51752,53)(r)dr7
C

01,02,03 (01,02,03)

(B1,62,83)
(01,02,03)

(1.8) times the prefactor in front of the integral (which does not depend on 7).
Checking that Hpr satisfies the shift equations of Theorem 4.1 is equivalent to checking the
following shift equations,

where here ¢ () contains the r dependent integrand of the contour integral [, present in

(A.17)

I (51, B%ﬂ:&) _ C(x(Br — x)I'(1 = xB2) I (51 - X, B2+ X753>
" \o1,02,03) T~ ¥(Bo+ Fs — BT3B+ Bs — B2 —2x)) T\ 01,02+ %, 03

. ( mul () > ' L(1— xB)L(1 = xB)
LU=/ sin(mx(x = AT+ X(Q = FIT(1 = $(B1 + B2 — B))

X 2sin(ﬂx(% +o1+02—-Q)) sin(wx(% — 01+ 02))Hpr < o100+ X 0g
’ 2

B1+x, B2+ x,83

).
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and:
(A.18)
2 2y \
X? (H) ['(1—xp2)2 sin(ﬂx(% +o94+03—Q)) sin(wx(% + 09 — 03))Hpr (Bla—*l_,i;;ﬁj ‘)5)((;353)

L'(xp1) b1, B2, B3
I(X(8—-2Q)T ( (B1+ P2 — 53))HPT <01702,U3>

9 ( qu(“’%) ) 25111(77)((& —o1—02+Q)) Sln(WX(Bl + 01— 09))0(1—xB1 — x?) (,81 + 2x, 5%53)
- X Hpr .

T(1-2) sin(mx A1) (5 (B2 + B3 — B1 — 2x))I'(L = 3(B1 + B3 — B2)) 01,02,03

This formulation of the two shift equations has been derived from Theorem 4.1 by shifting S5 to
B2+ x in (4.2) for the first and shifting 51 to S1 + x in (4.3) for the second. We have also used the
explicit expression (4.1) for g, and written the difference of cosines as a product of sines. We now
compute the following ratios of ¢,

(Bl_x’ﬁ2+x’ﬁ3)(7’)

(01,024+%,03)

CD(3(B1+ B3 — fo—2x))T (1 — §(B2+ B3 — 1))T(1 — xB1 + x?)

(A.19) -
Pl (r) 7T (1 — xPBa)
i @ B2 o
csin(rx(2 — 01— o) TN H 3 TN 20 1),
2 sin(mx (5 + 02 — 03— 1))
(B1+x,B2+x,83) _X
(A.20) 7Loxts.os) ") _ il () \ T T4 x(Q = DID( = X (B + Bo — By))
(517527/33)(T) (1 B ’ﬁ) 1‘\(1 _ Xﬁl)r(l — X/BZ)
¢(01702703) 4

sin(my(3 + % — x+ 01— 03— 7))

X .
251n(7rx(ﬁ1 X+o1+ 02)) sin(mg(%2 +o9—03—1))

If we plug these expressions into equation (A.17) and regroup the terms on one side we get:

(A.21) /dr @Efifif‘;’;(r) [Sin(ﬂX(%._ T 02))‘Sin(7rxﬁ(—521 +F+oi—oyr)
c o sin(mx (81 — x)) sin(mx (5 + 02 — 03 — 1))

sin(ﬂx(% — 01+ 02)) sm(mg(ﬁ1 + 52 —x+o1—03—71))
sin(mx(B81 — x)) 51n(7rx( +09—03—71))

We can verify with some algebra that the integrand of the above integral equals 0, hence (A.17)
holds. To check the second shift equation, we will need additionally the ratio:

(A.22)
Aoroncs ) _ o (D)) D(L+X(Q = S)T(L = §(B1 + B2 — )
Plororan() ra-2%)) TGG A - B0 5B+ B~ B~ 2000 — xBi — x)
(A.23)
1 sin(wx(%+%—x+ffl_03_r))

X .
L1 —xpB1) QSin(ﬂx(% + 01 —02)) Sin(wx(% + o1+ 02— X)) s.1n(7r><(61 ’%2 +x+o3—01+7))
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Substituting this time into equation (A.18) and regrouping terms on one side we get:
I'(xB
S .2, e
D3B8 =2Q)I(3(B1+ B2 — B3)) Je ’
[sin(ﬂxﬁl) sin(ﬂ'x(% — X+ o2+ 03)) sin(ﬂx(% + 09— 03)) Sin(7r)((%1 + % —Xx+o1—03—71))

sin(mx(2 — X)) sin(%X (1 + B2 — B)) sin(mx (% — x + 01 + 02)) sin(mx (% + 05 — 05 — 7))

i (B + By — B2) sin(ZE (B + By — B — 2x)) sin(mx( % + x — 01 — 02)) sin(mx( + % — x+ 01— 03— 1)
sin(x(5 — X)) sin(ZX(By + B2 — B)) sin(mx (2 — x + 01 + 02)) sin(mx (% — 2 + x + 03 — 01 +7)) '
After some algebra we can write this quantity in the form:
I'(xp1) sin(mx1)

T(3(8 = 2T (3 (Br+ B2 — Bs)) sin(mx(§ — 1)) sin(% (B + B2 — Bs)) sin(wx (3 — x + 01 + 02))
d (B1,82,83)

x /c TP (or s () sin(mx (2 + o2 — 03— 7))

B3

sin(ﬂx(% + o3 —o01+7))sin(rx(F —x+01—03—7)) sin(ﬁx(% —o9—03—71))
sin(mx (2 — 22 4 x + 03 — 01 +7))

sin(wx(%l + % —x +o01—o03—7r))sin(mxr)sin(rx(205 — x + 7))

_ I'(xp1)
L(5(8 —2Q)I'(5(B1+ B2 — B3))
sin(myB1) sin(mx(2 + o3 — a1))
Sin(wx(g — X)) sin(ZX (81 + B — Bs)) sin(mx (L — x + o1 — 09)) sin(7x (L — 01 — 73))

dr (T, —1) sin(my (2 + 22 — x + 01 — 03 — 1)) sin(nx(203 — x + 7)) sin(mx (203 — 2x + 7)) (B1,B2,5s) )
o sin(wx(% +x—02—03—1)) (01,024+X,03+X) ’

Here we have used the notation 7_, for the operator that shifts the argument of the function it
is applied to by —x, the variable we are shifting being r. Since we have the combination (7, —1)
in the integrand, this corresponds to integrating r over two contours that are separated by a shift
horizontal shift of y and which are in the opposite direction. Provided that there are no poles in
between these two contours, the whole contour integral will be equal to 0. This is indeed the case
thanks to the way the contour C has been chosen, which is to the right of the half-lattice of poles
extending in the —oo direction, and to the left of the half-lattice of poles extending in the +oo
direction. O

Next we move on to showing:

Lemma A.5. The function Hpr satisfies the following property:

