Families of algebraic cycles

Nicolás Vilches
Intersection Theory Seminar
Columbia University

March 12, 2021

Contents

(1) Introduction
(2) Families of cycle classes
(3) Conservation of number
(4) An enumerative problem

Enumerative geometry

"A typical problem in enumerative geometry is to find the number of geometric figures in a given family which satisfy certain conditions".

Enumerative geometry

"A typical problem in enumerative geometry is to find the number of geometric figures in a given family which satisfy certain conditions". One of the classical examples is that given five points in general position in \mathbb{P}^{2}, there exists a unique smooth conic passing through them.

The idea is that "conics are parametrized by \mathbb{P}^{5}, and passing through a point is a degree 1 equation in $\mathbb{P}^{5 \prime \prime}$.

The idea is that "conics are parametrized by \mathbb{P}^{5}, and passing through a point is a degree 1 equation in $\mathbb{P}^{5 "}$. But this might be dangerous:

- \mathbb{P}^{5} parametrizes conics, not smooth conics.
- We need transversal intersections.

The idea is that "conics are parametrized by \mathbb{P}^{5}, and passing through a point is a degree 1 equation in \mathbb{P}^{5} ". But this might be dangerous:

- \mathbb{P}^{5} parametrizes conics, not smooth conics.
- We need transversal intersections.

For instance, the argument does not work for smooth conics tangent to five lines. Each tangency is a degree 2 equation on \mathbb{P}^{5}, but they are not transversal (the conics of the form $\left\{L^{2}=0\right\}$ are "tangent" to all lines).
The correct number is 1 , which may be seen by taking the dual conic (the set of tangent lines, as a subset of $\left.\left(\mathbb{P}^{2}\right)^{*}\right)$.

Conservation of number

The classical principle is called conservation of number: if the problem has a finite numerical answer, this number is constant (or jumps to infinity).

Conservation of number

The classical principle is called conservation of number: if the problem has a finite numerical answer, this number is constant (or jumps to infinity).
Sadly, this does not work. Given four lines and a point in general position, there exists $1^{4} \cdot 2=2$ smooth conics tangent to the lines and passing through the point (as one can show by taking the dual problem). But if the point lies in the diagonals of the quadrilateral given by the lines, then the number of smooth solutions decreases to 1 or 0 .

Conservation of number

The classical principle is called conservation of number. if the problem has a finite numerical answer, this number is constant (or jumps to infinity).
Sadly, this does not work. Given four lines and a point in general position, there exists $1^{4} \cdot 2=2$ smooth conics tangent to the lines and passing through the point (as one can show by taking the dual problem). But if the point lies in the diagonals of the quadrilateral given by the lines, then the number of smooth solutions decreases to 1 or 0 .
Today we will discuss strong foundations for this principle, and some applications in enumerative geometry.

Notation

During this section, T will denote an irreducible variety of dimension $m>0$. We take $t \in T$ a regular closed point, and we denote

$$
\{t\}=\operatorname{Spec} \kappa(t), \quad t:\{t\} \rightarrow T
$$

for the point and the inclusion.
We will use script letters (e.g. \mathscr{X}, \mathscr{Y}) for schemes over T, and the corresponding latin letters (e.g. X_{t}, Y_{t}) for the corresponding fibers over t (as schemes over $\{t\}$). If $f: \mathscr{X} \rightarrow \mathscr{Y}$ is a morphism, we denote $f_{t}: X_{t} \rightarrow Y_{t}$ the map on the fibers.

Specialization

Let $p: \mathscr{Y} \rightarrow T, \alpha \in A_{k+m} \mathscr{Y}$. We define $\alpha_{t} \in A_{k} Y_{t}$ by

$$
\alpha_{t}=t^{!}(\alpha)
$$

where $t^{!}$is the refined Gysin homomorphism induced by

Specialization

Let $p: \mathscr{Y} \rightarrow T, \alpha \in A_{k+m} \mathscr{Y}$. We define $\alpha_{t} \in A_{k} Y_{t}$ by

$$
\alpha_{t}=t^{!}(\alpha)
$$

where $t^{!}$is the refined Gysin homomorphism induced by

For instance, if $\alpha=[\mathscr{V}]$ and $\mathscr{V} \subseteq Y_{t}$, then $[\mathscr{V}]_{t}=0$.

