Introd	

An enumerative problem 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Families of algebraic cycles

Nicolás Vilches

Intersection Theory Seminar Columbia University

March 12, 2021

Introduction 000	Families of cycle classes	Conservation of number 00	An enumerative problem

Contents

2 Families of cycle classes

3 Conservation of number

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Introduction ●00	Families of cycle classes	Conservation of number	An enumerative problem
Enumerati	ve geometry		

"A typical problem in enumerative geometry is to find the number of geometric figures in a given family which satisfy certain conditions".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction ●00	Families of cycle classes	Conservation of number	An enumerative problem
Enumerat	tive geometry		

"A typical problem in enumerative geometry is to find the number of geometric figures in a given family which satisfy certain conditions". One of the classical examples is that given five points in general position in \mathbb{P}^2 , there exists a unique smooth conic passing through them.

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
000			

The idea is that "conics are parametrized by \mathbb{P}^5 , and passing through a point is a degree 1 equation in $\mathbb{P}^{5"}$.

Introduction ○●○	Families of cycle classes	Conservation of number	An enumerative problem

The idea is that "conics are parametrized by \mathbb{P}^5 , and passing through a point is a degree 1 equation in $\mathbb{P}^{5"}$. But this might be dangerous:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- \mathbb{P}^5 parametrizes conics, not *smooth* conics.
- We need *transversal* intersections.

Introduction ○●○	Families of cycle classes	Conservation of number 00	An enumerative problem

The idea is that "conics are parametrized by \mathbb{P}^5 , and passing through a point is a degree 1 equation in \mathbb{P}^5 ". But this might be dangerous:

- \mathbb{P}^5 parametrizes conics, not *smooth* conics.
- We need transversal intersections.

For instance, the argument *does not* work for smooth conics tangent to five lines. Each tangency is a degree 2 equation on \mathbb{P}^5 , but they are not transversal (the conics of the form $\{L^2 = 0\}$ are "tangent" to all lines).

The correct number is 1, which may be seen by taking the *dual* conic (the set of tangent lines, as a subset of $(\mathbb{P}^2)^*$).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
00●	000000	00	

Conservation of number

The classical principle is called *conservation of number*: if the problem has a finite numerical answer, this number is constant (or jumps to infinity).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\begin{array}{c} \text{Conservation of number} \\ \text{oo} \end{array}$

An enumerative problem

Conservation of number

The classical principle is called *conservation of number*. if the problem has a finite numerical answer, this number is constant (or jumps to infinity).

Sadly, this does not work. Given four lines and a point in general position, there exists $1^4 \cdot 2 = 2$ smooth conics tangent to the lines and passing through the point (as one can show by taking the dual problem). But if the point lies in the diagonals of the quadrilateral given by the lines, then the number of smooth solutions decreases to 1 or 0.

 $\begin{array}{c} \text{Conservation of number} \\ \text{oo} \end{array}$

An enumerative problem

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conservation of number

The classical principle is called *conservation of number*: if the problem has a finite numerical answer, this number is constant (or jumps to infinity).

Sadly, this does not work. Given four lines and a point in general position, there exists $1^4 \cdot 2 = 2$ smooth conics tangent to the lines and passing through the point (as one can show by taking the dual problem). But if the point lies in the diagonals of the quadrilateral given by the lines, then the number of smooth solutions decreases to 1 or 0.

Today we will discuss strong foundations for this principle, and some applications in enumerative geometry.

Introduction 000	Families of cycle classes ●00000	Conservation of number	An enumerative problem
Notation			

During this section, T will denote an irreducible variety of dimension m > 0. We take $t \in T$ a regular closed point, and we denote

$$\{t\} = \operatorname{Spec} \kappa(t), \qquad t \colon \{t\} \to T$$

for the point and the inclusion.

We will use script letters (e.g. \mathscr{X}, \mathscr{Y}) for schemes over T, and the corresponding latin letters (e.g. X_t, Y_t) for the corresponding fibers over t (as schemes over $\{t\}$). If $f : \mathscr{X} \to \mathscr{Y}$ is a morphism, we denote $f_t : X_t \to Y_t$ the map on the fibers.