(A.24) im (2~ Q)Hpr <51’52’53> — 1

B1—2Q—P2—PB3 2 01,02,03

Furthermore Hpr satisfies the reflection principle (4.28) of Lemma 4.9 satisfied by H, namely:
(A.25) Hpp%%) = Rigg(B1, 01, 00) Hpr (oo, 21025,

(01,02,03) (01,02,03)

Proof. Tt is rather direct to observe that Hpr satisfies the reflection principle (4.28), since the
contour integral is not changed when applying the transform 81 — 2Q) — 1. The evaluation of the
residue is an easy algebra using the shift equations of F% and S 1 When (1 approaches 2Q) — 82 — (3

from the right hand side, the two poles at r = —(% +o3—o01) and r = —(Q — % - % +o03—01)
in the contour integral will collapse. To extract the divergent term, we can slightly modify the
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B

b % + 03 — 01), this allows us to

contour to let it go from the right hand side of r = —(Q —
pick up the divergent term by residue theorem:

/S;v(—%+O’2+03+T)S“2/(Q—522+0‘3—O‘2+7“)S“27(g3+0‘3—0‘1+7“)S“27(Q—’823+O‘3—U1+’r‘)dr
c

S1(Q+G - B +o3-014+7)5;2Q -G — R +o3—01+7)S3(203+7)53(Q+7)
B1—2Q—P2—Ps 1 Sg(% +o1+ 02— Q)Sg(% +01—02)5:(Q — f3)
QW(g_Q) S%(,B1)S%(—%+UI+U3)S%(Q_573+01_U3)

We can check that when 81 — 2Q — B2 — (3, the preceding term is equivalent to
(A.26)

S1(81)Sy(Bs)
(G- 01)5%(%1 + 01+ 09 — Q)Sg(% —01—03+Q)
/81)627B3) -1,

01,02,03

2n(5 - Q)

o |

Sx (8 + 01— 02)S

DR
R

This proves that 1im51H2Q752753(§ — Q)HPT <

APPENDIX B. ANALYTIC CONTINUATION IN /3

Proposition B.1. Fiz yu; with Ru; > 0 for i =1,2,3. For the domain

1 2 . ‘
(B1) Vi={(B1,2,8) €R* : Q=53 Bi<yA S Amin(@ = f;) and §i < Q fori=1,2,3},
each of the functions

(61, B2, Bs) / T I C O}
(51’ 52753) s /A(Z MiLi)e—A—ZMLi LF]&_HBLO)(ﬂ%l):(BB,OO) (d¢)

(517 52763) — /(Z NiLi)267Aiz i Ls LFI(HIBLO)(ﬂ%l)v(B&OO) (dgf))

1s well-defined in the semse that the integrals converge absolutely, and extends analytically to a
neighborhood of V in C3. Here, we write A = Ay(H), L1 = L4(—00,0), Ly = L4(0,1) and
L3 = L4(1,00).

Proof. We will prove the result for the second function; the others are proved similarly, with the
same inputs. Moreover, we will assume that p; = po = pu3 = p for simplicity; the general case
follows by a similar argument. By changing coordinates [AHS21, Lemma 2.20, Proposition 2.16],
setting (p1,p2,p3) = (0,2, —2), it suffices to prove that the function f :V +— C given by

F(Br, Ba, B3) = / A(H) Ly (R)eAsE)=1Le®) 1 pl0iPi)i (g4)

extends analytically to a neighborhood of V in C3.

To show this, we will approximate f using truncations of H away from the insertions. For
r > 1, let H, := H\J; Be-+(pi) and R, := R\ |J; Be—-(p;). For a sample h ~ Py, write A, :=
An—2010g ||+ (Hy) and Ly := L},_sq10g ||, (R;), and for = € R write h,(z) for the average of h on
OB,—+(z) NH. For r > 1, define the function

i 57
[ o5l G0 (0 A,) (e3°Ly) exp(—e ™A, — pei®L,)

i

Jr(B1, B2, 3) ::/Rdce(ézmQ)CE
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on a neighborhood of V in C? to be specified later. Clearly f, is analytic.

Step 1: Showing f,|y converges pointwise to f. By Girsanov’s theorem, this is equivalent to
showing that for all (81, 2, 53) € V we have

lim / Ag(H,) Lo (R, )e Ao E) Lo ®r) L plBsPi)i (qgy = £(By, B, Bs).

We will produce a function g(¢) such that g(¢) > Ag(H,) Ly (R, )e~ A E)=1Ls(Rr) and [ g(¢) LFﬁfj’pj)j (do) <
00. Then, since lim, o0 Ay (H,) = Ag(H) and lim, o L4(R,) = L4(R), the dominated convergence
theorem completes this step.

Since the function ¢ ~ fe™# is bounded, it suffices to dominate Ag(H,)e ) by g(e).
We choose g(¢) = Ag(H)e A 4 A, (Hy)e A1) 4 L g, (Hy)<1<A4(m); this dominates because
Ay(H,) € [Ap(Hy), Ag(H)], and a — e~ * is increasing on [0,1] and decreasing on [1,00). Each of
Ag(H) and Ag(H) has a power law with exponent > —1 (REF), where s = Y8 —-Q > —7.
Thus each of Ay (H)e 4+ and Ay (H;)e A#( 1) are integrable, and when s > 0 (resp. s < 0), the
function 1 4 o(H)<1 (resp. 114 ¢(H)) is integrable and dominates 14, (m,)<1<A,(mH)- Therefore, when
s # 0 the function g is integrable, and continuity settles the case when s = 0.

Step 2: Showing that each point in V has an open neighborhood in C? on which f,
converges uniformly as r — oo.

If we condition on hAlg,, then (h,y1(pi) — hy(pi))i=1,2,3 is a triple of conditionally independent
Gaussians. Therefore we have the alternative expression

i 57
Fr(B1. Ba. Bs) = / dee(3=PmQ R [He@’““(“”‘8E[’““W<emr><e¥CLr>exp(—e%Ar—uelcm].
R i

Write each B; = x; + iy;. Let g(a,f) = ae~%e ", and write A, = Az (H\|UJ; Be—+(z;)) and
L, := L7 (R\ J; Be-—+ (7)) where h=h+Y SGu(-, z;) —2Qlog| - |+. By Girsanov’s theorem,

| fr+1(B1, B2, B3) — [r(B1, B2, B3)|

R

) 2
H e%herl(mi)_%E[herl(mi)Q](g(e’VCAT+17 e%CLT+1) _ g(eVCAT, echr))] |
7

|

Now, using the triangle inequality, and the existence of constants C,C’ > 0 for which |e #* —
e"“l| < C'em " — e_C$l\ for all z, 2" > 0, we have for any a,+1 > a, > 0 and ¢,,1 > £, > 0 that

