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Enumerative geometry

“A typical problem in enumerative geometry is to find the number
of geometric figures in a given family which satisfy certain
conditions”.

One of the classical examples is that given five points
in general position in P2, there exists a unique smooth conic
passing through them.
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The idea is that “conics are parametrized by P5, and passing
through a point is a degree 1 equation in P5”.

But this might be
dangerous:

P5 parametrizes conics, not smooth conics.

We need transversal intersections.

For instance, the argument does not work for smooth conics
tangent to five lines. Each tangency is a degree 2 equation on P5,
but they are not transversal (the conics of the form {L2 = 0} are
“tangent” to all lines).
The correct number is 1, which may be seen by taking the dual
conic (the set of tangent lines, as a subset of (P2)∗).
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Conservation of number

The classical principle is called conservation of number: if the
problem has a finite numerical answer, this number is constant (or
jumps to infinity).

Sadly, this does not work. Given four lines and a point in general
position, there exists 14 · 2 = 2 smooth conics tangent to the lines
and passing through the point (as one can show by taking the dual
problem). But if the point lies in the diagonals of the quadrilateral
given by the lines, then the number of smooth solutions decreases
to 1 or 0.
Today we will discuss strong foundations for this principle, and
some applications in enumerative geometry.
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Notation

During this section, T will denote an irreducible variety of
dimension m > 0. We take t ∈ T a regular closed point, and we
denote

{t} = Specκ(t), t : {t} → T

for the point and the inclusion.
We will use script letters (e.g. X ,Y ) for schemes over T , and the
corresponding latin letters (e.g. Xt ,Yt) for the corresponding
fibers over t (as schemes over {t}). If f : X → Y is a morphism,
we denote ft : Xt → Yt the map on the fibers.
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Specialization

Let p : Y → T , α ∈ Ak+mY . We define αt ∈ AkYt by

αt = t!(α)

where t! is the refined Gysin homomorphism induced by

Yt Y

{t} T .

p

t

For instance, if α = [V ] and V ⊆ Yt , then [V ]t = 0.
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Basic properties

Proposition 1

1 If f : X → Y is proper, α ∈ Ak+mX , then

ft∗(αt) = (f∗(α))t in Ak(Yt).

2 If f : X → Y is flat of relative dimension n, α ∈ Ak+mY

f ∗t (αt) = (f ∗(α))t in Ak+n(Xt).

3 If i : X → Y is a regular embedding of codimension d, such
that it : Xt → Yt is also a regular embedding of codimension
d, f : V → Y a morphism, α ∈ Ak+mV , then

i !t(αt) = (i !(α))t in Ak−d(Wt),W = f −1(X ).
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Basic properties

Proposition 1

4 If E is a vector bundle over Y , α ∈ Ak+mY , then

ci (Et) ∩ αt = (ci (E ) ∩ α)t in Ak−i (Yt).



Introduction Families of cycle classes Conservation of number An enumerative problem

Basic properties

Proposition 1

4 If E is a vector bundle over Y , α ∈ Ak+mY , then

ci (Et) ∩ αt = (ci (E ) ∩ α)t in Ak−i (Yt).

The proof follows directly from similar statements for the refined
Gysin homomorphism (see §6.2–6.4).
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Relation between fibers

Given a family X → T and α ∈ Ak+mX , it is natural to compare
αt ∈ Ak(Xt) for different values of t. It is not obvious that such
relation exists, even if X = Y × T is the trivial family.

Example 2

Let Y = T be a projective curve of genus g ≥ 2, and ∆ ⊆ Y × T
the diagonal. If α = [∆] ∈ A1(Y × T ), then αt = [t] ∈ A0Y . But
for t1 6= t2, we have that αt1 and αt2 are not rationally equivalent.

This can be solved if we assume that X = Y × T , and if for every
t1, t2 ∈ T , they can be connected by a chain of rational curves in
T (see Example 10.1.7).
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An useful corollary

Corollary 3

Assume T is non-singular, t ∈ T rational over the ground field, Y
smooth over T with relative dimension n. If
α ∈ Ak+m(Y ), β ∈ Al+m(Y ), then

αt · βt = (α · β)t in Ak+l−n(Yt).

This gives us a strategy to show that a · b = c in a non-singular
variety Y . We construct a family Y → T with Yt = Y for some t,
and such that a, b, c can be lifted to α, β, γ. Then, it suffices to
show that α · β = γ, which we can try to prove generically.
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How to use the corollary

Let C be a non-singular curve, C (n) its nth symmetric product
(which points are effective divisors of degree n over C ). If A is an
effective divisor on C of degree < n, define

XA = {D ∈ C (n) | D ≥ A}.

One can show that if A and B have disjoint support, then XA and
XB intersect transversally, and so

[XA] · [XB ] = [XA+B ].

This is true even if A and B intersect, by using Corollary 3 and by
“moving” A.
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A useful relation

We have seen that for α ∈ AkY , it is not clear that {αt}t∈T are
related, even if Y = Y × T is the trivial family.

We have the
following substitute.

Proposition 4 (Conservation of number)

Let p : Y → T be a proper morphism, dimT = m as before. Let
α be an m-cycle on Y . Then αt ∈ A0(Yt) all have the same
degree (which is obtained by pt∗(αt) = degαt · [{t}]).

The idea of the proof is write p∗(α) = N[T ] ∈ Am(T ), for some
N ∈ Z. Then, by Proposition 1 we get

pt∗(αt) = (p∗(α))t = N[T ]t = N[{t}].
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This proposition can be improved to compute the degree of
intersections with Chern classes or some divisors (see §10.2 for
precise statements). We will need the following result.

