DOING ITALIAN-STYLE ALGEBRAIC GEOMETRY RIGOROUSLY

PATRICK LEI

Abstract

We will define intersection multiplicities and then define the Chow ring. For smooth varieties, the Chow ring behaves formally like cohomology in some ways. Finally, we will discuss Bézout's theorem, which has a very short proof in our language and then discuss some classical examples.

1. Intersection multiplicities

Consider a Cartesian square

where i is a regular embedding of codimension d and V has pure dimension k. Let $C=C_{W} V$ have components C_{1}, \ldots, C_{r} with multiplicity m_{i}. Let Z_{i} be the support of C_{i}. We call the Z_{i} the distinguished varieties of the intersection.

Lemma 1.1.

(a) Every irreducible component of W is distinguished.
(b) For any distinguished variety Z, we have $k-d \leq \operatorname{dim} Z \leq k$.

Definition 1.2. An irreducible component Z of $W=f^{-1}(X)$ is a proper component of intersection of V by X if $\operatorname{dim} Z=k-d$. The intersection multiplicity of Z in $X \cdot V$, denoted $i(Z, X \cdot V ; Y)=i(Z, X \cdot V)=i(Z)$ is the coefficient of Z in the class $X \cdot V \in A_{k-d}(W)$.

If N_{Z} is the pullback of $N_{X} Y$ to Z, then $i(Z, X \cdot V ; Y)$ is the coefficient of N_{Z} in $[C]$. Now let $A=\mathscr{O}_{Z, V}$ and $J \subset A$ be the ideal of W. Then A / J has finite length when Z is an irreducible component of W.

Proposition 1.3. Assume Z is a proper component of W.
(a) If $\ell(A / J)$ is the length of A / J, then $1 \leq i(Z, X \cdot V ; Y) \leq \ell(A / J)$.
(b) If J is generated by a regular sequence of length d, then $i(Z, X \cdot V ; Y)=\ell(A / J)$.

If A is Cohen-Macaulay, then local equations for X in Y give a regular sequence generating J and equality in (b) holds.

[^0]Now suppose Z is a proper component of the intersection of V by X on Y. Let $A=\mathscr{O}_{V, Z}$ and J be the ideal in A generated by the ideal (sheaf) of X in Y, and let \mathfrak{m} be the maximal ideal of A.

Proposition 1.4. Suppose V is a variety. Then $i(Z, X \cdot V ; Y)=1$ if and only if A is regular and $J=\mathfrak{m}$.

2. Nonsingular varieties

Let Y be a smooth variety of dimension n. Then $\Delta \subset Y \times Y$ is regularly embedded with codimension n. The global intersection product is the map

$$
A_{k}(Y) \otimes A_{\ell}(Y) \rightarrow A_{k+\ell-n}(Y) \quad x \otimes y \mapsto x \cdot y \Delta^{*}(x \times y)
$$

where δ^{*} is the Gysin homomorphism.
More generally, let X be a scheme and $f: X \rightarrow Y$ a morphism to a smooth variety. Then Γ_{f} is regularly embedded in Y, so we can define a cap product

$$
A_{i}(Y) \otimes A_{j}(X) \rightarrow A_{i+j-n}(X) \quad y \otimes x \mapsto f^{*}(y) \cap x=\Gamma_{f}^{*}(x \times y)
$$

If X is smooth, then we write $f^{*} y=f^{*} y \cap[X]$.
Remark 2.1. We may also replace the Gysin homomorphisms $\Delta^{*}, \Gamma_{f}^{*}$ with the refined Gysin homomorphisms $\Delta^{!}, \Gamma_{f}^{!}$.