< / deeb T ei-Qep
R

. 2
H e%hr+1(xi)_%E[hr+l(xi)2] (g(e’ycA'r—Ha Q%CLT-&-I) - g(e’ycAm €%CL7~))
i

< CeiZy? / dc 6(% Zzi_Q)CE [|g(eVCﬁr+1’ G%Cerrl) - g(e'ycgm B%CET‘H .
R

lg(ary1, bry1)—g(ar, b)| S (arr1—ar)e” 4Ly _ér)e_(%u)&ﬂ +ap (e —e )+, |€_C£T —e Gl |
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Now we have four terms to bound. Writing s = %Z x; — Q,

e ~ e 1 ~ s _

/ de e[, — A)e ] = Lpd L )E[(A,L, - 4) i 1]?
R vy

T T 3ef, 2.2 25 ~ - 25

[ dec BT gy = L) T = 20 1)) F B Er — E0 L
sty)em A (.—€eVCA, _eVCA, 1 S ~ ~—5_1 _—s_1
| dectIBA A — e - Sr R T - A
~ Yex Ve~ s o 2s 2

/Rdce(ﬂ)cE[Lr(e‘m br—em @t ] = 3“2: )OI TEL(L T~y )

For the first integral, we are using [ e®e™""*dc = %F(%)a_

2|

which holds for ¢,a > 0. For the
t

third integral we use [ e'¢(e™¢"% —e¢"°) dc = %F(%)(cf? — (a’)_%) which holds for ¢ > —v and
a,a’ > 0, and follows from the former integral via integration by parts. The second and fourth
integrals are proved similarly.

By Lemma B.2, for each point in V, there is a neighborhood O and a constant C' > 0 such that
these terms are uniformly bounded by Ce~"/¢ on O. Thus

| o1 (81, Bas B3) — fr(B1, Bo, B3)] < eGZbI=C7Dr ymiformly in O.

Step 3: Showing that lim,_,., f, is an analytic continuation of f. By Step 2, there is a
neighborhood of V' on which lim,_, f, exists and is holomorphic. By Step 1, this limit agrees
with f on V, hence is the desired analytic continuation of f. O

Lemma B.2. For each point in (B.1), there is a neighborhood U C R? and a constant C > 0 so
that the following holds. For (1, B2, 3) € U and r > 1, the four expectations

2s 2s

~— 1 ~ ~ ~—2s5_ ~_2s5_q

5]~ ~ U e 2s_ ~
E[Arﬁl (Ar+1—Ar)], E[AT(AT K —Arﬁl )]a E[Lr—i-wl (Lr-i-l_Lr)]a E[LT|LT K —erl H
are all bounded by Ce™"/C. Here, we set s = %ZBZ —Q,h=h+ > %GH(‘, z;) —2Qlog| - |+ and

Z?“ = MTL(H\ Uz Be-r (pi))’ ET = VE(R\ Uz Be-r (pl)) with (p17p2ap3) = (07 2, _2)'

Proof. We explain the exponential bounds for each (f1, 82, 83) (rather than uniformly in U); all
inputs in this argument vary continuously in (31, 52, 83) so we get uniform bounds in neighborhoods
U.

First inequality. We have E[gﬁ‘ﬂ] < E[A)] AE[A)] < oo for A < % A %min(Q — (i), where
finiteness follows from the proof of [HRV18, Corollary 6.11]. Thus, for any ¢ > 0 and p,q > 1
satisfying % + % = 1 and p sufficiently small,

S

S ~— =

—s —s5_1
EIA 0 (Ars - A)) < <BIA,, 4Bl 5. A )
Se+EIA N TVPPAy — Ly > ]V S e+ PA, 4 — A, > €],
Here, we use the fact that —% -1, —%p < 7—22/\% min(Q — §;) which holds since (81, B2, 83) lie in B.1.
Now, for sufficiently small m > 0, by the multifractal spectrum of LQG (see e.g. [BP, Theorem
3.23]) we have
(B.2) P[A, 11 — Ay > €] < e E[(App1 — A)™] S e (Q-maxi fimma)r
where the implicit constant depends on m and the term ™37 ma%i Bi comes from the log singularities
added to the field. Choosing ¢ = e~ "/C for large C' and taking m > 0 small then yields the result.
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Second inequality. Since (31, 32, 33) lies in (B.1) we have —% — 1 < 0. For any a,e > 0 we have

a((f%*l —(a+ 5)7%71) S ea” 7' with implicit constant depending only on s, and so

s s s

EA(A " = A ) SBIA 4Bl 5.4 ]

The argument is then identical to that of the first inequality.
ThlI‘d and fourth inequalities. The third inequality is proved identically to the first inequality.

If —22 — 1 < 0 then the fourth mequahty is proved the same way as the second. Now we prove
the fourth inequality in the regime —7 — 1 > 0; since we are in (B.1) we also have —7 -1<1,
~—2) 2 o ~
so L (L.y —Lr” )<L (Lyy1— Ly). Now the second inequality applies, completing the
proof.
O

Proof of Proposition 2.7. Analyticity in p is immediate from Morera’s theorem. The 8-merophicity
immediately follows from Proposition B.1, where we proved the desired properties for each term
in H. ]

The proof of Proposition B.4 is easier to explain when we parametrize in the strip S := Rx (0, 7).
The Gaussian free field h on S is defined via h = hy o exp where hy ~ Py. It has covariance

Gs(z,w) =

Definition B.3. Suppose (1, B2, 83 € R. Sample (h,c) ~ Ps X [e(%z@'_Q)c dcl], and let

F(2) = h(z) — (@~ B0V R2) — (Q — B2)(0V (—R2)) + Ds(z,0).

Let ¢ = h+c. Let LFgﬁi’pi) be the law of ¢ where (p1,p2,p3) = (+00, —00,0).
Now, we state the analogous holomorphicity statement result for Proposition 2.12.

Proposition B.4. Fix p; with Ry; > 0 for i =1,2,3, and consider the following three maps from
(@=7)V3,Q) toC:

1 oo
B / ZAefA*MLl*MLQ LF]E_HB:O%(’YJ):(& )(d(b),
B — / iA(,UflLl + M2L2)€—A—M1L1—M2L2 LngO)a(%l)v(ﬁvOO) (d¢),

5 — / 1L1 _|_ ,LL2L2)2€_A_#1L1_#2L2 LF[(HIB’O)’('YJ)’(B’OO) (d¢),

where we write A = Ag(H), L1 = L4(—00,0) and Ly = L4(0,00). Then each map is well-defined
in the sense that the integrals converge absolutely, and extends analytically to a neighborhood of

(-7 V3,Q) inC.

Proof. We only prove the result for the second function, but the others are proved identically. We
work in (S, —00,0, +00) rather than (H, 0, 1, 00) since the symmetry between the two S-insertions
is more apparent. Moreover, to simplify notation we assume p; = ps = p; the argument works the
same way when p1 # po. It suffices to prove that the function

Ay(S)Ls(0S) _ _ )
f(ﬁ) :/ ¢(£;(]{£§ )6 Ay(S) u£¢(8S)LFESﬁ7i ),(%0)(d¢)

extends analytically to a neighborhood of ((Q —~v)V 3,Q) in C.
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For r > 1let S, := (—r,r) x (0,7), I, = (—r,r) x {r} and J, = (—r,r) x {0}. For a sample
h ~ Ps, write A, := Ah—Q\éR‘\(Sr% r=Ly_ QIR |( UJy)and L, = L;,_ Q|§R |(J ). Write X; for the
average of h on {x} x (0, 7). Then define for r > 1 the function

X
H BXt—— [XQ] (e’Y A )(GZCKT)G_AT‘_,LLKT
t==r 62CL7"

fr(B) = /R deeB+3-Q)cp

on a neighborhood of ((Q —v) V 3,Q) in C to be specified later. Clearly f, is analytic.

