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Abstract. We will discuss what a cone is, then define the Segre class of a cone,
then define Segre classe of subvarieties and consider their properties, and then
discuss deformation to the normal cone following Chapters 4 and 5 of [1]. Classical
examples will be used to illustrate the theory.

1. Cones and Segre Classes

Our goal is to define a Segre class s(X, Y) of a subvariety X ( Y and study its
properties.

1.1. Cones.

Definition 1.1. Let S• be a sheaf of graded OX-algebras such that OX → S0 is
surjective, S1 is coherent, and S• is generated by S1. Then any scheme of the form
C = SpecOX

(S•) is called a cone.

If C is a cone, then P(C ⊕ 1) = Proj(S•[z]) is the projective completion with
projection q : P(C⊕ 1→ X). Let O(1) be the canonical line bundle on P(C⊕ 1).

Definition 1.2. The Segre class s(C) ∈ A∗X of C is defined as

s(C) := q∗

(
∑
i≥0

c1(O(1))i ∩ [P(C⊕ 1)]

)
.

Proposition 1.3.

(1) If E is a vector bundle on X, then s(E) = c(E)−1 ∩ [X], where c = 1 + c1 + · · ·
is the total Chern class.

(2) Let 1, . . . , ct by the irreducible components of C with geometric multiplicity mi.
Then

s(C) =
t

∑
i=1

mis(Ci).

Example 1.4. Let F , F ′ be coherent sheaves and let E be locally free. Then we
may define C(F ) = Spec(Sym F ). We may define s(F ) = s(C(F )). Now if

0→ F ′ → F → E → 0

is exact, then s(F ′) = c(E) ∩ s(F ).
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1.2. Segre Class of a Subvariety. Let X be a closed subscheme of Y defined by
the ideal sheaf I and let

C = CXY = Spec

(
∞

∑
n=0

I n/I n+1

)
be the normal cone. Note that if X is regularly embedded in Y, then CXY is a
vector bundle.

Definition 1.5. The Segre class of X in Y is defined by

s(X, Y) := s(CXY) ∈ A∗X.

Lemma 1.6. Let Y be a scheme of pure dimension m and let Y1, . . . , Yr be the irreducible
components of Y with multiplicity mi. If X is a closed subscheme of Y and Xi = X ∩Yi,
then

s(X, Y) = ∑ mis(Xi, Yi).

Proposition 1.7. Let f : Y′ → Y be a morphism of pure-dimensional schemes, X ⊆ Y a
closed subscheme, and g : X′ = f−1(X)→ X be the induced morphism.

(1) If f is proper, Y is irreducible, and f maps each irreducible component of Y′ onto
Y, then

g∗(s(X′, Y′)) = deg(Y′/Y) · s(X, Y).

(2) If f is flat, then g∗(s(X, Y)) = s(X′, Y′).

Remark 1.8. If f is birational, then f∗(s(X′, Y′)) = s(X, Y). This says that Segre
classes are unchanged by pushforward along birational modifications.

Corollary 1.9. Let Y be a variety and X ⊆ Y be a proper closed subsecheme. Then let
Ỹ = BlX Y and X̃ = P(C) be the exceptional divisor with projection η : X̃ → X. Then

s(X, Y) = ∑
k≥1

(−1)k−1η∗(X̃k) = ∑
i≥0

η∗(c1(O(1))i ∩ [P(C)]).

Example 1.10. Let A, B, D be effective Cartier divisors on a surface Y. Then let
A′ = A+ D, B′ = B+ D, and let X = A′ ∩ B′. Suppose that A, B meet transversally
at a single smooth point P ∈ Y. Then if Ỹ = BlP Y and f : Ỹ → Y is the blowup
with exceptional divisor E, we see that X̃ = f−1(X) = f ∗D + E, so we have

s(X, Y) = f∗[X̃]− f∗(X̃ · [X̃])

= [D]− f∗( f ∗D · [ f ∗D] + 2 f ∗D · [E] + E · [E])
= [D]− D · [D] + [P].

If A, B both have multiplicity m at P and no common tangents at P, then

s(X, Y) = [D] + (m2[P]− D · [D]).

In general, the answer is more complicated.
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1.3. Multiplicity. Let X ⊆ Y be an (irreducible) subvariety. Then the coefficient of
[X] in the class s(X, Y) is called the algebraic multiplicity of X on Y and is denoted
eXY.

Suppose X has positive codimension n, p : P(CXY)→ X and q : P(CXY⊕ 1)→ X
are the projections to X, and Ỹ = BlX Y with exceptional divisor X̃ = P(C). Then
we have

eXY[X] = q∗(c1(O(1))n ∩ [P[C⊕ 1]])

= p∗(c1(O(1))n−1 ∩ [P(C)])

= (−1)n−1 p∗(X̃n).