Corollary 5

Let Y be a scheme, Hi ⊆ Y × T effective Cartier divisors which
are flat over T , i = 1, . . . , d. Let a be a d-cycle on Y . Assume that

H1 ∩ · · · ∩Hd ∩ (Supp(a)× T )

is proper over T . Then

deg((H1)t · · · · · (Hd)t · a)

is independent of t.
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The main objective

Our main application of this techniques will be to solve the
following problem.

Given an r-dimensional family of plane curves, and r curves in
general position in the plane, how many curves in the family are

tangent to the r given curves?

The answer will require to compute the characteristics µkνr−k of
the family, which are the number of curves in the family passing
through k general points and tangent to r − k general lines.
For instance, if we consider the family of smooth conics, then

µ5 = ν5 = 1, µν4 = µ4ν = 2, µ2ν3 = µ3ν2 = 4.
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Step 1

We will study the incidence correspondence

I = {[x : y : z ], [a : b : c] | ax + by + cz = 0} ⊆ P2 × P2∗.

This can be seen as a P1-bundle over P2. In fact, if E is the kernel
of

1⊕3P2

(x ,y ,z)−−−−→ OP2(1)→ 0,

then I = P(E ).

This allows us to compute A•(I ) (see Example 8.3.4), with a basis

1, λ, ζ, λ2, ζ2, λ2ζ = λζ2,

where λζ = λ2 + ζ2, λ3 = ζ3 = 0, and λ, ζ the pullbacks of
c1(OP2(1)), c1(OP2∗(1)).
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Now, if M is a line and Q a point, consider

M ′ = {(P, L) ∈ I | L = M} Q ′ = {(P, L) ∈ I | P = Q}
M ′′ = {(P, L) ∈ I | P ∈ M} Q ′′ = {(P, L) ∈ I | Q ∈ L}.

One can show that

λ = [M ′′], ζ = [Q ′′], λ2 = [Q ′], ζ2 = [M ′].
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Step 2

Let D ⊆ P2 be a curve without multiple components. Define
D ′ ⊆ I as the closure of

{(P, L) ∈ I | P simple point of D, L tangent at P}.

We claim that

[D ′] = n[M ′] + m[Q ′] = nζ2 + mλ2 ∈ A2I ,

where n is the degree and m the class of D (the number of
tangents from a general point to D). The idea is to compute

D ′ ∩M ′′ = {(Pi , Li ) | Pi ∈ M ∩ D, Li tangent at Pi},

which has generically #D ′ ∩M ′′ = n points.
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The equivalence [D ′] = m[M ′] + n[Q ′] can be computed explicitely.
Take P0 a general point, M a general line, and let Q1, . . . ,Qm the
intersections of M with the tangents from P0.

P0

Q1

Q2

The projection from P0 to M gives a family D → A1 with
D1 = [D ′],D0 = n[M ′] +

∑
[Q ′i ]. (There is a explicit computation

in §10.4.)
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Step 3

Let X ⊆ P2 × S be a flat family of plane curves, dimS = r , S
non-singular. Assume Xs has no multiple compontents for general
s, and let S0 ⊆ S an open set with Xs reduced for s ∈ S .
Let X (r) ⊆ I r × S0 given by (P1, L1), . . . , (Pr , Lr ), s such that Pi

is a simple point of Xs , and Li is tangent in Pi . Note that
dim X (r) = 2r .

Take D1, . . . ,Dr ⊆ P2 reduced curves, and consider

W D ′1 × · · · × D ′r

X (r) I r .
ϕ
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We can move D1, . . . ,Dr , so that the interseccion between X (r)
and D ′1 × · · · × D ′r is transversal (by taking a general element in
PGL(2)r ). This way, W has N (reduced) points.
Now, compactify X ⊆ P2 × S0, and X (r) ⊆ I r × S0. If Z is a
closed subsed of dimension less than 2r , which contains all
X (r)−X (r), then the number N does not change after we
remove Z .
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Step 4

We now degenerate each Di to a multiple line (as we did for D).
This gives a diagram

W D ′1 × · · · ×D ′r Ar

X (r) I r .

The space X (r) is complete, so W is proper over Ar . This way,
we may take an open neighborhood T of (1, . . . , 1) and (0, . . . , 0),
so that W is proper over T and disjoint from Z .

Now, Corollary 3 applies, and so

deg(X (r) ·ϕ (D ′1 × · · · × D ′r )) = deg(X (r) ·ϕ (E ′1 × . . .E ′r )),

where D ′i ,E
′
i are the fibers over 1 and 0.
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The right hand side is just

r∏
i=1

(miµ+ niν) =
r∑

k=0

Nkµ
kνr−k ,

where each curve Di has degree ni and class mi .
The left hand side is the number of points N, provided that we
take a convenient Z (which avoids technical difficulties such as
bitangents).
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The famous example

The most known example is the Steiner’s conic problem, which
tries to determine the number of conics tangent to five smooth
conics in general position.

The natural family here is the family of smooth conics (as a subset
of P5), which has characteristics

µ5 = ν5 = 1, µ4ν = µν4 = 2, µ3ν2 = µ2ν3 = 4

(in characteristic zero!)
This way, the number of conics tangent to five non-singular curves
of degree n in general position is

N = n5((n−1)5+10(n−1)4+40(n−1)3+40(n−1)2+10(n−1)+1),

which for n = 2 gives the famous number 3264.
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