Step 1: Showing lim, . f,(3) = f(3) when € (Q —v)V 3,Q). .

By Girsanov’s theorem, this is equivalent to showing that for all 8 € ((Q — ) V 3,Q) we have

}g{}o/A(ﬁ(&) L(;( )) {0 W}) —Ay(Sr) /L£¢>((—r,r)X{O,w})LFgﬁ7i00)»(770)(dd)) :f(/B)

This follows from the dominated convergence theorem: for some deterministic constant C,

—(R Ls((—=ryr —(R Lo((—1,
‘A¢(Sr)£¢((—r,r) X {O,7'('})e_AdJ(Sr)—uﬁ(;&((—Tﬂ’)X{O,w}) <ot (Ru/2) Ly ((=r,m)) <ot (Ru/2) L (( 11))’

Ly(=r,7) - Lo(—rr) = Lo(=1,1)
and
e D e 2p(2 2(Q-p) 2(Q-p)-1
[ 00 ) = 20— Q)2 Bl (1,13 <

Here we write h = h — (Q — B)|R - | + 2Gs(+,0), and the moment bound comes from [RZ20a,
Proposition 1.10].

Step 2: Showing that each point in ((Q —v) V 3,Q) has an open neighborhood in C on
which f. converges uniformly as r — oo.
We have the alternative expression

c Le
B) = / Or3-Qeg | T edx- TExa AN g g,
R

t==4(r41)

Let g(a,k,f) = %eo=#k and let A, = A:(S,), K, = L;(I, U J,),L, = L:(J,) where h =
h—(Q—x)[R- |+ 3Gs(-,0). Write 3 =z +iy. As before we have

|[fr1(B)—fr(B)] < Cegy/ e+3-OF [lg(e’ycgr-‘rl:e%cf?r—&-lvegczﬂ-l) g(e™” A 62 Kne% L )|] de.
R
Now, we can find a constant C' so that for all a,+1 > ar, kry1 > ky, €ry1 > £, we have

‘g(ar-i-lv kr+1,€r+1) - g(a’r’ kr, g’")|

k 1 1 k —k k
< ’(ar+1 . Clr) r+1 6—,“kr+1| + |(7 _ )k;r+1e_;ukr+l‘ + ’ r+1 re—#kr+1| + ‘l(e—#kr . e_“kr+1)|

lry1 b g Cr lr

k 1 1 kri1 —k k
< _ T+l —(Ru)krt1 - k —(Rp)kr 41 r+l T R —(Rp)krga M e=Chr _ o=Chry1y|
s B T B L I ]
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This gives us four terms to bound. Writing s =2+ 3 - Q € ((—3) V(3 — %), 7),
~ ~—2s_9
~ ~ K c % 2_2 ~ ~ K, ]
/ de R[4,y — A) = e CWE] = Zp(Z 4 )E[(Ay - A) 2,
41 T Ly
1 1 = ¢ % 2_.2 _2s 1 1 ~—-%4
/dceSCE[(N VKPR ] — (2 R TV E[(= — < )K’rgl+ ],
Lr Lr+1 v v Lr LT+1
/dc escE[MB_evc/zm“)f{”l] = EF(E)(%H)_%E[ s TIN{_%;L
Ly v L, "
I ~ . s K. ~_25  __z2s
/dcescE[[fr(eewc/QCKT — efeW/QCKT“)] = gr(ﬁ)ci%E[&(Kr T oK)
L, R L,

; ; tc,—ev%/ 2k 22ty — 2 :
For the first three integrals, we are using [ e'“e de = ZI'(3)k > which holds for ¢,£ > 0.

_2t

For the fourth integral we use fetc(e*ewc/zk — e*ewc/zk/) de = %F(%)(lf% — (K')"~) which holds
for t > —2 and k, k" > 0, and follows from the former integral via integration by parts.

By Lemma B.5 and the deterministic inequality |a? — b?| < pla — b| max(aP?~1, 5P~ 1) for a,b > 0
and p € R, for each point in ((Q —v) V 3,Q) there is a neighborhood O and a constant C' > 0
such that these four terms are uniformly bounded by Ce™"/¢ on O, so

|fre1(B) = fr(B)] S e(zh*=C7Nr uniformly in O.

Step 3: Showing that lim,_, f, is an analytic continuation of f. By Step 2, there is a
neighborhood of ((Q — ) V 3,Q) on which lim,_, f, exists and is holomorphic. By Step 1, this
limit agrees with f on ((Q —v) V 4,Q), hence is the desired analytic continuation of f. O

Lemma B.5. For each point in ((Q — )V 3,Q) there is a neighborhood U C R and a constant
C > 0 such that the following holds. For 3 € U and r >, writing s = 3+ 3 — Q, the expectations

~—25_7 ~ ~ ~
- ~ K. 1 1 -2y Kyt — Ky ~—2 Ky — Ky ~—2
E[(AT+1 - Ar) ~+1 ]7 E[(T - ~7)Kr+71 ]7 E[%KF& ], E[#KT v ]

Lr+1 LT‘ Lr+1

are each bounded by Ce~"/C. Here, we set h = h— (Q — B)|R-| + 2Gs(+,0) and A, = A; ((=r,7) x
(0,m)), K, = L5((—r,7) x {0,7}) and L, = L3 (~r,7).

Proof. For the first inequality: Let h=h-— (Q—PB)|R-|, so away from the origin |i~z —ﬁ| is bounded.
L d o
Since hl(12)x(0,7) = b = (r = 1)|rr+1)x(0,m) + (@ = B)(r — 1),

E[(Art1 — A )I?L_j_l] <E| Ay ((r,r +1) x(0,7))
' ' Lyt ~ /.,’E((T,T + 1) X {077T})27S+1£ﬁ(r7r + 1)

Az ((1,2) x (E ™) O3 e@-a) -1,

= E| +1
L£5((1,2) x {0, 7))+ " L5(1,2)

By Lemma B.7 the last expectation is bounded. Moreover (v — %(% +2))(Q — B) > 0, so the first
inequality is shown.
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For the second inequality, take p > 1 small and ¢ satisfying % + % =1, then for € > 0,

- _ ~—2541 ~ ~
Liy1— Ly ~—2%2+1 K, ] Lyy1— Ly ~—2%2+1
e R e Rt SR

Bl—=—= ~ T 7 —
[ LTLT-‘,—l L% Lyy1=Lr>e LTLT+1 r+1 ]
I?i%sﬂ 1 ~_2s \P1V/P _
< EE[%] +E KEKTJ& ) ] P[L,.1 — L, > €]1.
T T

By REF the expectations are both uniformly bounded in r. Writing h=h— (Q—pB)|R-| and using
o~ d ~
hlo,1)x (0,7 = h( = ") rr+1)x(0,7) T (@ — B)7, we have

P[Lr41— Ly > ] < e 'E[Ly41 — L] S e 'E[L;(r,r + 1)) = e e 2(QOTE[£1(0,1)).

