
A whirlwhind tour of motivic cohomology

Notes by Caleb Ji

These are my notes on motivic cohomology. Essentially everything here is based off of
Voevodsky’s lectures, now turned into a book by Mazza and Weibel. [1]
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1 Bloch’s higher Chow groups

1.1 Some topological motivation

Recall the following exact sequence.

Proposition 1.1 (Fulton, Prop. 1.8). Let Y be a closed subscheme of a scheme X, and let U =
X − Y . Let i : Y → X, j : U → X be the inclusions. Then the sequence

CHk Y
i∗−→ CHkX

j∗−→ CHk U → 0

is exact for all k.
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This is great, but if we want homology to continue to the left. We certainly cannot put these
sequences together. In fact, the indexing is a bit misleading in this way – instead, we should
put the ks together for a grading of CH∗(−). So, we really do need new groups if we want to
continue this sequence. To construct these groups, we first recall the following definition of
rational equivalence.

Definition 1.2 (Rat(X)). Let Z(X) denote the cycles of a scheme X and let Φ be any subvariety
ofX × P1. Then we define Rat(X) ⊂ Z(X) be the subgroup generated by differences of the form

[Φ ∩ (X × {0})]− [Φ ∩ (X × {∞})].

Then rationally equivalent cycles are those which differ by something in Rat(X). We see
that it looks like there is a homotopy between rationally equivalent cycles.

1.2 Definition

Motivated by algebraic topology, we define the algebraic simplex

∆k = Spec k[x0, . . . , xn]/(x0 + · · ·+ xk − 1).

Let zi(X,n) be the subgroup of Zi(X ×∆n) that meet all faces properly. This gives both a
simplicial abelian group zi(X, •) and a chain complex zi(X, ∗).

Definition 1.3. The higher Chow groups CHi(X,m) are defined

CHi(X,m) := πm(zi(X, •)) = Hm(zi(X, ∗)).

1.3 Properties

1. Homotopy invariance:

The projectionX × A1 → X induces an isomorphism

CHi(X,m) ∼= CHi(X × A1,m).

2. Long exact sequence:

There is a distinguished triangle

zp(Y, ∗)→ zp(X, ∗)→ zp(U, ∗)→ zp(Y, ∗)[1].

3. Isomorphism with rational K-theory:

(Ki(X)⊗Q)(q) ∼= CHq(X, i)⊗Q.

We will see that Hp,q(X;A) = CHq(X, 2q − p;A). In particular, we have H2q,q(X,A) =
CHq(X)⊗A.
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2 The category of correspondences

2.1 Correspondences

Let X,Y ∈ Smk be smooth separated schemes of finite type over k. Very informally, one can
think of Cor(X,Y ) as a generalization ofMor(X,Y ) to multivalued morphisms.

Definition 2.1. An elementary correspondence between a smooth connected scheme X/k to a
separated scheme Y/k is an irreducible closed subsetW ⊂ X × Y whose associated integral sub-
scheme is finite and surjective overX.

IfX is not connected, then an elementary correspondence refers to one that is one from a con-
nected component ofX to Y .

The group Cor(X,Y ) of finite correspondences is the free abelian group generated by the ele-
mentary correspondences.

Then given a closed subscheme Z ⊂ X × Y finite and surjective over X, we can associate
the finite correspondence

∑
niWi whereWi are the irreducible components of the support of

Z surjective over a component ofX with generic points ξi and ni = lengthOZ,ξi .

2.2 The category of correspondences

We compose correspondences V ∈ Cork(X,Y ) andW ∈ Cork(Y,Z) as follows. Construct the
cycle [T ] = (V × Z) · (X ×W ) onX × Y × Z. Then take its pushforward along the projection
p : X × Y × Z → X × Z.

It is not difficult to check that Smk embeds into Cork as a subcategory, where f : X → Y
becomes the graph Γf ⊂ X × Y .

Furthermore, Cork is a symmetric monoidal category. Indeed, the tensor product is simply
X ⊗ Y = X × Y . Given V ∈ Cork(X,X ′) and W ∈ Cork(Y, Y ′), we get the desired cycle
V ×W ∈ Cork(X ⊗ Y,X ′ ⊗ Y ′).

2.3 Examples

1. Cork(Spec k,X) is generated by the 0-cycles ofX.

2. Cork(X,Spec k) is generated by the irreducible components ofX.

3. TakeW ∈ Cork(A1, X) and two k-points s, t : Spec k → A1. Then the zero-cyclesW ◦ Γs
andW ◦ Γt are rationally equivalent.

3 Presheaves with transfers

3.1 Definition

Definition 3.1. A presheaf with transfers is a contravariant additive functor F : Cork → Ab.

Additivity gives a map
Cork(X,Y )⊗ F (Y )→ F (X).

Thus there are extra “transfer maps" F (Y )→ F (X) coming from Cork(X,Y ).

Theorem 3.2. PST(k) is an abelian category with enough injectives and projectives.
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3.2 Examples

Example 3.3. The constant presheaf A on Smk can be extended to a pst.
ForW ∈ Cor(X,Y ) with X,Y connected, the corresponding homomorphism A → A is multi-

plication by the degree ofW overX.

Example 3.4. O∗ and O, at least forX normal. Use the norm and trace maps.