Basic properties

Proposition 1

(1) If $f: \mathscr{X} \rightarrow \mathscr{Y}$ is proper, $\alpha \in A_{k+m} \mathscr{X}$, then

$$
f_{t *}\left(\alpha_{t}\right)=\left(f_{*}(\alpha)\right)_{t} \quad \text { in } A_{k}\left(Y_{t}\right)
$$

(2) If $f: \mathscr{X} \rightarrow \mathscr{Y}$ is flat of relative dimension $n, \alpha \in A_{k+m} \mathscr{Y}$

$$
f_{t}^{*}\left(\alpha_{t}\right)=\left(f^{*}(\alpha)\right)_{t} \quad \text { in } A_{k+n}\left(X_{t}\right)
$$

(3) If $i: \mathscr{X} \rightarrow \mathscr{Y}$ is a regular embedding of codimension d, such that $i_{t}: X_{t} \rightarrow Y_{t}$ is also a regular embedding of codimension $d, f: \mathscr{V} \rightarrow \mathscr{Y}$ a morphism, $\alpha \in A_{k+m} \mathscr{V}$, then

$$
i_{t}^{!}\left(\alpha_{t}\right)=(i!(\alpha))_{t} \quad \text { in } A_{k-d}\left(W_{t}\right), \mathscr{W}=f^{-1}(\mathscr{X})
$$

Basic properties

Proposition 1

(9) If E is a vector bundle over $\mathscr{Y}, \alpha \in A_{k+m} \mathscr{Y}$, then

$$
c_{i}\left(E_{t}\right) \cap \alpha_{t}=\left(c_{i}(E) \cap \alpha\right)_{t} \quad \text { in } A_{k-i}\left(Y_{t}\right)
$$

Basic properties

Proposition 1

(9) If E is a vector bundle over $\mathscr{Y}, \alpha \in A_{k+m} \mathscr{Y}$, then

$$
c_{i}\left(E_{t}\right) \cap \alpha_{t}=\left(c_{i}(E) \cap \alpha\right)_{t} \quad \text { in } A_{k-i}\left(Y_{t}\right) .
$$

The proof follows directly from similar statements for the refined Gysin homomorphism (see §6.2-6.4).

Relation between fibers

Given a family $\mathscr{X} \rightarrow T$ and $\alpha \in A_{k+m} \mathscr{X}$, it is natural to compare $\alpha_{t} \in A_{k}\left(X_{t}\right)$ for different values of t. It is not obvious that such relation exists, even if $\mathscr{X}=Y \times T$ is the trivial family.

Relation between fibers

Given a family $\mathscr{X} \rightarrow T$ and $\alpha \in A_{k+m} \mathscr{X}$, it is natural to compare $\alpha_{t} \in A_{k}\left(X_{t}\right)$ for different values of t. It is not obvious that such relation exists, even if $\mathscr{X}=Y \times T$ is the trivial family.

Example 2

Let $Y=T$ be a projective curve of genus $g \geq 2$, and $\Delta \subseteq Y \times T$ the diagonal. If $\alpha=[\Delta] \in A_{1}(Y \times T)$, then $\alpha_{t}=[t] \in A_{0} Y$. But for $t_{1} \neq t_{2}$, we have that $\alpha_{t_{1}}$ and $\alpha_{t_{2}}$ are not rationally equivalent.

Relation between fibers

Given a family $\mathscr{X} \rightarrow T$ and $\alpha \in A_{k+m} \mathscr{X}$, it is natural to compare $\alpha_{t} \in A_{k}\left(X_{t}\right)$ for different values of t. It is not obvious that such relation exists, even if $\mathscr{X}=Y \times T$ is the trivial family.