~ s 254y
We conclude that E[LZ“% Lr K.l ]Se+ e 1/4e3@Q=B)r/1 Take ¢ = ¢7/C with C sufficiently
riir41

large to conclude.
For the third inequality, choose p > 1 small and ¢ such that % + % =1, then for € > 0,

_ _ ~ 254 ~ ~ r1l/p
Kpy1— Ky ~—2 K,.] Kpy1— Ky ~—2 ~ _
E[~" L 2TK, 7] <eB[—E 4+ E || - K P[K 1 — K, > ¢]'/4.
L, L2 L,

2s

The same argument as before applies to show the desired E[%f(r_ le] < e7"/C. The fourth
inequality has essentially the same proof. O

Lemma B.6. Suppose p > 0 and q € (0,%) satisfy q — p < %(Q — B) — 1. Then there is a
continuous function C(,p,q) such that for h=h-— (Q—=B)R-|+ 3TGs(-,0) we have

E[zﬁ((—(r +1),7 4+ 1) x {0,7})4
Ls(—r,r)P

- ] <C(B,p,q).
h
Proof. We will just show that this expectation is finite; all the inputs in the proof vary continuously
so the statement about C(8, p, q) follows. First, note that E[L;(—1,1)97P] < oo since g—p < %(Q—
B)—1< ,;%—1, so we are done if we show E[(Lz((774’7‘)2;{?’_7;}2«;,%(71’1))(1] < 00.Let h = h—(Q—B)|R|,
h b

then
(L ((=(r +1),r+1) x{0,7}) — L5(-1, 1))"] < E[ﬁg((—(r +1),7+1) x{0,7})1

L (—r,r)P ~ L

< a0+ 1) x {0, 7)1

E
[ NEY I5 (0, 7)P

h

Let X; be the average value of h on {t} x (0,7), and let M, be the maximum value of (Xt)o,r—1-
We claim that

(B.3) E[L;(0,r)™ | M,] S e 2™ for a >0,

1 (14e 4
(B.4) E[L; (0,7 + 1) x {0,7})° | M,] S e30HMr - for b e (0, ?)’5 >0

where the implicit constants depend only on a,b, e, 8 but not on 7.
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Assuming (B.3) and (B.4), we complete the proof. Let A > 1 be small and X satisfy + + 3 = 1,
then

L((0,7 + 1) x {0,7})1
B[ 7 0.1

| M,] S E[L((0,7 + 1) x {0,7})™ | M)V E[L;(0,r) 7P | M, ]

< o(3(14e)g—Fp)M;

)

which is bounded by 1 if 3(1 +¢)g — 3pM < 0, and otherwise bounded by

L5((0,7+1) x {0,7})?
ﬁE(O,T)p

< Tro(2(14e)g—2p)Moo] _ Q-8
IR B s I (s

where the last equality holds since, by a standard Brownian motion calculation (Lemma C.2), the
law of My, is exponential with variance (Q — 3)2.

Finally, we prove (B.3) and (B.4). For ¢ > 0 let X; be the average of h on {t} x (0, 7).

For (B.3): if we further condition on the time ¢, € (0,7 — 1) at which X;, is maximal, then the
conditional law of (X¢)p, ,—1) is variance 2 Brownian motion with drift —(Q — ) conditioned to
stay below M,, and (X¢)j_1,] then evolves as unconditioned variance 2 Brownian motion with
drift —(Q — B). Then Y = M, — inf};, ;, 1) X; is a nonnegative sub-Gaussian random variable
independent of M,. Let hy be the projection of h to Ha(S), then hy is independent of (X;) and
hence (M,,t.), so

E[L;(0,7) " | My, t.] < E[L; (b, te + 1) | My, t] < E[Liy i ar, v (e b + 1) | My, ]
< e BR[| 4 JE[L, (0,1) 7] S e 20

< 00,

For (B.4), we split cases based on the value of M,. In the case where M, < %5_llog 7, an

argument similar to that of [DMS14, Lemma A.5] proves the following: writing j* for the value of
t in [7,7 + 1] maximizing X,

\V)

)
E[(S €3 ) | M,] S 3V < e3(HMM g < 2o og
=0

2

If instead M, > %5_1 logr, then r? < e2"Mr Let Y be the maximum value of variance 2 Brownian
motion with drift —(@ — ) on [0, 1] independent of M,. Then

2
262 )| M) < E[(rezMr 4 ez (MY | 0] < ez (F0bMep pp s 2o logy,
Y
In either case we get the same bound. Then, because hy and (X;) are independent, an application
of Jensen’s inequality as in the proof of [DMS14, (A.11)] yields (B.4). O

Lemma B.7. Let I C (0V (2— %), o0) be a closed interval. Then there exists C' > 0 such that for
h ~ Ps,

]E[ Ah((172) X (077T>)
Eh((172) X {077T}))\£h(1>2)

Proof. We map to the half-plane via the map z — e!"%, so it suffices to prove a uniform bound
for

|<C forXel.

Ap(HN (e71D\e2D))

E[ﬁh((—e_l, —e2)U (e 2,e 1)) Lp(e2,e7 1)

|,  where h ~ Py.
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Let S = HN(e 'D\e™2D), J; = (e 2,e71),and J = (—e~ !, —e72)UJ,. Fix also \g € (0\/(2—%)7 1)
lying to the left of I. Then for any p, ¢ > 1 with % + % =1,
An(S) 1

_— | = 23 2/2E
Ly () Lr(J4) /S( ) [ﬁh-i-vG’H(-,z)(J)qﬁh-l-vG’H(-,z)(J-&-)
< /3(232)_72/21[‘52, (LG (o) () TOTYPE[Ly () 1AM R0 £ (7, )94 e

E[

|dz

The equality holds since weighting by the quantum area of .S corresponds to adding a v-log insertion
at a random point in S, via the so-called rooted GMC measure; see e.g. [DS11, Section 3.3]. In the
second term in the inequality, we drop the +vGpg(-, z) terms since they are bounded from below
on H. We will choose p > 1 small later.

