CONES: BECAUSE NOT EVERY COHERENT SHEAF IS LOCALLY FREE

PATRICK LEI

ABSTRACT. We will discuss what a cone is, then define the Segre class of a cone, then define Segre classe of subvarieties and consider their properties, and then discuss deformation to the normal cone following Chapters 4 and 5 of [1]. Classical examples will be used to illustrate the theory.

1. CONES AND SEGRE CLASSES

Our goal is to define a Segre class s(X, Y) of a subvariety $X \subsetneq Y$ and study its properties.

1.1. Cones.

Definition 1.1. Let S^{\bullet} be a sheaf of graded \mathscr{O}_X -algebras such that $\mathscr{O}_X \to S^0$ is surjective, S^1 is coherent, and S^{\bullet} is generated by S^1 . Then any scheme of the form $C = \operatorname{Spec}_{\mathscr{O}_X}(S^{\bullet})$ is called a *cone*.

If *C* is a cone, then $\mathbb{P}(C \oplus 1) = \operatorname{Proj}(S^{\bullet}[z])$ is the projective completion with projection *q*: $\mathbb{P}(C \oplus 1 \to X)$. Let $\mathcal{O}(1)$ be the canonical line bundle on $\mathbb{P}(C \oplus 1)$.

Definition 1.2. The *Segre class* $s(C) \in A_*X$ of *C* is defined as

$$s(C) := q_* \left(\sum_{i \ge 0} c_1(\mathscr{O}(1))^i \cap [\mathbb{P}(C \oplus 1)] \right).$$

Proposition 1.3.

- (1) If E is a vector bundle on X, then $s(E) = c(E)^{-1} \cap [X]$, where $c = 1 + c_1 + \cdots$ is the total Chern class.
- (2) Let $_1, \ldots, c_t$ by the irreducible components of C with geometric multiplicity m_i . Then

$$s(C) = \sum_{i=1}^{l} m_i s(C_i).$$

Example 1.4. Let $\mathscr{F}, \mathscr{F}'$ be coherent sheaves and let \mathscr{E} be locally free. Then we may define $C(\mathscr{F}) = \operatorname{Spec}(\operatorname{Sym} \mathscr{F})$. We may define $s(\mathscr{F}) = s(C(\mathscr{F}))$. Now if

$$0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{E} \to 0$$

is exact, then $s(\mathscr{F}') = c(E) \cap s(\mathscr{F})$.

Date: February 12, 2021.

1.2. **Segre Class of a Subvariety.** Let X be a closed subscheme of Y defined by the ideal sheaf \mathscr{I} and let

$$C = C_X Y = \operatorname{Spec}\left(\sum_{n=0}^{\infty} \mathscr{I}^n / \mathscr{I}^{n+1}\right)$$

be the normal cone. Note that if *X* is regularly embedded in *Y*, then $C_X Y$ is a vector bundle.

Definition 1.5. The *Segre class* of *X* in *Y* is defined by

$$s(X,Y) \coloneqq s(C_XY) \in A_*X.$$

Lemma 1.6. Let Y be a scheme of pure dimension m and let Y_1, \ldots, Y_r be the irreducible components of Y with multiplicity m_i . If X is a closed subscheme of Y and $X_i = X \cap Y_i$, then

$$s(X,Y) = \sum m_i s(X_i,Y_i).$$

Proposition 1.7. Let $f: Y' \to Y$ be a morphism of pure-dimensional schemes, $X \subseteq Y$ a closed subscheme, and $g: X' = f^{-1}(X) \to X$ be the induced morphism.

(1) *If f is proper,* Y *is irreducible, and f maps each irreducible component of* Y' *onto* Y, *then*

$$g_*(s(X',Y')) = \deg(Y'/Y) \cdot s(X,Y).$$

(2) If f is flat, then $g^*(s(X,Y)) = s(X',Y')$.

Remark 1.8. If *f* is birational, then $f_*(s(X', Y')) = s(X, Y)$. This says that Segre classes are unchanged by pushforward along birational modifications.