Example 2

Let $Y=T$ be a projective curve of genus $g \geq 2$, and $\Delta \subseteq Y \times T$ the diagonal. If $\alpha=[\Delta] \in A_{1}(Y \times T)$, then $\alpha_{t}=[t] \in A_{0} Y$. But for $t_{1} \neq t_{2}$, we have that $\alpha_{t_{1}}$ and $\alpha_{t_{2}}$ are not rationally equivalent.

This can be solved if we assume that $\mathscr{X}=Y \times T$, and if for every $t_{1}, t_{2} \in T$, they can be connected by a chain of rational curves in T (see Example 10.1.7).

An useful corollary

Corollary 3

Assume T is non-singular, $t \in T$ rational over the ground field, \mathscr{Y} smooth over T with relative dimension n. If $\alpha \in A_{k+m}(\mathscr{Y}), \beta \in A_{I+m}(\mathscr{Y})$, then

$$
\alpha_{t} \cdot \beta_{t}=(\alpha \cdot \beta)_{t} \quad \text { in } A_{k+I-n}\left(Y_{t}\right)
$$

An useful corollary

Corollary 3

Assume T is non-singular, $t \in T$ rational over the ground field, \mathscr{Y} smooth over T with relative dimension n. If
$\alpha \in A_{k+m}(\mathscr{Y}), \beta \in A_{l+m}(\mathscr{Y})$, then

$$
\alpha_{t} \cdot \beta_{t}=(\alpha \cdot \beta)_{t} \quad \text { in } A_{k+I-n}\left(Y_{t}\right)
$$

This gives us a strategy to show that $a \cdot b=c$ in a non-singular variety Y. We construct a family $\mathscr{Y} \rightarrow T$ with $Y_{t}=Y$ for some t, and such that a, b, c can be lifted to α, β, γ. Then, it suffices to show that $\alpha \cdot \beta=\gamma$, which we can try to prove generically.

How to use the corollary

Let C be a non-singular curve, $C^{(n)}$ its $n^{\text {th }}$ symmetric product (which points are effective divisors of degree n over C). If A is an effective divisor on C of degree $<n$, define

$$
X_{A}=\left\{D \in C^{(n)} \mid D \geq A\right\}
$$

How to use the corollary

Let C be a non-singular curve, $C^{(n)}$ its $n^{\text {th }}$ symmetric product (which points are effective divisors of degree n over C). If A is an effective divisor on C of degree $<n$, define

$$
X_{A}=\left\{D \in C^{(n)} \mid D \geq A\right\}
$$

One can show that if A and B have disjoint support, then X_{A} and X_{B} intersect transversally, and so

$$
\left[X_{A}\right] \cdot\left[X_{B}\right]=\left[X_{A+B}\right] .
$$

How to use the corollary

Let C be a non-singular curve, $C^{(n)}$ its $n^{\text {th }}$ symmetric product (which points are effective divisors of degree n over C). If A is an effective divisor on C of degree $<n$, define

$$
X_{A}=\left\{D \in C^{(n)} \mid D \geq A\right\}
$$

One can show that if A and B have disjoint support, then X_{A} and X_{B} intersect transversally, and so

$$
\left[X_{A}\right] \cdot\left[X_{B}\right]=\left[X_{A+B}\right] .
$$

This is true even if A and B intersect, by using Corollary 3 and by "moving" A.

A useful relation

We have seen that for $\alpha \in A_{k} \mathscr{Y}$, it is not clear that $\left\{\alpha_{t}\right\}_{t \in T}$ are related, even if $\mathscr{Y}=Y \times T$ is the trivial family.

A useful relation

We have seen that for $\alpha \in A_{k} \mathscr{Y}$, it is not clear that $\left\{\alpha_{t}\right\}_{t \in T}$ are related, even if $\mathscr{Y}=Y \times T$ is the trivial family. We have the following substitute.

Proposition 4 (Conservation of number)

Let $p: \mathscr{Y} \rightarrow T$ be a proper morphism, $\operatorname{dim} T=m$ as before. Let α be an m-cycle on \mathscr{Y}. Then $\alpha_{t} \in A_{0}\left(Y_{t}\right)$ all have the same degree (which is obtained by $p_{t *}\left(\alpha_{t}\right)=\operatorname{deg} \alpha_{t} \cdot[\{t\}]$).