Introduction 000	Families of cycle classes o●oooo	Conservation of number	An enumerative problem
Specializa	tion		

Let
$$p: \mathscr{Y} \to T, \alpha \in A_{k+m}\mathscr{Y}$$
. We define $\alpha_t \in A_k Y_t$ by
 $\alpha_t = t^!(\alpha)$

where $t^{!}$ is the refined Gysin homomorphism induced by

Introduction 000	Families of cycle classes 0●0000	Conservation of number	An enumerative problem
Specializa	ation		

Let
$$p: \mathscr{Y} \to T, \alpha \in A_{k+m}\mathscr{Y}$$
. We define $\alpha_t \in A_k Y_t$ by
 $\alpha_t = t^!(\alpha)$

where $t^{!}$ is the refined Gysin homomorphism induced by

For instance, if $\alpha = [\mathscr{V}]$ and $\mathscr{V} \subseteq Y_t$, then $[\mathscr{V}]_t = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem

Basic properties

Proposition 1

1 If $f: \mathscr{X} \to \mathscr{Y}$ is proper, $\alpha \in A_{k+m}\mathscr{X}$, then

$$f_{t*}(\alpha_t) = (f_*(\alpha))_t \quad \text{in } A_k(Y_t).$$

2 If $f: \mathscr{X} \to \mathscr{Y}$ is flat of relative dimension $n, \alpha \in A_{k+m}\mathscr{Y}$

$$f_t^*(\alpha_t) = (f^*(\alpha))_t \quad \text{in } A_{k+n}(X_t).$$

If i: X → Y is a regular embedding of codimension d, such that i_t: X_t → Y_t is also a regular embedding of codimension d, f: V → Y a morphism, α ∈ A_{k+m}V, then

$$i_t^!(\alpha_t) = (i^!(\alpha))_t$$
 in $A_{k-d}(W_t), \mathscr{W} = f^{-1}(\mathscr{X}).$

Introduction 000	Families of cycle classes 00●000	Conservation of number	An enumerative problem
Basic pro	perties		

Proposition 1

• If E is a vector bundle over \mathscr{Y} , $\alpha \in A_{k+m}\mathscr{Y}$, then

$$c_i(E_t) \cap \alpha_t = (c_i(E) \cap \alpha)_t \quad \text{in } A_{k-i}(Y_t).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
000	00●000	00	

Basic properties

Proposition 1

9 If E is a vector bundle over
$$\mathscr{Y}$$
, $\alpha \in A_{k+m}\mathscr{Y}$, then

$$c_i(E_t) \cap \alpha_t = (c_i(E) \cap \alpha)_t \quad \text{in } A_{k-i}(Y_t).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The proof follows directly from similar statements for the refined Gysin homomorphism (see 6.2-6.4).

	er An enumerative problem
Deletion between fibers	

Given a family $\mathscr{X} \to T$ and $\alpha \in A_{k+m}\mathscr{X}$, it is natural to compare $\alpha_t \in A_k(X_t)$ for different values of t. It is not obvious that such relation exists, even if $\mathscr{X} = Y \times T$ is the trivial family.

000000000

Relation between fibers

Given a family $\mathscr{X} \to T$ and $\alpha \in A_{k+m}\mathscr{X}$, it is natural to compare $\alpha_t \in A_k(X_t)$ for different values of t. It is not obvious that such relation exists, even if $\mathscr{X} = Y \times T$ is the trivial family.

Example 2

Let Y = T be a projective curve of genus $g \ge 2$, and $\Delta \subseteq Y \times T$ the diagonal. If $\alpha = [\Delta] \in A_1(Y \times T)$, then $\alpha_t = [t] \in A_0Y$. But for $t_1 \neq t_2$, we have that α_{t_1} and α_{t_2} are not rationally equivalent.