Definition 2.2. Let $f: X \rightarrow Y$ be a morphism with Y smooth of dimension n. Let $p_{X}: X^{\prime} \rightarrow X, p_{Y}: Y^{\prime} \rightarrow Y$ be morphisms of schemes. Then form the square

Now define the refined intersection product by

$$
x \cdot_{f} y:=\Gamma_{f}^{!}(x \times y) \in A_{k+\ell-n}\left(X^{\prime} \times_{Y} Y^{\prime}\right)
$$

for $x \in A_{k}\left(X^{\prime}\right), Y \in A_{\ell}\left(Y^{\prime}\right)$. When $X^{\prime}=X, Y^{\prime}=Y$, this is the global product.
Proposition 2.3. The refined products satisfy the following formal properties:
(a) (Associativity) If $X \xrightarrow{f} Y \xrightarrow{g} \mathrm{Z}$ with Y, Z smooth, then

$$
x \cdot{ }_{f}\left(y \cdot{ }_{g} z\right)=\left(x \cdot{ }_{f} y\right) \cdot{ }_{g f} z \in A_{*}\left(X^{\prime} \times_{Y} Y^{\prime} \times_{Z} Z^{\prime}\right)
$$

(b) (Commutativity) If $f_{i}: X \rightarrow Y_{i}$ with Y_{i} smooth, then

$$
\left(x \cdot f_{1} y_{1}\right) \cdot f_{2} y_{2}=\left(x \cdot f_{2} y_{2}\right) \cdot f_{1} y_{1} \in A_{*}\left(Y_{1}^{\prime} \times Y_{1} X^{\prime} \times \Upsilon_{2} Y_{2}^{\prime}\right)
$$

(c) (Projection) Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ with Z smooth. Let $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be proper with $p_{Y} f^{\prime}=f p_{X}$ and $f^{\prime \prime}=f^{\prime} \times_{Z} \mathrm{id}_{Z}$. Then

$$
f_{*}^{\prime \prime}\left(x \times_{g f} z\right)=f_{*}^{\prime}(x) \cdot g z \in A_{*}\left(Y^{\prime} \times_{Z} Z^{\prime}\right)
$$

(d) (Compatibility) Let $f: X \rightarrow Y$ with Y smooth and $g: V^{\prime} \rightarrow Y^{\prime}$ be a regular embedding. Then

$$
g^{!}\left(x \cdot_{f} y\right)=x \cdot{ }_{f} g^{!} y \in A_{*}\left(X^{\prime} \times_{Y} V^{\prime}\right)
$$

Corollary 2.4. Let Y be smooth and $j: V \rightarrow Y$ be a regular embedding. If x is a cycle on Y, then $x \cdot[V]=j^{!}(x) \in A_{*}(|x| \cap V)$.

Corollary 2.5. Let $f: X \rightarrow Y$ with X, Y smooth. Then $x \cdot f y=(x \times y) \cdot\left[\Gamma_{f}\right] \in$ $A_{*}\left(|x| \cap f^{-1}(|y|)\right)$.

Corollary 2.6. Let $f: X \rightarrow Y$ with Y smooth and x a cycle on X. Then $x \cdot f[Y]=x$.

Definition 2.7. Let $f: X \rightarrow Y$ be a morphism with X purely m-dimensional and Y a smooth n-dimensional variety Y. For any morphism $g: Y^{\prime} \rightarrow Y$, define a refined Gysin homomorphism

$$
f^{!}: A_{k}\left(Y^{\prime}\right) \rightarrow A_{k+m-n}\left(X \times_{Y} Y^{\prime}\right) \quad f^{!}(y)=[X] \cdot{ }_{f} y
$$

Proposition 2.8.

(a) If f is flat, then $f^{!}(y)=f^{\prime *}(y)$, where $f^{\prime}: X \times_{Y} Y^{\prime} \rightarrow Y^{\prime}$ is the base change.
(b) If f is a local complete intersection morphism, then f ! agrees with the morphism constructed in Section 6.6 of Fulton.