A useful relation

We have seen that for $\alpha \in A_{k} \mathscr{Y}$, it is not clear that $\left\{\alpha_{t}\right\}_{t \in T}$ are related, even if $\mathscr{Y}=Y \times T$ is the trivial family. We have the following substitute.

Proposition 4 (Conservation of number)

Let $p: \mathscr{Y} \rightarrow T$ be a proper morphism, $\operatorname{dim} T=m$ as before. Let α be an m-cycle on \mathscr{Y}. Then $\alpha_{t} \in A_{0}\left(Y_{t}\right)$ all have the same degree (which is obtained by $p_{t *}\left(\alpha_{t}\right)=\operatorname{deg} \alpha_{t} \cdot[\{t\}]$).

The idea of the proof is write $p_{*}(\alpha)=N[T] \in A_{m}(T)$, for some $N \in \mathbb{Z}$. Then, by Proposition 1 we get

$$
p_{t *}\left(\alpha_{t}\right)=\left(p_{*}(\alpha)\right)_{t}=N[T]_{t}=N[\{t\}] .
$$

This proposition can be improved to compute the degree of intersections with Chern classes or some divisors (see $\S 10.2$ for precise statements). We will need the following result.

Corollary 5

Let Y be a scheme, $\mathscr{H}_{i} \subseteq Y \times T$ effective Cartier divisors which are flat over $T, i=1, \ldots, d$. Let a be a d-cycle on Y. Assume that

$$
\mathscr{H}_{1} \cap \cdots \cap \mathscr{H}_{d} \cap(\operatorname{Supp}(a) \times T)
$$

is proper over T. Then

$$
\operatorname{deg}\left(\left(H_{1}\right)_{t} \cdots \cdots\left(H_{d}\right)_{t} \cdot a\right)
$$

is independent of t.

The main objective

Our main application of this techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many curves in the family are tangent to the r given curves?

The main objective

Our main application of this techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many curves in the family are tangent to the r given curves?

The answer will require to compute the characteristics $\mu^{k} \nu^{r-k}$ of the family, which are the number of curves in the family passing through k general points and tangent to $r-k$ general lines.

The main objective

Our main application of this techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many curves in the family are tangent to the r given curves?

The answer will require to compute the characteristics $\mu^{k} \nu^{r-k}$ of the family, which are the number of curves in the family passing through k general points and tangent to $r-k$ general lines.
For instance, if we consider the family of smooth conics, then

$$
\mu^{5}=\nu^{5}=1, \quad \mu \nu^{4}=\mu^{4} \nu=2, \quad \mu^{2} \nu^{3}=\mu^{3} \nu^{2}=4 .
$$

Step 1

We will study the incidence correspondence

$$
I=\{[x: y: z],[a: b: c] \mid a x+b y+c z=0\} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{2 *}
$$

This can be seen as a \mathbb{P}^{1}-bundle over \mathbb{P}^{2}. In fact, if E is the kernel of

$$
1_{\mathbb{P}^{2}}^{\oplus 3} \xrightarrow{(x, y, z)} \mathscr{O}_{\mathbb{P}^{2}}(1) \rightarrow 0
$$

then $I=\mathbb{P}(E)$.

Step 1

We will study the incidence correspondence

$$
I=\{[x: y: z],[a: b: c] \mid a x+b y+c z=0\} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{2 *}
$$

This can be seen as a \mathbb{P}^{1}-bundle over \mathbb{P}^{2}. In fact, if E is the kernel of

$$
1_{\mathbb{P}^{2}}^{\oplus 3} \xrightarrow{(x, y, z)} \mathscr{O}_{\mathbb{P}^{2}}(1) \rightarrow 0
$$

then $I=\mathbb{P}(E)$.
This allows us to compute $A^{\bullet}(I)$ (see Example 8.3.4), with a basis

$$
1, \lambda, \zeta, \lambda^{2}, \zeta^{2}, \lambda^{2} \zeta=\lambda \zeta^{2}
$$

where $\lambda \zeta=\lambda^{2}+\zeta^{2}, \lambda^{3}=\zeta^{3}=0$, and λ, ζ the pullbacks of $c_{1}\left(\mathscr{O}_{\mathbb{P}^{2}}(1)\right), c_{1}\left(\mathscr{O}_{\mathbb{P}^{2 *}}(1)\right)$.