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem

Relation between fibers

Given a family $\mathscr{X} \to T$ and $\alpha \in A_{k+m}\mathscr{X}$, it is natural to compare $\alpha_t \in A_k(X_t)$ for different values of t. It is not obvious that such relation exists, even if $\mathscr{X} = Y \times T$ is the trivial family.

Example 2

Let Y = T be a projective curve of genus $g \ge 2$, and $\Delta \subseteq Y \times T$ the diagonal. If $\alpha = [\Delta] \in A_1(Y \times T)$, then $\alpha_t = [t] \in A_0Y$. But for $t_1 \neq t_2$, we have that α_{t_1} and α_{t_2} are not rationally equivalent.

This can be solved if we assume that $\mathscr{X} = Y \times T$, and if for every $t_1, t_2 \in T$, they can be connected by a chain of rational curves in T (see Example 10.1.7).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

An enumerative problem 0000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An useful corollary

Corollary 3

Assume T is non-singular, $t \in T$ rational over the ground field, \mathscr{Y} smooth over T with relative dimension n. If $\alpha \in A_{k+m}(\mathscr{Y}), \beta \in A_{l+m}(\mathscr{Y})$, then

$$\alpha_t \cdot \beta_t = (\alpha \cdot \beta)_t \quad \text{in } A_{k+l-n}(Y_t).$$

 $\begin{array}{c} \text{Conservation of number} \\ \text{oo} \end{array}$

An enumerative problem 000000000

An useful corollary

Corollary 3

Assume T is non-singular, $t \in T$ rational over the ground field, \mathscr{Y} smooth over T with relative dimension n. If $\alpha \in A_{k+m}(\mathscr{Y}), \beta \in A_{l+m}(\mathscr{Y})$, then

$$\alpha_t \cdot \beta_t = (\alpha \cdot \beta)_t \quad \text{in } A_{k+l-n}(Y_t).$$

This gives us a strategy to show that $a \cdot b = c$ in a non-singular variety Y. We construct a family $\mathscr{Y} \to T$ with $Y_t = Y$ for some t, and such that a, b, c can be lifted to α, β, γ . Then, it suffices to show that $\alpha \cdot \beta = \gamma$, which we can try to prove generically.

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
000	00000●	00	
How to us	e the corollary		

Let *C* be a non-singular curve, $C^{(n)}$ its n^{th} symmetric product (which points are effective divisors of degree *n* over *C*). If *A* is an effective divisor on *C* of degree < n, define

$$X_A = \{ D \in C^{(n)} \mid D \ge A \}.$$

Introduction 000	Families of cycle classes 000000●	Conservation of number	An enumerative problem
	a tha carallary		

Let *C* be a non-singular curve, $C^{(n)}$ its n^{th} symmetric product (which points are effective divisors of degree *n* over *C*). If *A* is an effective divisor on *C* of degree < n, define

$$X_A = \{ D \in C^{(n)} \mid D \ge A \}.$$

One can show that if A and B have disjoint support, then X_A and X_B intersect transversally, and so

$$[X_A] \cdot [X_B] = [X_{A+B}].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000	Families of cycle classes 000000●	Conservation of number	An enumerative problem
	a tha carallary		

Let *C* be a non-singular curve, $C^{(n)}$ its n^{th} symmetric product (which points are effective divisors of degree *n* over *C*). If *A* is an effective divisor on *C* of degree < n, define

$$X_A = \{ D \in C^{(n)} \mid D \ge A \}.$$

One can show that if A and B have disjoint support, then X_A and X_B intersect transversally, and so

$$[X_A] \cdot [X_B] = [X_{A+B}].$$

This is true even if A and B intersect, by using Corollary 3 and by "moving" A.

Introduction 000	Families of cycle classes	Conservation of number ●○	An enumerative problem
A useful ı	relation		

We have seen that for $\alpha \in A_k \mathscr{Y}$, it is not clear that $\{\alpha_t\}_{t \in T}$ are related, even if $\mathscr{Y} = Y \times T$ is the trivial family.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We have seen that for $\alpha \in A_k \mathscr{Y}$, it is not clear that $\{\alpha_t\}_{t \in T}$ are related, even if $\mathscr{Y} = Y \times T$ is the trivial family. We have the following substitute.