For each z € §, let J, be an interval of length O\SZ such that the distance from z to J, is
at most Sz. By the multifractal spectrum of GMC (see e.g. [BP, Theorem 3.23] with d = 1; the
discrepancy of a factor of 2 arises since h|g has correlations E[h(x)h(y)] < —2log|z — y| when
|x — y| is small) we have

(B.5)
2 2
ELh ) (1) ) < ElLpion()(J2) ] S (82)FPNE[L (1) ] € (S2) T+ D,

Plugging (B.5) into the previous bound, and using the existence of all negative GMC moments,
we have

Ap(S) / fﬁ+l(—ﬁ>\2+(ﬁ—1),\ )
B[22 < [ (9) TN gy ¢ oo,
L)~ s

where we choose p > 1 sufficiently small that —ﬁ + l( 7z A2+ (ﬁ —1)Ag) > —1. (This is possible
since f(t) = =L + (= L2+ (3 —1)t) +1 = ——(t— (2—4))(t—1) is positive on (2— 2,1).) O
Proof of Proposition 2.12. [AHS21, Proposition 2.28] relates the two-pointed quantum disk weighted

by the quantum length of a side to the three-point Liouville field: writing A = A4(H), L1 =
Ly(—00,0), Ly = L(0,00) and s = § — Q, we have

_ 1 Y, Y 3 e AR mLi (5 0) (4,1),(8,00)
Ry un (B) = 0—8 /(SA 255+ 'yA Zﬂz i 28 T 'y Zﬂz i L, LFy (dg).
Therefore Proposition B.4 gives the analytlclty of Ry, u,(B) in . O

APPENDIX C. REFLECTION COEFFICIENT AS THE LIMIT OF H: PROOF OF LEMMA 4.7

In this section we prove Lemma 4.7. We first prove a version of Lemma 4.7 when we condition
on the field average maximum, then prove the full statement.

C.1. Convergence when conditioning on field maximum. The goal of this section is to prove
the following. Recall the Liouville field on the strip S defined in Definition B.3. Let (z1,x2,z3) =
(400, —00,0) C IS.

Proposition C.1. Fiz 81 € (3 V(Q —7),Q), f2 € (0,51) and B3 € (1 — B2, B1 — 382). When ¢
is sampled from LFg’Bi’xi)(d@ and conditioned on Mg = m, then (Ay(S), Ls((0,00) x {0}), Ls(R x
{7}), Ls((—00,0)x{0})) converges in distribution to (Ay1m(S), Lyym(Rx{0}), Lyym(Rx{m}),0)
as B3 | B1 — Ba. Here ¢ is as in Definition 2.10.

The key to obtaining this convergence is the following elementary Brownian motion calculation;
see e.g. REF.
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Lemma C.2. Let (By)i>o be standard Brownian motion and let b > 0. Then

P[sup By; — bt > m] = min(e ", 1).
>0

In the rest of this section we freely use the decomposition ¢ = h + ¢ of Definition B.3: Recall

that if we sample (h,c) ~ Ps x [e(% 28i=Q)e de], let

(©1)  RE) =hE)— (@~ A)OVRE) ~ (@~ B0V (~R2) + 2 (2,0,

then we can set ¢ = h+ec.

Lemma C.3. Fiz 1 € (3 V(Q—7),Q) and B2 € (0,51), B3 € (61 — B2, B1). Consider the measure

(B2 + B3 — Bl)LFgﬁi’mi)(dqﬁ). Let s = %Zﬂl — @ and let My be the supremum over t > 0 of the
average of ¢ on {t} x (0,7). Then

(B2 + B3 — BLFL ™) (M, € dm)] = 2(Q — B1)e*™.
Moreover, the conditional law of ¢ given My = m is

1
Ple e de| My =m] = lecmy (B2 + 53 — Br)e Patha=Pr)le=m),

Proof. Write Mz for the supremum over ¢ > 0 of the average of h on {t} x (0,7); Lemma C.2
describes the law of M;. Then

LF‘(gBi’Zi)[Mdv >m and ¢ € dc|] = e*P[M; > m —c] = Ly e~ (@7Am=e) L1 e,
LEY DMy € dm and ¢ € dd] = 150(Q — fy)ee~ (@m0,

" D 2(Q — sm
LF‘(SB“ )[Md) = dm] = /1m>C(Q - 61)6 (Q /31)( )dc - me 9

(Bs,xi)
LF My € dm and ¢ € de 1 1 e
_ S [ ) ] — 1c<m§(ﬁ2 + B3 — 51)62(62-&-53 B1)( m)'

Plc e dc| My =m] = —
° LFY )M, € dm)

O

Lemma C.4. Fiz f1 € (2V(Q—7),Q) and B2 € (0,51), B3 € (81— B2, 51). When h from (C.1) is
conditioned on My = M, then (A;_, (S), L5 _,,(0,00), L5, (R x {7}), L5 ,,(—00,0)) converges
in distribution as M — 0o to (Ay(S), Ly(R), Ly(Rx{7}),0). Moreover this convergence is uniform
for B3 € (B1 — Ba, B1 — 32).

Proof. Define
r=inf{t : X} >M—VM}, o=inf{t : X/ >-V/M}.

Then we can couple (Xth+T — M)¢>0 and (ijro)tzo to agree almost surely; indeed both of these
have the law of (Ba; — (Q — 1)t)>0 conditioned to have maximum value VM, where B, is standard
Brownian motion.

Now, we write fields with the subscript 2 to denote projection of the field to the space Ha(S) of
distributions with mean zero on {t} x (0,7) for all . We have 7 — oo in probability as M — oo,
so with high probability the Dirichlet energy of vGs(-,0) on (7,00) x (0,7) is close to zero. Thus
the law of (h2 + vGs(+,0))|(r,00)x(0,x) 18 close in total variation to that of haliree)x(0,x) [MS17,

Proposition 2.9], so we can further couple hy(-+7)|s, and 12(-+0)|s, to agree with high probability.
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We conclude that we can couple h and 1 so that with probability 1 — ops(1) the distributions

(h(- = 7) = M)|s, and ¥(- — 0)ls, agree.
Now, all that remains is to show that A; , ((—oo,7) x (0,7)), L5 _,,((—00,7) x {0,7}) — 0

in probability as M — co. This holds because the field average of h — M in (—oco,7) x (0,7) is
bounded above by —v M. O

Proof of Proposition C.1. Let f : R®> — R be a bounded continuous function, so by Lemma C.4,
writing 75, = (A5 _,,(S), L5 _,,(0,00), L5 (R x {7}), L5 _,,(—00,0)), we have

Jim BIA(T; ) | My = M] = E[f(Ap(S), Ly(R), Ly (R x {7}), 0)].

Let 6 = %(62 + 3 — f1). Lemma C.3 says that conditioned on My = m, the conditional law of ¢
is 1oem6e®© ™) de. Thus, defining T%—m as above,

BIf (Tyom) | My =] = [ 865 ™EIf(T5_ ) | My =m0 el de.

As B3 | B1 — B2 we have § | 0, which combined with the first limit gives the desired
lim E[f(Ty—m) | Mg = m] = E[f(Ay(S), Ly(R), Ly(R x {}),0)].
BadB1—B2
O

C.2. Completing the proof. We first state without proof a technical estimate, then prove
Lemma 4.7, and finally prove the estimate.