Corollary 1.9. Let Y be a variety and $X \subseteq Y$ be a proper closed subsecheme. Then let $\widetilde{Y} = Bl_X Y$ and $\widetilde{X} = \mathbb{P}(C)$ be the exceptional divisor with projection $\eta \colon \widetilde{X} \to X$. Then

$$s(X,Y) = \sum_{k \ge 1} (-1)^{k-1} \eta_*(\widetilde{X}^k) = \sum_{i \ge 0} \eta_*(c_1(\mathscr{O}(1))^i \cap [\mathbb{P}(C)]).$$

Example 1.10. Let A, B, D be effective Cartier divisors on a surface Y. Then let A' = A + D, B' = B + D, and let $X = A' \cap B'$. Suppose that A, B meet transversally at a single smooth point $P \in Y$. Then if $\tilde{Y} = Bl_P Y$ and $f \colon \tilde{Y} \to Y$ is the blowup with exceptional divisor E, we see that $\tilde{X} = f^{-1}(X) = f^*D + E$, so we have

$$s(X,Y) = f_*[\tilde{X}] - f_*(\tilde{X} \cdot [\tilde{X}]) = [D] - f_*(f^*D \cdot [f^*D] + 2f^*D \cdot [E] + E \cdot [E]) = [D] - D \cdot [D] + [P].$$

If *A*, *B* both have multiplicity *m* at *P* and no common tangents at *P*, then

$$s(X,Y) = [D] + (m^2[P] - D \cdot [D]).$$

In general, the answer is more complicated.

1.3. Multiplicity. Let $X \subseteq Y$ be an (irreducible) subvariety. Then the coefficient of [X] in the class s(X, Y) is called the *algebraic multiplicity* of X on Y and is denoted $e_X Y$.

Suppose *X* has positive codimension *n*, $p \colon \mathbb{P}(C_X Y) \to X$ and $q \colon \mathbb{P}(C_X Y \oplus 1) \to X$ are the projections to *X*, and $\widetilde{Y} = \operatorname{Bl}_X Y$ with exceptional divisor $\widetilde{X} = \mathbb{P}(C)$. Then we have

$$e_X Y[X] = q_*(c_1(\mathscr{O}(1))^n \cap [\mathbb{P}[C \oplus 1]])$$

= $p_*(c_1(\mathscr{O}(1))^{n-1} \cap [\mathbb{P}(C)])$
= $(-1)^{n-1} p_*(\widetilde{X}^n).$

For example, if *X* is a point, then we have

$$e_P Y = \int_{\mathbb{P}(C)} c_1(\mathscr{O}(1))^{n-1} \cap [\mathbb{P}(C)] = \deg[P(C)].$$

Example 1.11. Let *C* be a smooth curve of genus *g* and $C^{(d)}$ be the *d*-th symmetric power of *C*. Then let $P_0 \in C$, J = J(C) be the Jacobian, and $u_d : C^{(d)} \to J$ be given by $D \mapsto D - dP_0$. We know that the fibers of u_d are the linear systems $|D| \cong \mathbb{P}^r$; if d > 2g - 2, then $u_d : C^{(d)} \to J$ is a projective bundle; and if $1 \le d \le g$, then μ_d is birational onto its image W_d . Now if deg D = d and dim |D| = r, we have

$$s(D, C^{(d)}) = (1 + K)^{g-d+r} \cap [|D|],$$

where $K = c_1(K_{|D|})$. When *d* is large, this follows from the second bullet, but if *d* is small, then we may embed

$$C^{(d)} \subset C^{(d+s)} \qquad E \mapsto E + sP_0$$

and then consider the normal bundle to this embedding restricted to |D|. Combined with Proposition 4.1.7, this gives us the *Riemann-Kempf formula*, which says that the multiplicity of W_d at $u_d(D)$ is given by $e_{\mu_d(D)}W_d = \binom{g-d+r}{r}$.

Remark 1.12. The previous example can be generalized to the Fano varieties of lines on a cubic threefold *X*. In particular if *F* is the Fano variety of lines on *X*, then there is a morphism of degree 6 from $F \times F$ to the theta divisor, and we can calculate (following Clemens-Griffiths) that

$$\int_F s_2(T_F) = \int_F c_1(T_F)^2 - c_2(T_f) = 45 - 27 = 18,$$

and then the theta divisor has a singular point of multiplicity 3.

1.4. **Linear Systems.** Let *L* be a line bundle on a variety *X* (of dimension *n*) and let $V \subseteq |L|$ be a partial linear system of dimension r + 1. Then let *B* be the base locus of *V*. Then if $\widetilde{X} = \operatorname{Bl}_B X$, we obtain a morphism $f \colon \widetilde{X} \to \mathbb{P}^r$ resolving the rational map $X \dashrightarrow \mathbb{P}^r$. By definition, we have $f^* \mathcal{O}(1) = \pi^*(L) \otimes \mathcal{O}(-E)$. Define deg $f \widetilde{X}$ to be the degree of $f_*[\widetilde{X}] \in A_n \mathbb{P}^r$.