Proposition 4 (Conservation of number)

Let $p: \mathscr{Y} \to T$ be a proper morphism, dim T = m as before. Let α be an m-cycle on \mathscr{Y} . Then $\alpha_t \in A_0(Y_t)$ all have the same degree (which is obtained by $p_{t*}(\alpha_t) = \deg \alpha_t \cdot [\{t\}])$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have seen that for $\alpha \in A_k \mathscr{Y}$, it is not clear that $\{\alpha_t\}_{t \in T}$ are related, even if $\mathscr{Y} = Y \times T$ is the trivial family. We have the following substitute.

Proposition 4 (Conservation of number)

Let $p: \mathscr{Y} \to T$ be a proper morphism, dim T = m as before. Let α be an m-cycle on \mathscr{Y} . Then $\alpha_t \in A_0(Y_t)$ all have the same degree (which is obtained by $p_{t*}(\alpha_t) = \deg \alpha_t \cdot [\{t\}]$).

The idea of the proof is write $p_*(\alpha) = N[T] \in A_m(T)$, for some $N \in \mathbb{Z}$. Then, by Proposition 1 we get

$$p_{t*}(\alpha_t) = (p_*(\alpha))_t = N[T]_t = N[\{t\}].$$

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
		00	

This proposition can be improved to compute the degree of intersections with Chern classes or some divisors (see §10.2 for precise statements). We will need the following result.

Corollary 5

Let Y be a scheme, $\mathscr{H}_i \subseteq Y \times T$ effective Cartier divisors which are flat over T, i = 1, ..., d. Let a be a d-cycle on Y. Assume that

 $\mathscr{H}_1 \cap \cdots \cap \mathscr{H}_d \cap (\mathrm{Supp}(a) \times T)$

is proper over T. Then

 $\deg((H_1)_t\cdot\cdots\cdot(H_d)_t\cdot a)$

is independent of t.

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem •000000000
The meil			
The main	n objective		

Our main application of this techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many curves in the family are tangent to the r given curves?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our main application of this techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many curves in the family are tangent to the r given curves?

The answer will require to compute the *characteristics* $\mu^k \nu^{r-k}$ of the family, which are the number of curves in the family passing through k general points and tangent to r - k general lines.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The main objective

Our main application of this techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many curves in the family are tangent to the r given curves?

The answer will require to compute the *characteristics* $\mu^k \nu^{r-k}$ of the family, which are the number of curves in the family passing through k general points and tangent to r - k general lines. For instance, if we consider the family of smooth conics, then

$$\mu^5 = \nu^5 = 1, \quad \mu\nu^4 = \mu^4\nu = 2, \quad \mu^2\nu^3 = \mu^3\nu^2 = 4.$$

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
000		00	000000000
Step 1			

We will study the *incidence correspondence*

$$I = \{[x:y:z], [a:b:c] \mid ax + by + cz = 0\} \subseteq \mathbb{P}^2 \times \mathbb{P}^{2*}.$$

This can be seen as a \mathbb{P}^1 -bundle over \mathbb{P}^2 . In fact, if E is the kernel of

$$1_{\mathbb{P}^2}^{\oplus 3} \xrightarrow{(x,y,z)} \mathscr{O}_{\mathbb{P}^2}(1) o 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

then $I = \mathbb{P}(E)$.