Lemma C.5. Fiz 81 € (3 V (Q —7),Q). B2 € (0,41) and B3 € (B1 — B2, B1 — 32). Let Ry; > 0
fori=1,2,3. Then with (x1,x2,x3) = (400, —00,0) we have

im (5 + 55— 1) / Lty 50196l LES ) (dg) =0 uniformly in B,

where we define, writing s = 33 i — Q, A = Ay(S), L1 = L4(0,00), Ly = L4(R x {n}), L3 =
Ly(—00,0),
3 2 3

2 3
(C2) 99 1= (15 + A+ G A pil) + (3 pala) e At
i=1 i=1

Proof of Lemma /.7. For the field ¢ on S from Definition 2.10, with A’ = Ay (S), L} = Ly(R), L =
Ly(R x {7}), define

2

2 2 2 / 2 !
Ry = (Q = A)r(s+ DA+ T A well) + I (3 el ¥ Eheamt,
=1 =1

Let C > 0. By Proposition C.1 we have, with $),4 defined in (C.2),
1
B3481—B2 90 | Mo ] Q— b

Integrating this against 1,,¢(—c,c)2(Q — B1)e®™ dm and using the law of My given in Lemma C.3,
we conclude

C
lim (B2 + B3 = f1) / Laty<c$96 LEE™™ (dg) = 2 / ePmQMER, ) dm.
B3dB1—PB2 _C

E[Ry4m] uniformly in m € (-C,C),
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By Lemma C.5 we can send C' — oo to conclude that

lim (B2 + B3 — f1) /.6¢ LFgﬁi’xi)(d¢) = 2/ B QmER 1 dm.
B3dB1—PB2 o

Recalling the definitions of H and R in (2.6) and (2.12), this is the desired identity. O

Lemma C.6. Suppose 1 € (3 V (Q —7),Q) and q € (%,1 A %), then there is a constant

C = C’(q,ﬁL) such that the following holds. Let B2, B3 < Q — ~vq satisfy Pa + B3 > (1. Let h ~ Ps

and define h(z) := h(z) — (Q — B1)(0V Rz) — (Q — [2)(0 V (=Rz2)) + %SGS(Z',O). Let M be the
mazimum over t € R of the average of h on {t} x [0,7]. Then

E[A4;(8)? | M;] < CeMi, E[£;(08)% | M5] < Ce?™i,

Proof. We establish the former conditional inequality; the latter is proved in the same way. In this
proof C' is a constant that may vary from line to line, but will only depend on p, 5.

Let X; be the average of h on {t} x [0, 7], and let j* be the value of ¢ € [j,j + 1] maximizing
X;. An easy modification of [DMS14, Lemma A.5] (where their (p,c) equals our (1,¢7)) gives

E[Z 4V X

JET

M;] < Ce™Mi,

Next, let ha be the projection of h to the lateral component and let A; = A%([j,j + 1] x [0, 7]),
then

E[Af] < C  uniformly in j.
Finally,
BLAL(S)? | M) < B0 % A7 | My] < OB AL | M) < € YDEE | M) < Ceni,
J J J
O

Proof of Lemma C.5. In this proof, we repeatedly use the notation < to mean “up to a multiplica-
tive constant not depending on B3”. By Lemma C.6 we have, with ¢ as in Lemma C.6,

E[A4(S)? | My] < Ce?Ms, E[L4(0S)* | My) < Ce?Meo,

Writing L = ) p1;L;, we prove that ime oo (82 + 83— 1) [ ]ALe_A_L|LF‘(35“wi)(d¢) = 0 uniformly
in B3; the terms Ae=4~L and L%e~“4~L are similarly bounded.

Clearly we have ALe 47+l < Ae=4 < A9, Let s = %ZBZ — @, then by Lemma C.3 and the
above moment bounds we have

-C 0o
(B + B3 — BULFY ™[, 5o ALe 7] < / E[A? | My = m]e*™ dm + / E[Ae™" | My = m]e™ dm
o c
-C 00
< / VST / e dm < e~ (19+8)0 4 sC C20,
—o0 C

0
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APPENDIX D. TWO-POINT QUANTUM DISK FROM MATING OF TREES: PROOF OF LEMMA 4.15

The goal of this section is to prove Lemma 4.15. We start by giving the following lemma.

Lemma D.1 ([?, Proposition 5.2]).

4.1
: 2m)7? _4
IMESE(2; 0,7 = (@m)" (C+r) 70
(1- 3T - 5)7
The following is a corollary of [AG21, Theorem 1.2]:
(.1) QD) = 2 () at !
. x)"[e = 2P K4 |2 | ——
F(%) 4Sin(%2) 72 sin(zj)

Lemma D.2. Suppose k € N satisfies k+1> =5. Let c = 1/ sin(™-
some C = C(vy) we have

) and p € (0,¢). Then for

M(2)[(=Ly e Al = }mj 2O p it Ay Ly
2 k+i+1) 2 ¥2 2 2
51 4
Proof. Let C’ 2m)” 1 22757 and suppose m + 1 > 5. Then
2 2. &5 (%)
1-)ra-2)~ 72

(D.2) MIsk(Q)[Lme=4] = C'/c;% //000 ()T

m“‘*‘
/\
/\
~
_.I_
=
N—
S~—
QL
~
U
3

4 0o rx
(D.3) =(C'c?? / . xilKi (cx)drdx
o Jo v
4 [ 1
(D.4) =C"c” 2K 4 (cx)dz
0 m+1 ~2
(D.5) _oer 2 s A e 14 L)
m+1 "2 2 2 2

The integral in the last step was evaluated via [DLMF, (10.43.19)], and the condition m+1 > % is

necessary for this step. Now, using the Taylor expansion e # = Yo (_‘Z‘i,L)Z gives the result. O

We thus conclude the following;:

Lemma D.3. Suppose % Z 7 and set ¢ = l/sm(m ). Define f : (—c,¢) — R by f(u) =
cos(%2 arccos(u/c)); that is, if o € B satisfies = ccos(my(oj — 7)), then f(u) = 005(4,;r (o — %))

There is a constant C(7y) such that for all k > % we have

(1) = CMIHR) (= L1)* + k(=L )e 440 for all € (—c, ).
Proof. By Lemma D.2, gathering equal powers of u and simplifying gives

. c l<:+z 1 ;
Mglsk(2)[(H(_Ll)k_l_k(_Ll)kfl)efAﬂuLl CZ 2/ (;(k—kz—’;))l“(;(k—l—z—ké))w
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Now the result is immediate from the following identity which is recorded in e.g. [ARS21, Lemma
4.15]: for a € R\Z and z € (—1,1),

cos(acos (x)) = — sm ) Z 1 (n+ a))F(%(n —a))x". O
k=0

With this lemma at hand it is now possible to prove Lemma 4.15.