Now, if M is a line and Q a point, consider

$$
\begin{aligned}
M^{\prime} & =\{(P, L) \in I \mid L=M\} & Q^{\prime} & =\{(P, L) \in I \mid P=Q\} \\
M^{\prime \prime} & =\{(P, L) \in I \mid P \in M\} & Q^{\prime \prime} & =\{(P, L) \in I \mid Q \in L\} .
\end{aligned}
$$

One can show that

$$
\lambda=\left[M^{\prime \prime}\right], \quad \zeta=\left[Q^{\prime \prime}\right], \quad \lambda^{2}=\left[Q^{\prime}\right], \quad \zeta^{2}=\left[M^{\prime}\right] .
$$

Step 2

Let $D \subseteq \mathbb{P}^{2}$ be a curve without multiple components. Define $D^{\prime} \subseteq I$ as the closure of
$\{(P, L) \in I \mid P$ simple point of D, L tangent at $P\}$.

Step 2

Let $D \subseteq \mathbb{P}^{2}$ be a curve without multiple components. Define $D^{\prime} \subseteq I$ as the closure of

$$
\{(P, L) \in I \mid P \text { simple point of } \mathrm{D}, L \text { tangent at } P\} .
$$

We claim that

$$
\left[D^{\prime}\right]=n\left[M^{\prime}\right]+m\left[Q^{\prime}\right]=n \zeta^{2}+m \lambda^{2} \in A^{2} I
$$

where n is the degree and m the class of D (the number of tangents from a general point to D). The idea is to compute

$$
D^{\prime} \cap M^{\prime \prime}=\left\{\left(P_{i}, L_{i}\right) \mid P_{i} \in M \cap D, L_{i} \text { tangent at } P_{i}\right\},
$$

which has generically $\# D^{\prime} \cap M^{\prime \prime}=n$ points.

The equivalence $\left[D^{\prime}\right]=m\left[M^{\prime}\right]+n\left[Q^{\prime}\right]$ can be computed explicitely. Take P_{0} a general point, M a general line, and let Q_{1}, \ldots, Q_{m} the intersections of M with the tangents from P_{0}.

The equivalence $\left[D^{\prime}\right]=m\left[M^{\prime}\right]+n\left[Q^{\prime}\right]$ can be computed explicitely. Take P_{0} a general point, M a general line, and let Q_{1}, \ldots, Q_{m} the intersections of M with the tangents from P_{0}.

The projection from P_{0} to M gives a family $\mathscr{D} \rightarrow \mathbb{A}^{1}$ with $\mathscr{D}_{1}=\left[D^{\prime}\right], \mathscr{D}_{0}=n\left[M^{\prime}\right]+\sum\left[Q_{i}^{\prime}\right]$. (There is a explicit computation in §10.4.)

Step 3

Let $\mathscr{X} \subseteq \mathbb{P}^{2} \times S$ be a flat family of plane curves, $\operatorname{dim} S=r, S$ non-singular. Assume X_{s} has no multiple compontents for general s, and let $S^{0} \subseteq S$ an open set with X_{s} reduced for $s \in S$. Let $\mathscr{X}(r) \subseteq I^{r} \times S^{0}$ given by $\left(P_{1}, L_{1}\right), \ldots,\left(P_{r}, L_{r}\right), s$ such that P_{i} is a simple point of X_{s}, and L_{i} is tangent in P_{i}. Note that $\operatorname{dim} \mathscr{X}(r)=2 r$.