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
000		00	000000000
Step 1			

We will study the *incidence correspondence*

$$I = \{[x:y:z], [a:b:c] \mid ax + by + cz = 0\} \subseteq \mathbb{P}^2 \times \mathbb{P}^{2*}\}$$

This can be seen as a \mathbb{P}^1 -bundle over \mathbb{P}^2 . In fact, if *E* is the kernel of

$$1_{\mathbb{P}^2}^{\oplus 3} \xrightarrow{(x,y,z)} \mathscr{O}_{\mathbb{P}^2}(1) o 0,$$

then $I = \mathbb{P}(E)$. This allows us to compute $A^{\bullet}(I)$ (see Example 8.3.4), with a basis

$$1, \lambda, \zeta, \lambda^2, \zeta^2, \lambda^2 \zeta = \lambda \zeta^2,$$

A D N A 目 N A E N A E N A B N A C N

where $\lambda \zeta = \lambda^2 + \zeta^2, \lambda^3 = \zeta^3 = 0$, and λ, ζ the pullbacks of $c_1(\mathscr{O}_{\mathbb{P}^2}(1)), c_1(\mathscr{O}_{\mathbb{P}^{2*}}(1)).$

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem

Now, if M is a line and Q a point, consider

$$M' = \{(P, L) \in I \mid L = M\} \qquad Q' = \{(P, L) \in I \mid P = Q\}$$
$$M'' = \{(P, L) \in I \mid P \in M\} \qquad Q'' = \{(P, L) \in I \mid Q \in L\}.$$

One can show that

$$\lambda = [M''], \quad \zeta = [Q''], \qquad \lambda^2 = [Q'], \quad \zeta^2 = [M'].$$

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem
Step 2			
Step 2			

Let $D\subseteq \mathbb{P}^2$ be a curve without multiple components. Define $D'\subseteq I$ as the closure of

 $\{(P, L) \in I \mid P \text{ simple point of } D, L \text{ tangent at } P\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem
Step 2			

Let $D\subseteq \mathbb{P}^2$ be a curve without multiple components. Define $D'\subseteq I$ as the closure of

 $\{(P, L) \in I \mid P \text{ simple point of } D, L \text{ tangent at } P\}.$

We claim that

$$[D'] = n[M'] + m[Q'] = n\zeta^2 + m\lambda^2 \in A^2I,$$

where n is the degree and m the class of D (the number of tangents from a general point to D). The idea is to compute

$$D' \cap M'' = \{(P_i, L_i) \mid P_i \in M \cap D, L_i \text{ tangent at } P_i\},\$$

which has generically $\#D' \cap M'' = n$ points.

Introduction 000	Families of cycle classes	Conservation of number 00	An enumerative problem

The equivalence [D'] = m[M'] + n[Q'] can be computed explicitely. Take P_0 a general point, M a general line, and let Q_1, \ldots, Q_m the intersections of M with the tangents from P_0 .

イロト 不得 トイヨト イヨト

Introduction 000	Families of cycle classes	Conservation of number 00	An enumerative problem

The equivalence [D'] = m[M'] + n[Q'] can be computed explicitly. Take P_0 a general point, M a general line, and let Q_1, \ldots, Q_m the intersections of M with the tangents from P_0 .

The projection from P_0 to M gives a family $\mathscr{D} \to \mathbb{A}^1$ with $\mathscr{D}_1 = [D'], \mathscr{D}_0 = n[M'] + \sum [Q'_i]$. (There is a explicit computation in §10.4.)

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem
Step 3			

Let $\mathscr{X} \subseteq \mathbb{P}^2 \times S$ be a flat family of plane curves, dim S = r, S non-singular. Assume X_s has no multiple compontents for general s, and let $S^0 \subseteq S$ an open set with X_s reduced for $s \in S$. Let $\mathscr{X}(r) \subseteq I^r \times S^0$ given by $(P_1, L_1), \ldots, (P_r, L_r), s$ such that P_i is a simple point of X_s , and L_i is tangent in P_i . Note that dim $\mathscr{X}(r) = 2r$.