O∗(Y ) O∗(X)

O∗(W )

N

O(Y ) O(X)

O(W )

Tr

Example 3.5. CHi(−), the Chow groups.

Example 3.6. Representable functors: hX(−)

3.3 Representable functors of Cork(X)

TakeX ∈ Ob(Cork(X)). We denote

Ztr(X) := hX(−).

By Yoneda, Ztr(X) is a projective object in PST(k).

Note that Ztr(Spec k) is just the constant sheaf Z on Smk, with the transfer maps con-
structed in the example from the previous subsection. Let (X,x) be a pointed scheme. We
define

Ztr(X,x) := coker[x∗ : Z→ Ztr(X)].

The structure mapX → Spec k provides a splitting, so

Ztr(X) ∼= Z⊕ Ztr(X,x).

Out of laziness we screenshot the following definitions from Voevodsky’s lectures.
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Consider the pointed scheme (Gm, 1). We will be interested in the presheaf with transfers
Ztr(G∧qm ).

Before continuing, we recall our construction

∆k = Spec k[x0, . . . , xn]/(x0 + · · ·+ xk − 1).

Recall that a simplicial object of a category C is a functor F : ∆op → C. Then if F is a
presheaf of abelian groups on Smk, then F (U ×∆•) is a simplicial abelian group. Then

C•F : U 7→ F (U ×∆•)

is a simplicial presheaf with transfers. Similarly, C∗F (U) gives the complex of abelian groups

· · · → F (U ×∆2)→ F (U ×∆1)→ F (U)→ 0.

3.4 Homotopy invariant presheaves

Definition 3.7. A presheaf F is homotopy invariant if for everyX, the map p∗ : F (X)→ F (X×
A1) is an isomorphism.

Note that this is equivalent to p∗ being surjective. We can check that an equivalent condi-
tion is that for allX, we have

i∗0 = i∗1 : F (X × A1)→ F (X).

Furthermore, if F is any presheaf, we have that i∗0, i∗1 : C∗F (X × A1) → C∗F (X) are chain
homotopic. From this we deduce that if F is a presheaf, then the homology presheaves

HnC∗F : X 7→ HnC∗F (X)

are homotopy invariant for all n.

Definition 3.8. Two finite correspondences fromX to Y areA1-homotopic if they are the restric-
tions alongX × 0 andX × 1 of an element of Cor(X × A1, Y ).

This is an equivalence relation on Cor(X,Y ). Note that it is not one if we just look at mor-
phisms of schemes! With this definition though, we define f : X → Y to be an A1-homotopy
equivalence in the expected way.

4 Motivic cohomology

4.1 The motivic complex

Definition 4.1. For q ∈ Z≥0, the motivic complex Z(q) is defined as the following complex of
presheaves with transfers.

Z(q) := C∗Ztr(G∧qm )[−q].

We can change coefficients to A ∈ Ab by setting A(q) = Z(q)⊗A.

These are actually complexes of sheaves with respect to the Zariski topology. In fact, they
are also sheaves in the étale topology.

For example when q = 0, applying this to a scheme Y we just get

· · · 0−→ Z id−→ Z 0−→ Z→ 0

which is quasi-isomorphic to just Z. When q = 1, the complex looks like

· · · −→ Cor(Y ×∆2,Gm) −→ Cor(Y ×∆1,Gm) −→ Cor(Y,Gm)→ 0.
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4.2 Motivic cohomology groups

4.3 Weight 1

There is a quasi-isomorphism
Z(1)

∼=−→ O∗[−1].

Thus we have the following table.

5 Relation to other fields

5.1 Algebraic K-theory

Atiyah-Hirzebruch:
Ep,q2 = Hp(X;Kq(∗))⇒ Kp+q(X).

In the algebraic setting, it is much more difficult. Indeed, both algebraic K-theory and
motivic cohomology are significantly harder to define than their topological counterparts. In
2002, Suslin and Friedlander built upon previous work of Bloch and Lichtenbaum to show the
following spectral sequence.

Ep,q2 = Hp−q(X,Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X).
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5.2 Motives

Grothendieck constructed Chow motives by replacing morphisms of schemes with corre-
spondences (defined under rational equivalence, different from the correspondences discussed
earlier), augmenting the category to look like an abelian category, and taking the opposite cat-
egory. By construction, this works in that cohomology theories factor through it. However, to
truly achieve what is desired from them, one must assume the standard conjectures on alge-
braic cycles (or some variants), which have been open for over 50 years!

Voevodsky usedmotivic cohomology to construct a triangulated categoryDM(k;R), which
for all intents and purposes acts as the derived category of the desired category of motives. He
studied mixed motives, which apply to all varieties (not just the smooth ones). These can be
thought of as extensions of pure motives, and motivic cohomology studies these Ext groups.

5.3 Arithmetic geometry

There’s the Bloch-Kato conjecture and the Bloch-Kato conjectures, which are different!

The Bloch-Kato conjecture is now a theorem: the norm residue isomorphism theorem,
proven by Voevodsky. Through proving it, Voevodsky developed motivic cohomology, motivic
homotopy theory, motivic Steenrod algebra...

(taken from wikipedia)

The Bloch-Kato conjectures are on special values of L-functions.

(taken from
[2])
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Applied to elliptic curves, this implies (one of the two parts of) the Birch-Swinnerton Dyer
conjecture!
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