CONES: BECAUSE NOT EVERY COHERENT SHEAF IS LOCALLY FREE

PATRICK LEI

AsBsTRACT. We will discuss what a cone is, then define the Segre class of a cone,
then define Segre classe of subvarieties and consider their properties, and then
discuss deformation to the normal cone following Chapters 4 and 5 of [1]. Classical
examples will be used to illustrate the theory.

1. CONES AND SEGRE CLASSES

Our goal is to define a Segre class s(X,Y) of a subvariety X C Y and study its
properties.

1.1. Cones.
Definition 1.1. Let S® be a sheaf of graded Ox-algebras such that 0x — S is

surjective, S! is coherent, and S* is generated by S!. Then any scheme of the form
C = Specy;, (S*) is called a cone.

If C is a cone, then P(C & 1) = Proj(5°[z]) is the projective completion with
projection q: P(C @1 — X). Let ¢(1) be the canonical line bundle on P(C & 1).

Definition 1.2. The Segre class s(C) € A, X of C is defined as

s(C) = g, (ch(ﬁ(l))i N[P(Ca® 1)]).

i>0
Proposition 1.3.

(1) If E is a vector bundle on X, then s(E) = c(E) "' N [X], wherec = 14¢; + - - -
is the total Chern class.

(2) Let1,...,ct by the irreducible components of C with geometric multiplicity m;.
Then

t
s(C) = ;mis(ci).

Example 1.4. Let .Z,.#’ be coherent sheaves and let & be locally free. Then we
may define C(.7#) = Spec(Sym .# ). We may define s(.#) = s(C(.#)). Now if

0 F 75860
is exact, then s(.#') = ¢(E) Ns(F).
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1.2. Segre Class of a Subvariety. Let X be a closed subscheme of Y defined by
the ideal sheaf .# and let

C = CxY = Spec (Z J”/J”“)
n=0

be the normal cone. Note that if X is regularly embedded in Y, then CxY is a
vector bundle.

Definition 1.5. The Segre class of X in Y is defined by
s(X,Y) =s(CxY) € A.X.

Lemma 1.6. Let Y be a scheme of pure dimension m and let Y1,. .., Y, be the irreducible
components of Y with multiplicity m;. If X is a closed subscheme of Y and X; = X NY;,
then

s(X,Y) =) mis(X;,Y;).

Proposition 1.7. Let f: Y' — Y be a morphism of pure-dimensional schemes, X C Y a
closed subscheme, and g: X' = f~1(X) — X be the induced morphism.

(1) If f is proper, Y is irreducible, and f maps each irreducible component of Y’ onto
Y, then

2. (s(X,Y')) =deg(Y'/Y) -s(X,Y).
(2) If f is flat, then ¢*(s(X,Y)) = s(X', Y").

Remark 1.8. If f is birational, then f.(s(X’,Y’)) = s(X,Y). This says that Segre
classes are unchanged by pushforward along birational modifications.

Corollary 1.9. Let Y be a variety and X C Y be a proper closed subsecheme. Then let
Y = Blx Y and X = P(C) be the exceptional divisor with projection n: X = X. Then

(X, Y) = Y (1) (%) = Yone(e(@(1) N [P(C)).

k>1 i>0

Example 1.10. Let A, B, D be effective Cartier divisors on a surface Y. Then let
A'=A+D,B'=B+D,andlet X = A’NB. Suppose that A, B meet transversally
at a single smooth point P € Y. Thenif Y = BlpY and f: Y — Y is the blowup
with exceptional divisor E, we see that X = f~1(X) = f*D + E, so we have

s(X,Y) = fulX] = fuo(X - [X])
= [D] = f(f*D - [f*D] +2f*D - [E] + E - [E])
= [D] = D-[D] +[P].

If A, B both have multiplicity m at P and no common tangents at P, then
s(X,Y) = [D] + (m*[P] — D - [D]).

In general, the answer is more complicated.
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1.3. Multiplicity. Let X C Y be an (irreducible) subvariety. Then the coefficient of
[X] in the class s(X, Y) is called the algebraic multiplicity of X on Y and is denoted
EXY.

