
DO WE EVEN NEED DERIVED CATEGORIES?

PATRICK LEI

Abstract. We will discuss the moduli space of stable curves of genus 0 with
n marked points and its intersection theory, following [?]. We will give a nice
presentation of its Chow ring in terms of boundary divisors.

1. Serre formula

Recall the following from my March 19 lecture (this is Proposition 7.2.9 in my
notes):

Proposition. Let X be a smooth variety, V, W ⊂ X be closed subschemes that intersect
properly, and Z be an irreducible component of V ∩W. Then

V ·W = ∑
Z

i(Z, V ·W; X) · [Z],

where 1 ≤ i(Z, V ·W; X) ≤ `(OV∩W,Z) is the intersection number and i(Z, V ·W; X) =
`(OV∩W,Z) if and only if the local ring is Cohen-Macaulay.

However, most rings are not Cohen-Macaulay, so we would like a formula to
compute the intersection multiplicities in all cases. Serre gives a formula in terms
of higher Tor functors (because OV∩W,Z = OV,Z ⊗ OW,Z). Before we state the
formula, first we will state some results about the higher Tor functors.

First, if X is a locally ringed space and F , G are modules on X, then

TorOX
i (F , G )x = TorOX,x

i (Fx, Gx).

This follows from the construction of the derived tensor product ⊗L in Stacks,
which exposits derived categories much better than I ever could.

Lemma 1.1. Let X be a locally Noetherian scheme. If F , G are coherent, so is TorOX
i (F , G ).

Also, if L, K ∈ D−coh(OX) (this means bounded above complexes of quasicoherent sheaves
with coherent homology), then so is L⊗L K.

Proof of this fact is pure homological algebra, and again can be found in the Stacks
project.

Lemma 1.2. Let X be a smooth variety and F , G be coherent sheaves. Then TorOX
i (F , G )

is supported on Supp F ∩ Supp G , and is nonzero only when 0 ≤ i ≤ dim X.
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Proof. The support condition is clear by looking at the stalks, so we need to
consider when the stalks are nonzero. Here, we note that because X is smooth, the
local rings OX,x are regular local rings. By a result of Serre (Theorem 4.4.1 in my
commutative algebra notes), OX,x has finite global dimension dim OX,x ≤ dim X.
Here, the global dimension and the dimension are the same by Theorem 4.3.12 of
my commutative algebra notes.1 �

Now we can compute the intersection multiplicities as (Stacks gives this as the
definition of intersection multiplicity)

i(Z, V ·W; X) = ∑ (−1)i`(TorOX,Z
i (OV,Z, OW,Z)).

This formula is due to Serre, and Stacks writes the total intersection as

W ·V = ∑ (−1)i[TorOX
i (OV , OW)].

Remark 1.3. Stacks writes the intersection multiplicity as e(X, V ·W, Z). I am using
the notation in Fulton’s book.

Lemma 1.4. Assume that `(OV∩W,Z) = 1. Then i(Z, V ·W; X) = 1 and V, W are
smooth in a general point of Z.

Proof. Write A = OX,Z. Then dim A = dim X − dim Z. Let I, J be the ideals of
V, W. By Proposition 7.2.9 of the notes,2 I + J = m. Thus there exists f1, . . . , fr ∈
I, g1, . . . , fs ∈ J Forming a basis for m/m2. But this is a regular sequence and
a system of parameters, so A/( f1, . . . , fr) is a regular local ring of dimension
dim X − dim V, so I = ( f1, . . . , fr). Similarly, J = (g1, . . . , gs). Now by Corollary
4.4.3 of commutative algebra, the Koszul complex K( f1, . . . , fr, A) resolves A/I,
so we obtain

TorA
i (A/I, A/J) = Hi(K( f1, . . . , fr, A)⊗ A/J)

= Hi(K( f1, . . . , fr, A/J)).

By Theorem 4.4.2 from commutative algebra, we only have H0 = k. �

Example 1.5. Suppose V, W ⊂ X are closed subvarieties, dim X = 4, ÔX,p =
C[[x, y, z, w]] and V = (xz, xw, yz, yw), W = (x− z, y− w). Then

`(C[[x, y, z, w]]/(xz, xw, yz, yw, x− z, x− w)) = 3,

but the intersection multiplicity is 2 because V is locally a union (x = y = 0)∪ (z =
w = 0).