Proposition 1.13. We have the identity

$$\deg_{f} \widetilde{X} = \int_{X} c_{1}(L)^{n} - \int_{B} c_{1}(L)^{n} \cap s(B, X).$$

Example 1.14. Let $B \subset \mathbb{P}^n$ be the rational normal curve. Then let $V \subset |\mathscr{O}(2)|$ be the linear system of quadrics containing *B*. If $\widetilde{P}^n = \operatorname{Bl}_B \mathbb{P}^n$, we see that

$$\deg_f \widetilde{\mathbb{P}}^n = 2^n - (n^2 - n + 2)$$

If n = 4, then $f(\widetilde{\mathbb{P}}^4) = \operatorname{Gr}(2, 4) \subset \mathbb{P}^5$.

2. Deformation to the Normal Cone

Let $X \subseteq Y$ be a closed subscheme and $C = C_X Y$ be the normal cone. We will construct a scheme $M = M_X Y$ and a closed embedding $X \times \mathbb{P}^1 \subseteq M$ such that

comutes and such that

- (1) Away from ∞ , we have $q^{-1}(\mathbb{A}^1) = Y \times \mathbb{A}^1$ and the embedding is the trivial embedding $X \times \mathbb{A}^1 \subseteq Y \times \mathbb{A}^1$.
- (2) Over ∞ , $M_{\infty} = \mathbb{P}(C \oplus 1) + \widetilde{Y}$ is a sum of two Cartier divisors, where $\widetilde{Y} = \operatorname{Bl}_X Y$. The embedding of *X* is given by $X \hookrightarrow C \hookrightarrow \mathbb{P}(C \oplus 1)$. We also have $\mathbb{P}(C \oplus 1) \cap \widetilde{Y} = \mathbb{P}(C)$, which is embedded as the hyperplane at ∞ in $\mathbb{P}(C \oplus 1)$ and as the exceptional divisor in \widetilde{Y} .

We will now construct this deformation. Let $M = \operatorname{Bl}_{X \times \infty} Y \times \mathbb{P}^1$. Clearly we have $C_{X \times \infty} Y \times \mathbb{P}^1 = C \oplus 1$. But now we can embed $X \times \mathbb{P}^1 \subseteq M$. The first property is obvious by the blowup construction, so now we need to show the second property.

We may assume Y = Spec A is affine and X is defined by the ideal I. Identify $\mathbb{P}^1 \setminus 0 = \mathbb{A}^1 = \text{Spec } k[t]$. Then if we write $S^n = I$, T^n , then we see that $\text{Bl}_{X \times 0} Y \times \mathbb{A}^1 = \text{Proj } S^{\bullet}$. But now this is covered by affines

$$\left\{\operatorname{Spec} S^{\bullet}_{(a)}\right\}_{a\in(I,T) \text{ generator}}.$$

Now for $a \in I$, we see that $\mathbb{P}(C \oplus 1) \subseteq \operatorname{Spec} S^{\bullet}_{(a)}$ is defined by the equation a/1, while \widetilde{Y} is defined by T/a, and now we see that

$$M_{\infty} = V(T) = V\left(\frac{a}{1} \cdot \frac{t}{a}\right) = V(a) \cup V(T/a) = \mathbb{P}(C \oplus 1) + \widetilde{Y},$$

as desired.

Now this allows us to define a specialization morphism

$$\sigma \colon Z_k Y \to Z_k C \qquad [V] \mapsto [C_{V \cap X} V].$$

Proposition 2.1. Specialization preserves rational equivalence. Therefore we have a specialization morphism

$$\sigma: A_k Y \to A_k C.$$

Remark 2.2. Supposing that *X*, *Y* are smooth, then the embedding of $X \subset \mathbb{P}(N \oplus 1)$ is nicer than $X \subset Y$ in several ways:

- (1) There is a retraction $\mathbb{P}(N \oplus 1) \to X$.
- (2) There is a vector bundle ξ on $\mathbb{P}(N \oplus 1)$ or rank $\operatorname{codim}_Y X$ and a section $s \in \Gamma(\xi)$ such that V(s) = X. Therefore X is represented by the top Chern class of ξ .

References

 William Fulton, Intersection Theory, 2 ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 2, Springer-Verlag, 1998.