Now let Y be a smooth variety of dimension n. Let V, W be closed subschemes of Y of pure dimension k, ℓ. Now a component $Z \subseteq V \cap W$ is a proper component if $\operatorname{dim} Z=k+\ell-n$. If Z is proper, then the coefficient of Z in $V \cdot W \in A_{k+\ell-n}(V \cap$ $W)$ is called the intersection multiplicity $i(Z, V \cdot W ; Y)=i\left(Z, \Delta_{Y} \cdot(V \times W) ; Y \times Y\right)$. If every component of $V \cap W$ is proper, then the intersection class is

$$
V \cdot W=\sum_{Z} i(Z, V \cdot W ; Y) \cdot[Z]
$$

Proposition 2.9. Assume Z is a proper component of $V \cap W$. Then
(a) $1 \leq i(Z, V \cdot W ; Y) \leq \mathscr{O}_{V \cap W, Z}$.
(b) If the local ring $\mathscr{O}_{V \cap W, Z}$ is Cohen-Macaulay, then $i(Z, V \cdot W ; Y)=\ell\left(\mathscr{O}_{V \cap W, Z}\right)$.
(c) If V, W are varieties, then $i(Z, V \cdot W ; Y)=1$ if and only if the maximal ideal of $\mathscr{O}_{Y, Z}$ is the sum of the prime ideals of V and W. In fact, $\mathscr{O}_{V, Z}, \mathscr{O}_{W, Z}$ are regular.

Now let Y be a smooth variety of dimension n. Set $A^{p}(Y)=A_{n-p}(Y)$. Now this indexing, the intersection product is now $A^{p}(Y) \otimes A^{q}(Y) \rightarrow A^{p+q}(Y)$. In addition, if $f: X \rightarrow Y$ is a morphism, the cap product is now $A^{p}(Y) \otimes A_{q}(X) \xrightarrow{\cap} A_{q-p}(X)$. If X is also smooth, the pullback now reads $f^{*}: A^{p}(Y) \rightarrow A^{p}(X)$.

Proposition 2.10.

(a) Suppose Y is a smooth variety. Then the intersection product makes $A^{*}(Y)$ into a commutative graded ring with unit $A^{0} \ni 1=[Y] \in A_{n}$. Then $Y \mapsto A^{*}(Y)$ is a contravariant functor from smooth varieties to rings.
(b) If $f: X \rightarrow Y$ is a morphism from a scheme X to a smooth variety Y, then $A_{*} X$ is a $A^{*} Y$-module with action

$$
A^{p}(Y) \otimes A_{q}(X) \xrightarrow{\cap} A_{q-p}(X)
$$

(c) If $f: X \rightarrow Y$ is a proper morphism of smooth varieties, then

$$
f_{*}\left(f^{*} y \cdot x\right)=y \cdot f_{*}(x)
$$

for all classes x on X and y on Y.

3. Bézout's Theorem

We will now use this theory to discuss something classical. It is easy to see that $A_{k}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$ and is generated by $\left[L^{k}\right]$ for a linear subspace $L^{k} \subset \mathbb{P}^{n}$. If α is a k-cycle on \mathbb{P}^{n}, we define the degree $\operatorname{deg}(\alpha)$ to be the integer satisfying $\alpha=\operatorname{deg}(\alpha) \cdot\left[L^{k}\right]$. Equivalently, we may define

$$
\operatorname{deg}(\alpha)=\int_{\mathbb{P}^{n}} c_{1}(\mathscr{O}(1))^{k} \cap \alpha
$$

Theorem 3.1 (Bézout). Let $\alpha_{i} \in A^{d_{i}}\left(\mathbb{P}^{n}\right)$ for $i=1, \ldots, r$. If $d_{1}+\cdots+d_{r} \leq n$, then

$$
\operatorname{deg}\left(\alpha_{1} \cdots \alpha_{r}\right)=\operatorname{deg}\left(\alpha_{1}\right) \cdots \operatorname{deg}\left(\alpha_{r}\right)
$$

Proof. We have an isomorphism $A^{*}\left(\mathbb{P}^{n}\right)=\mathbb{Z}[h] /\left(h^{n+1}\right)$, where $h=\left[L^{n-1}\right]$. Thus $\left[L^{n-k}\right]=h^{k}$, and the desired result follows.