1Originally there was an argument that the global dimension of a Noetherian local ring is the
projective dimension of the residue field, which is Theorem 4.3.10 of the commutative algebra notes,
and then by the Auslander-Buchsbaum formula this is the same as the depth, and finally regular
implies Cohen-Macaulay, so depth equals dimension.

2This may be cheating, and a self-contained argument is given in Stacks
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2. Some algebra

Let (A,m, k) be a Noetherian local ring. If M is a module and I is an ideal
of definition, recall the Hilbert-Samuel polynomial ϕI,M(n) = `(In M/In+1M).
Similarly recall the function

χI,M(n) = `(M/In+1M) =
n

∑
i=0

ϕI,M(i).

Recall that d(M) := deg χ is independent of I and equals the dimension of the
support of M (from the proof of Theorem 3.2.9 in my commutative algebta notes).
Now write χI,M(n) = eI(M, d) nd

d! + O(nd−1).

Definition 2.1. For d = d(M) we write eI(M, d) as above, and for d > d(M), we
set eI(M, d) = 0.

Lemma 2.2. For all I, M, we have

eI(M, d) = ∑
dim A/p=d

`Ap
(Mp)eI(A/p, d).

Lemma 2.3. Let P be a polynomial of degree r with leading coefficient a. Then

r!a =
r

∑
i=0

(−1)i
(

r
i

)
P(t− i)

for any t.

Proof. Write ∆ for the operator taking a polynomial P to P(t)− P(t− 1). Then

∆r+1(P) =
r

∑
i=0

(−1)i
(

r
i

)
∆(P)(t− i)

=
r

∑
i=0

(−1)i
(

r
i

)
(P(t− i)− P(t− i− 1)).

The desired claim follows from Pascal’s identity. �

Theorem 2.4. Let A be a Noetherian local ring and I = ( f1, . . . , fr) be an ideal of
definition. Then

eI(M, r) = ∑ (−1)i`(Hi(K( f1, . . . , fr)⊗M)).

There is a very long proof of this statement in Stacks using spectral sequences.

3. Computing intersection multiplicities without derived categories

We give some cases where intersection multiplicities can be computed without
using derived categories.

Lemma 3.1. Suppose OV,Z and OW,Z are Cohen-Macaulay. Then i(Z, V ·W; X) =
`(OV∩W,Z).
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Proof. Write A = OX,Z, B = OV,Z, C = OW,Z. Then by Auslander-Buchsbaum
(exercise 4d of the final CA homework), we have a resolution F• → B of length
depth A−depth B = dim A−dim B = dim C. Then F•⊗C represents B⊗L C and
is supported in {mA}, so by Lemma 10.108.2 in Stacks, it has nonzero cohomology
only in degree 0. �

Lemma 3.2. Let A be a Noetherian local ring and I = ( f1, . . . , fr) is generated by a
regular sequence. If M is a finite A-module with dim Supp M/IM = 0, then

eI(M, r) = ∑ (−1)i`(TorA
i (A/I, M)).

In what follows, we will assume V is cut out in OX,Z by a regular sequence
( f1, . . . , fc).

Lemma 3.3. In this case, we have i(Z, V ·W; X) = c!. This is the leading coefficient of
the “Hilbert polynomial” n 7→ `(OW,Z/( f1, . . . , fc)

t).

Proof. By the previous lemma, e(Z, V ·W; X) = e( f1,..., fc)(OW,Z(c)). Now we need
to show that dim OW,Z = c. But now if dim V = r, dim W = s, dim X = n, dim Z =
r + s− n, so k(Z) has transcendence degree r + s− n. Because f1, . . . , fc is a regular
sequence, r + c = n, so dim OW,Z = s− (r + s− n) = s− (n− c + s− n) = c. �

Lemma 3.4. Assume c = 1 (for example, V is an effeective Cartier divisor). Then
i(Z, V ·W; X) = `(OW,Z/( f1)).

Proof. Note that OW,Z is a Noetherian local domain of dimension 1. Then it is
clear that `(OW,Z/( f t

1)) = t`(OW,Z/( f1)) for all t ≥ 1. �

Lemma 3.5. Asssume OW,Z is Cohen-Macaulay. Then

i(Z, V ·W; X) = `(OW,Z/( f1, . . . , fc)).

Proof. Because f1, . . . , fc is a regular sequence, it is also quasi-regular by Proposi-
tion 3.5.6 of my commutative algebra notes. Then

`(OW,Z/( f1, . . . , fc)
t) =

(
c + t

c

)
`(OW,Z/( f1, . . . , fc)).

Now take the leading coefficient. �
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