Step 3

Let $\mathscr{X} \subseteq \mathbb{P}^{2} \times S$ be a flat family of plane curves, $\operatorname{dim} S=r, S$ non-singular. Assume X_{s} has no multiple compontents for general s, and let $S^{0} \subseteq S$ an open set with X_{s} reduced for $s \in S$. Let $\mathscr{X}(r) \subseteq I^{r} \times S^{0}$ given by $\left(P_{1}, L_{1}\right), \ldots,\left(P_{r}, L_{r}\right), s$ such that P_{i} is a simple point of X_{s}, and L_{i} is tangent in P_{i}. Note that $\operatorname{dim} \mathscr{X}(r)=2 r$.
Take $D_{1}, \ldots, D_{r} \subseteq \mathbb{P}^{2}$ reduced curves, and consider

We can move D_{1}, \ldots, D_{r}, so that the interseccion between $\mathscr{X}(r)$ and $D_{1}^{\prime} \times \cdots \times D_{r}^{\prime}$ is transversal (by taking a general element in PGL(2) ${ }^{r}$). This way, W has N (reduced) points. Now, compactify $\overline{\mathscr{X}} \subseteq \mathbb{P}^{2} \times \overline{S^{0}}$, and $\overline{\mathscr{X}(r)} \subseteq I^{r} \times \overline{S^{0}}$. If Z is a closed subsed of dimension less than $2 r$, which contains all $\overline{\mathscr{X}(r)}-\mathscr{X}(r)$, then the number N does not change after we remove Z.

Step 4

We now degenerate each D_{i} to a multiple line (as we did for D). This gives a diagram

The space $\overline{\mathscr{X}(r)}$ is complete, so \mathscr{W} is proper over \mathbb{A}^{r}. This way, we may take an open neighborhood T of $(1, \ldots, 1)$ and $(0, \ldots, 0)$, so that \mathscr{W} is proper over T and disjoint from Z.

Step 4

We now degenerate each D_{i} to a multiple line (as we did for D). This gives a diagram

The space $\overline{\mathscr{X}(r)}$ is complete, so \mathscr{W} is proper over \mathbb{A}^{r}. This way, we may take an open neighborhood T of $(1, \ldots, 1)$ and $(0, \ldots, 0)$, so that \mathscr{W} is proper over T and disjoint from Z.
Now, Corollary 3 applies, and so

$$
\operatorname{deg}\left(\mathscr{X}(r) \cdot{ }_{\varphi}\left(D_{1}^{\prime} \times \cdots \times D_{r}^{\prime}\right)\right)=\operatorname{deg}\left(\mathscr{X}(r) \cdot \varphi\left(E_{1}^{\prime} \times \ldots E_{r}^{\prime}\right)\right)
$$

where $D_{i}^{\prime}, E_{i}^{\prime}$ are the fibers over 1 and 0.

The right hand side is just

$$
\prod_{i=1}^{r}\left(m_{i} \mu+n_{i} \nu\right)=\sum_{k=0}^{r} N_{k} \mu^{k} \nu^{r-k}
$$

where each curve D_{i} has degree n_{i} and class m_{i}.
The left hand side is the number of points N, provided that we take a convenient Z (which avoids technical difficulties such as bitangents).

The famous example

The most known example is the Steiner's conic problem, which tries to determine the number of conics tangent to five smooth conics in general position.

The famous example

The most known example is the Steiner's conic problem, which tries to determine the number of conics tangent to five smooth conics in general position.
The natural family here is the family of smooth conics (as a subset of \mathbb{P}^{5}), which has characteristics

$$
\mu^{5}=\nu^{5}=1, \quad \mu^{4} \nu=\mu \nu^{4}=2, \mu^{3} \nu^{2}=\mu^{2} \nu^{3}=4
$$

(in characteristic zero!)
This way, the number of conics tangent to five non-singular curves of degree n in general position is
$N=n^{5}\left((n-1)^{5}+10(n-1)^{4}+40(n-1)^{3}+40(n-1)^{2}+10(n-1)+1\right)$,
which for $n=2$ gives the famous number 3264 .