For example, if X is a point, then we have

ePY =
∫

P(C)
c1(O(1))n−1 ∩ [P(C)] = deg[P(C)].

Example 1.11. Let C be a smooth curve of genus g and C(d) be the d-th symmetric
power of C. Then let P0 ∈ C, J = J(C) be the Jacobian, and ud : C(d) → J be given
by D 7→ D− dP0. We know that the fibers of ud are the linear systems |D| ∼= Pr; if
d > 2g− 2, then ud : C(d) → J is a projective bundle; and if 1 ≤ d ≤ g, then µd is
birational onto its image Wd. Now if deg D = d and dim |D| = r, we have

s(D, C(d)) = (1 + K)g−d+r ∩ [|D|],
where K = c1(K|D|). When d is large, this follows from the second bullet, but if d
is small, then we may embed

C(d) ⊂ C(d+s) E 7→ E + sP0

and then consider the normal bundle to this embedding restricted to |D|. Com-
bined with Proposition 4.1.7, this gives us the Riemann-Kempf formula, which says
that the multiplicity of Wd at ud(D) is given by eµd(D)Wd = (g−d+r

r ).

Remark 1.12. The previous example can be generalized to the Fano varieties of
lines on a cubic threefold X. In particular if F is the Fano variety of lines on X,
then there is a morphism of degree 6 from F× F to the theta divisor, and we can
calculate (following Clemens-Griffiths) that∫

F
s2(TF) =

∫
F

c1(TF)
2 − c2(Tf ) = 45− 27 = 18,

and then the theta divisor has a singular point of multiplicity 3.

1.4. Linear Systems. Let L be a line bundle on a variety X (of dimension n) and
let V ⊆ |L| be a partial linear system of dimension r + 1. Then let B be the base
locus of V. Then if X̃ = BlB X, we obtain a morphism f : X̃ → Pr resolving the
rational map X 99K Pr. By definition, we have f ∗O(1) = π∗(L)⊗O(−E). Define
deg f X̃ to be the degree of f∗[X̃] ∈ AnPr.

Proposition 1.13. We have the identity

deg f X̃ =
∫

X
c1(L)n −

∫
B

c1(L)n ∩ s(B, X).
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Example 1.14. Let B ⊂ Pn be the rational normal curve. Then let V ⊂ |O(2)| be
the linear system of quadrics containing B. If P̃n = BlB Pn, we see that

deg f P̃n = 2n − (n2 − n + 2).

If n = 4, then f (P̃4) = Gr(2, 4) ⊂ P5.

2. Deformation to the Normal Cone

Let X ⊆ Y be a closed subscheme and C = CXY be the normal cone. We will
construct a scheme M = MXY and a closed embedding X×P1 ⊆ M such that

X×P1 M

P1

p2
q

comutes and such that

(1) Away from ∞, we have q−1(A1) = Y ×A1 and the embedding is the
trivial embedding X×A1 ⊆ Y×A1.

(2) Over ∞, M∞ = P(C ⊕ 1) + Ỹ is a sum of two Cartier divisors, where
Ỹ = BlX Y. The embedding of X is given by X ↪→ C ↪→ P(C⊕ 1). We also
have P(C⊕ 1) ∩ Ỹ = P(C), which is embedded as the hyperplane at ∞ in
P(C⊕ 1) and as the exceptional divisor in Ỹ.

We will now construct this deformation. Let M = BlX×∞ Y×P1. Clearly we have
CX×∞Y×P1 = C⊕ 1. But now we can embed X×P1 ⊆ M. The first property is
obvious by the blowup construction, so now we need to show the second property.

We may assume Y = Spec A is affine and X is defined by the ideal I. Identify
P1 \ 0 = A1 = Spec k[t]. Then if we write Sn = I, Tn, then we see that BlX×0 Y×
A1 = Proj S•. But now this is covered by affines{

Spec S•(a)

}
a∈(I,T) generator

.

Now for a ∈ I, we see that P(C⊕ 1) ⊆ Spec S•(a) is defined by the equation a/1,

while Ỹ is defined by T/a, and now we see that

M∞ = V(T) = V
(

a
1
· t

a

)
= V(a) ∪V(T/a) = P(C⊕ 1) + Ỹ,

as desired.

Now this allows us to define a specialization morphism

σ : ZkY → ZkC [V] 7→ [CV∩XV].

Proposition 2.1. Specialization preserves rational equivalence. Therefore we have a
specialization morphism

σ : AkY → AkC.

Remark 2.2. Supposing that X, Y are smooth, then the embedding of X ⊂ P(N⊕ 1)
is nicer than X ⊂ Y in several ways:
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(1) There is a retraction P(N ⊕ 1)→ X.

(2) There is a vector bundle ξ on P(N ⊕ 1) or rank codimY X and a section
s ∈ Γ(ξ) such that V(s) = X. Therefore X is represented by the top Chern
class of ξ.
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