Suppose X has positive codimension n, p: P(CxY) — X and q: P(CxY ® 1) — X
are the projections to X, and Y = Bly Y with exceptional divisor X = IP(C). Then
we have

For example, if X is a point, then we have

rY = [, a0 NIP(C)] = deg[P(C)]

Example 1.11. Let C be a smooth curve of genus g and C(®) be the d-th symmetric
power of C. Then let Py € C, ] = J(C) be the Jacobian, and u;: c@ = Jbe given
by D — D — dPy. We know that the fibers of 1, are the linear systems |D| = IP"; if
d > 2g —2, then uy: C@ — Jis a projective bundle; and if 1 < d < g, then pg is
birational onto its image W;. Now if deg D = d and dim |D| = r, we have

s(D,CW) = (1+ K " n D],

where K = ¢ (K|D|). When d is large, this follows from the second bullet, but if d
is small, then we may embed

c@ cclé+s)  Evs E+45sP
and then consider the normal bundle to this embedding restricted to |D|. Com-
bined with Proposition 4.1.7, this gives us the Riemann-Kempf formula, which says
that the multiplicity of W, at u;(D) is given by e, (pyWy = (¢ 75“).

Remark 1.12. The previous example can be generalized to the Fano varieties of
lines on a cubic threefold X. In particular if F is the Fano variety of lines on X,
then there is a morphism of degree 6 from F x F to the theta divisor, and we can
calculate (following Clemens-Griffiths) that

/ 52(Tr) = / ¢1(Tp)? — co(Ty) = 45— 27 = 18,

F F

and then the theta divisor has a singular point of multiplicity 3.

1.4. Linear Systems. Let L be a line bundle on a variety X (of dimension n) and

let V C |L| be a partial linear system of dimension r + 1. Then let B be the base

locus of V. Then if X = Blg X, we obtain a morphism f: X — P’ resolving the
rational map X --» IP". By definition, we have f*&'(1) = n*(L) ® 0(—E). Define
deg X to be the degree of f.[X] € A,P".

Proposition 1.13. We have the identity
d )~(:/ L”—/ L)" Ns(B, X).
€8y Xcl( ) .Bcl( )" Ns( )
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Example 1.14. Let B C P” be the rational normal curve. Then let V C |0(2)| be
the linear system of quadrics containing B. If P" = Blg IP", we see that

degf]1~’" =2"— (n> —n+2).
If n = 4, then f(P*) = Gr(2,4) C IP°.
2. DEFORMATION TO THE NORMAL CONE

Let X C Y be a closed subscheme and C = CxY be the normal cone. We will
construct a scheme M = MxY and a closed embedding X x P! C M such that

XxPlem—— M

e A

(1) Away from oo, we have g 1(A!) = Y x Al and the embedding is the
trivial embedding X X Al CY x Al

comutes and such that

(2) Over co, Moo = P(CD 1) + Y is a sum of two Cartier divisors, where
Y = Bl Y. The embedding of X is given by X <+ C < P(C @ 1). We also
have P(C ®1) N'Y = IP(C), which is embedded as the hyperplane at o in
P(C @ 1) and as the exceptional divisor in Y.

We will now construct this deformation. Let M = Bly o Y x PL. Clearly we have
CxxeoY X P! = C @ 1. But now we can embed X x P! C M. The first property is
obvious by the blowup construction, so now we need to show the second property.

We may assume Y = Spec A is affine and X is defined by the ideal I. Identify
P!\ 0 = A! = Speck|[t]. Then if we write S” = I, T", then we see that Blxxo Y x
A' = ProjS*. But now this is covered by affines

{Spec S(“) }ue(I,T) generator.
Now for a € I, we see that P(C & 1) C Spec §7,) is defined by the equation a/1,

while Y is defined by T/a, and now we see that

Me = V(T) = v(“ - Z) — V(@) UV(T/a) = P(C1)+7,

as desired.
Now this allows us to define a specialization morphism

o: ZkY — Z;C [V] — [CVQXV].

Proposition 2.1. Specialization preserves rational equivalence. Therefore we have a
specialization morphism
o: AkY — AkC.

Remark 2.2. Supposing that X, Y are smooth, then the embedding of X C P(N @ 1)
is nicer than X C Y in several ways:
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(1) There is a retraction P(N ¢ 1) — X.

(2) There is a vector bundle ¢ on P(N @ 1) or rank codimy X and a section
s € T(¢) such that V(s) = X. Therefore X is represented by the top Chern
class of ¢.
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