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem
Step 3			

Let $\mathscr{X} \subseteq \mathbb{P}^2 \times S$ be a flat family of plane curves, dim S = r, Snon-singular. Assume X_s has no multiple compontents for general s, and let $S^0 \subseteq S$ an open set with X_s reduced for $s \in S$. Let $\mathscr{X}(r) \subseteq I^r \times S^0$ given by $(P_1, L_1), \ldots, (P_r, L_r), s$ such that P_i is a simple point of X_s , and L_i is tangent in P_i . Note that dim $\mathscr{X}(r) = 2r$. Take $D_1, \ldots, D_r \subseteq \mathbb{P}^2$ reduced curves, and consider

$$\begin{array}{c} W \longrightarrow D'_1 \times \cdots \times D'_r \\ \downarrow & \downarrow \\ \mathscr{X}(r) \longrightarrow I'. \end{array}$$

Introduction	Families of cycle classes	Conservation of number	An enumerative problem
000	000000	00	

We can move D_1, \ldots, D_r , so that the intersection between $\mathscr{X}(r)$ and $D'_1 \times \cdots \times D'_r$ is transversal (by taking a general element in PGL(2)^r). This way, W has N (reduced) points. Now, compactify $\overline{\mathscr{X}} \subseteq \mathbb{P}^2 \times \overline{S^0}$, and $\overline{\mathscr{X}(r)} \subseteq I^r \times \overline{S^0}$. If Z is a closed subsed of dimension less than 2r, which contains all $\overline{\mathscr{X}(r)} - \mathscr{X}(r)$, then the number N does not change after we remove Z.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem
Step 4			

We now degenerate each D_i to a multiple line (as we did for D). This gives a diagram

The space $\overline{\mathscr{X}(r)}$ is complete, so \mathscr{W} is proper over \mathbb{A}^r . This way, we may take an open neighborhood T of $(1, \ldots, 1)$ and $(0, \ldots, 0)$, so that \mathscr{W} is proper over T and disjoint from Z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem
Stop 1			
Step 4			

We now degenerate each D_i to a multiple line (as we did for D). This gives a diagram

$$\begin{array}{cccc} \mathscr{W} & \longrightarrow & \mathscr{D}'_1 \times \cdots \times \mathscr{D}'_r & \longrightarrow & \mathbb{A}^r \\ & & & & \downarrow \\ \hline & & & & \downarrow \\ \hline & & & & \mathcal{X}(r) & \longrightarrow & I^r. \end{array}$$

The space $\overline{\mathscr{X}(r)}$ is complete, so \mathscr{W} is proper over \mathbb{A}^r . This way, we may take an open neighborhood T of $(1, \ldots, 1)$ and $(0, \ldots, 0)$, so that \mathscr{W} is proper over T and disjoint from Z. Now, Corollary 3 applies, and so

$$\deg(\mathscr{X}(r) \cdot_{\varphi} (D'_1 \times \cdots \times D'_r)) = \deg(\mathscr{X}(r) \cdot_{\varphi} (E'_1 \times \ldots E'_r)),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where D'_i, E'_i are the fibers over 1 and 0.

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem

The right hand side is just

$$\prod_{i=1}^r (m_i \mu + n_i \nu) = \sum_{k=0}^r N_k \mu^k \nu^{r-k},$$

where each curve D_i has degree n_i and class m_i . The left hand side is the number of points N, provided that we take a *convenient* Z (which avoids technical difficulties such as bitangents).

Introduction 000	Families of cycle classes	Conservation of number	An enumerative problem			
I he famous example						

The most known example is the *Steiner's conic problem*, which tries to determine the number of conics tangent to five smooth conics in general position.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction 000	Families of cycle classes	Conservation of number 00	An enumerative problem			
The famous example						

The most known example is the *Steiner's conic problem*, which tries to determine the number of conics tangent to five smooth conics in general position.

The natural family here is the family of smooth conics (as a subset of \mathbb{P}^5), which has characteristics

$$\mu^5=\nu^5=1, \quad \mu^4\nu=\mu\nu^4=2, \\ \mu^3\nu^2=\mu^2\nu^3=4$$

(in characteristic zero!)

This way, the number of conics tangent to five non-singular curves of degree n in general position is

$$N = n^{5}((n-1)^{5} + 10(n-1)^{4} + 40(n-1)^{3} + 40(n-1)^{2} + 10(n-1) + 1),$$

which for n = 2 gives the famous number 3264.