Proof of Lemma /.15. We have for p, ¢/ in {z € C : Rz > 0} that (u—p/)R(v, p, ') = g(n) — g(1)
for some holomorphic g, and

8k k—1
g(k) =u—R k——R N.
Ay o (v, 2, 13) + ap/f—l (Vs 11, 11")
Sending y/ — 0 gives, since we can analytically continue 8 S R(B, u, 1) to B = v where it has

the probabilistic interpretation via @Dy o, by Lemma D.3 we conclude f*)(u) = %) (1), so since
f, g are both analytic in a suitable domain, we have

ko
9lm) = F() + > aipt

i=0

Thus,
cos(2(0 — 9)) — cos(4Z (o’ — §)) + pl0) - p(c”)
R(y,0,0") = ¢, Q Pe)
cos(y7(o — 3)) — cos(ym(o’ — 3))

where p(o) = fil a;(ccos(my(oc — %)))’ Since f and g are Z-periodic, we conclude that p is

3-periodic. By its definition, it’s also clear that p is %—periodic. Thus, when ~?2 is irrational, then

the function has two periods which differ by an irrational factor, hence p must be constant (and
thus zero). O

APPENDIX E. OPERATOR PRODUCT EXPANSION (OPE)

In this appendix we take a look at the Operator Product Expansion (OPE) lemmas that are
used in Section 4. These proofs where first done in... In our case the results are very similar, except
that we must handle a functional that does not reduce to a moment of GMC.

Lemma E.1. (OPE without reflection) Let x = 3. Assume that the constraints of (4.8) hold,

meaning that o1, 09,03,01 — %,02—% € [-%—F%,%-ﬁ-%} X R, 51,62,,33 < Q, Z?:l ,31 > 2Q+%.

Assume also that 1 € (3, %) andt € (0,1). Then ast — 0, one has

(E.1) Hy () = Hy (0) = Gt + o(t1 ),
where:
T(—1+ 2 _ (1 18
B2 of -t I HUES) L
r(-%) sin(r 1)
7 Q v @ (B1+3.52,85)
X (cos(wy(al 1 5)) — cos(my(og + ?1 Ta 2))> H(oll—;a;a:j)'
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Proof. Using the expression

22
2

2 (Cppx_1 _
H- (t) :/ dce(%p_%)c]E exp | — ewc/ ‘$ — t|’YXg(x) T ( Pty )/’x — l” BWX(I)CFCL'
2 R H |x‘751‘1’ — 1|'YB2

2

o F(pt3-1)
B e% |7" t| 2 9(7“) 8 ¥ G“Z/X(r)dutB(r)>]’

S U ey

we derive:

H%(t)—H%(O)

2 2

1 1 2

:_tlfc’ Q(COS(W7<01—V—Q))/ du( +U)4 x
R+

sin(m L) 42

2

1

2

(B1+2,82,83) 1-C
X H(JP;%US) +o(t™).

Let us now provide a proof of the OPE with reflection. The following result holds for both values
of x.

Lemma E.2. (OPE with reflection) For x = % or %, assume again the constraints of (4.8) are
satisfied. Consider t € (00,1). Then there exists a parameter Sy > 0 small enough so that under
the assumption that p1 € (Q — Bo, Q), for t € (0,1), ast — 0 the following asymptotic holds

261

23 4 4
(E.3) H(t)— Hz2(0) = Cit' ™ 7 737 4 o(lt) ™ T32)

)

where:

1 1 20— F1—2 s,
(E4) C;:R(61701_7702_)H( Q= r=502.f5)

v’ (015 ,02,03)

Similarly, still for p1 € (Q — Bo, Q), by choosing t € (—00,0), as t — 0 the following asymptotic
holds

1261 1281

(E.5) Ha(t)— H2(0) = Cyt' ™ 7 37 4ot~ 7 T37)

2 2 ’
Y Y

with this time:

(QQ—ﬁl—%ﬁ%ﬁ:a)

(01—%,02703)

. 2 4
(E-6) Cy = "Ry, 01, 00)H

We omit the proof, which is analogue to the one performed in [RZ21].

APPENDIX F. CANCELLATION OF SINGULAR TERMS FOR THE BPZ EQUATIONS

At the end of the proof of the BPZ equations, we need to show a list of terms are converging to
0. We prove here the lemma corresponding to the case v € (0,/2).

6m<ag—§>—m<1—“’§1)/ gLt —uw 1e—m<az—§>+mof—”21>/ g s
R+ei7r R+efz7r
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Proof of Lemma 3.11. We start by looking at the term
42 1 . 2
o’ 2 /dul/ dfe "z u1—|— ze +z) 1(ul—fie’a—i)%_1
4sin(m) 2

2 2

2 3 . ] 2 ] 2
_ bk do dul67219 iuleﬂe o 6719 -1 iuleﬂa + -+ 8719 -1
2) R

4sin(r -

1
2 e
. 1. 42 1 . 2
—h /2 d9/ duyie™(uy — 2) T Huy + = +2e70) T
4sin(m2-) Jo (iR—1)e—0 2 2

)
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For the last integral we can deform the contour of u; to ¢{R and will not encounter any singularities.

Hence we obtain

1,42 1 A 5.2
- MQ/ duy(ur — )T H((ug + 5 —20) 7 — (ug +5)7)
2sin(7 ) Jir 2 2 2
2 2 2
__ ”/ du (uy + 1) 5 ((ug 41— )T — (g +3+1)7)
2sin(ny) Jir-1
H . 22 . i
:—2/ dul(u1+z) ((ul—i—l—z)T—(ul—i—S—i—z)T).
2sin(md) JReic—i

2 _T
; 1,22 1 N
,u'y2/ ’ d@/ duyie™ (uy + 7)7771(711 —— = 26710)%7
i ) Jo iR41)e—0 2 2

4sin(m
p R (22 2
= sein(n ) gy P DT (LD~ (=340
4 ) TR TS
15 N2 N2 22
:m Codug(ur +9) T ((u = 1—4) T — (ug —341)7T)
S1n WI Re—tc—g
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For the second integral we decompose it into:

3M / 3 ﬁ—l 3 ﬁ—l _ 3 ﬁ—l _ 3 ﬁ—l _
UL — —)4 UL+ =) dup+ (a1 + =) U — —) 4 “du
Toin(n2) J 11 (u1 2) (u1 2) 1+ (g 2) (a1 2) 1
% 3 ﬁ—l 3 ﬁ—l _ 3 ﬁ—l _ 3 ﬁ_ _
+ — U — —)4 UL+ =) 1 urdu; — (] + =) 1 UL — —) 4 urdu
QSin(ﬂ'%) /(_171)61_6 ( 1 2) ( 1 2) 1aul ( 1 2) ( 1 2) 10Ul
3M / 3 ﬁ—l 3 ﬁ—l _ 3 ﬁ—l _ 3 ﬁ_l _
= Uy — —)14 uy +=)71 “du; + (a1 +=)1 w1 — =) 1 du
Loin(n2) Jun (u1 2) (u1 2) 1+ (g 2) (a1 2) 1
ue”% 2 2

sin(w%)

3
2
+f
_3
2

3p

[AG21]
[AHS20]
[AHS21]
[ARS21]
[ASY22]
[Ber17]
[BP]
[BPZ&4]
[DKRV16]

[DLMF]

[DMS14]
[DOY4]
[DRV16]

[DS11]

3,42 3,22
dm\ul_?w‘l 1’u1+§‘7“ Ly + 0c0(1)

2 2

. . 9 42
72(—’56”(’YT + ieilﬂ—%) /R du1 (U2 + 1)%71 + 06—)0(1)
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