Now if subschemes $V_{1}, \ldots, V_{r} \subseteq \mathbb{P}^{n}$ representing $\alpha_{1}, \ldots, \alpha_{r}$ meet properly, then

$$
V_{1} \cdots V_{r}=\sum_{j} i\left(Z_{j}, V_{1} \cdots V_{r} ; \mathbb{P}^{n}\right) \cdot\left[Z_{j}\right]
$$

where Z_{j} are the components of $\bigcap V_{i}$. Then Bézout's theorem gives us the identity

$$
\sum_{j} i\left(Z_{j}, V_{1} \cdots V_{r} ; \mathbb{P}^{n}\right) \cdot \operatorname{deg}\left(Z_{j}\right)=\prod \operatorname{deg}\left(V_{i}\right)
$$

If H_{1}, \ldots, H_{n} are hypersurfaces intersecting properly (so the intersection is a finite number of points), then consider the local ring $\mathscr{O}_{\cap} H_{i}, P$. Then complete intersections are Cohen-Macaulay, so

$$
i\left(P, H_{1} \cdots H_{n} ; \mathbb{P}^{n}\right)=\ell\left(\mathscr{O}_{\cap H_{i}, P}\right)
$$

Now $\operatorname{dim}_{k} \mathscr{O}_{\cap H_{i}, P}=\operatorname{deg} P \ell\left(\mathscr{O}_{\cap H_{i}, P}\right)$, and thus we obtain

$$
\sum_{P} \operatorname{dim}_{k} \mathscr{O}_{\cap H_{i}, P}=\prod \operatorname{deg} H_{i} .
$$

This recovers the very classical Bézout's theorem.
Example 3.2. Let s be the hyperplane class on \mathbb{P}^{n} and t be the hyperplane class on \mathbb{P}^{m}. Then
(1) $A^{*}\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)=\mathbb{Z}[s, t] /\left(s^{n+1}, t^{m+1}\right)$.
(2) If H_{1}, \ldots, H_{n+m} are hypersurfaces in $\mathbb{P}^{n} \times \mathbb{P}^{m}$ with bidegree $\left(a_{i}, b_{i}\right)$, then

$$
\int\left[H_{1}\right] \cdots\left[H_{n+m}\right]=\sum_{\substack{\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}\right) \\(n, m) \text {-shuffle }}} a_{i_{1}} \cdots a_{i_{n}} b_{j_{1}} \cdots b_{j_{m}}
$$

(3) If Δ is the diagonal in $\mathbb{P}^{n} \times \mathbb{P}^{n}$, then $[\Delta]=\sum_{i=0}^{n} s^{i} t^{n-i} \in A^{n}\left(\mathbb{P}^{n} \times \mathbb{P}^{n}\right)$. This formula follows from intersecting Δ with $\left[L_{1} \times L_{2}\right]$, where L_{1}, L_{2} are linear subspaces of complementary dimension.
(4) Let $s: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{n m+n+m}$ be the Segre embedding. It h is the hyperplane class on $\mathbb{P}^{n m+n+m}$, then $s^{*} u=s+t$. Also, the degree of $s\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)$ is $\binom{n+m}{n}$.
(5) If $v_{m}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\left({ }_{n}^{+m}{ }_{n}\right)-1}$ is the Veronese embedding and s, h are the hyperplane classes on the source and target, then $v_{m}^{*} u=m \cdot s$. If V is a k-dimensional subvarity of \mathbb{P}^{n} of degree d, then $\operatorname{deg}\left(v_{m}(V)\right)=d \cdot m^{k}$.

References

[1] William Fulton, Intersection Theory, 2 ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 2, Springer-Verlag, 1998.

[^0]: Date: March 19, 2021

