1 Cartier and Weil divisors

Let X be a variety of dimension n over a field k. We want to introduce two notions of divisors, one familiar from the last chapter.

Definition 1.1. A Weil divisor of X is an $n-1$-cycle on X, i.e. a finite formal linear combination of codimension 1 subvarieties of X. Thus the Weil divisors form a group $Z_{n-1} X$.

Definition 1.2. A Cartier divisor consists of the following data:

- an open cover $\left\{U_{\alpha}\right\}$ of X;
- for each α a nonzero rational function f_{α} on U_{α}, defined up to multiplication by a unit, i.e. a function without zeros or poles, such that for any α, β we have f_{α} / f_{β} a unit on $U_{\alpha} \cap U_{\beta}$.

Like the Weil divisors, the Cartier divisors form an abelian group: $\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)+\left(\left\{U_{\alpha}, g_{\alpha}\right\}\right)=$ $\left(\left\{U_{\alpha}, f_{\alpha} g_{\alpha}\right\}\right)$ (we can assume that the open covers are the same, since if not they refine to $\left.\left\{U_{\alpha} \cap V_{\beta}\right\}\right)$. We call this abelian group Div X.

Given a Cartier divisor $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$ and a codimension 1 subvariety V of X, we define

$$
\operatorname{ord}_{V} D=\operatorname{ord}_{V}\left(f_{\alpha}\right)
$$

for α such that $U_{\alpha} \cap V$ is nonempty; since each f_{α} is defined up to a unit, this order is well-defined. We define the associated Weil divisor

$$
[D]=\sum_{V} \operatorname{ord}_{V} D \cdot[V]
$$

This defines a homomorphism

$$
\operatorname{Div} X \rightarrow Z_{n-1} X
$$

For any rational function f on X, we get a principal Cartier $\operatorname{divisor} \operatorname{div}(f)$ by choosing any cover $\left\{U_{\alpha}\right\}$ and defining $f_{\alpha}=\left.f\right|_{U_{\alpha}}$. It is immediate that the image $[\operatorname{div}(f)]$ of this divisor under the map to $Z_{n-1} X$ is the Weil principal divisor. Say that two Cartier divisors D and D^{\prime} are linearly equivalent if $D-D^{\prime}=\operatorname{div}(f)$ for some f; then we define Pic X to be the group of Cartier divisors modulo linear equivalence, and the above then shows that the map $\operatorname{Div} X \rightarrow Z_{n-1} X$ descends to a map Pic $X \rightarrow A_{n-1} X$. This map is in general neither injective nor surjective.

Notice that the definition of a Cartier divisor yields that of a line bundle on X : given a divisor $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$, define a line bundle $L=\mathcal{O}(D)$ to be trivialized on each U_{α} with transition functions f_{α} / f_{β}. Two Cartier divisors D and D^{\prime} are linearly equivalent if and only if $\mathcal{O}(D)=\mathcal{O}\left(D^{\prime}\right)$, and so we get the alternate description of $\operatorname{Pic} X$ as the abelian group of line bundles on X with group operation given by the tensor product. Conversely, given a line bundle L, this determines a Cartier divisor $D(L)$ up to some additional data: a nonzero rational section s of L. Therefore we can also think of Cartier divisors as the data of a line bundle together with a nonzero rational section.

We define the support supp D or $|D|$ of a Cartier divisor D to be the union of codimension 1 subvarieties V of X such that f_{α} is not a unit for U_{α} nontrivially intersecting V, i.e. $\operatorname{ord}_{V} D$ is nonzero.

We say that a Cartier divisor $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$ if all of the f_{α} are regular, i.e. have no poles.

2 Pseudo-divisors

In general, Cartier divisors are not well-behaved under pullbacks (although line bundles are). In particular, given the data of a line bundle L and a nonzero rational section s and a morphism $f: Y \rightarrow X$, there is no guarantee that the pullback $f^{*} s$ is nonzero. Therefore we enlarge the notion to make it behave better: let L be a line bundle on $X, Z \subset X$ be a closed subset, and s be a nowhere vanishing section of L restricted to $X-Z$, or equivalently a trivialization of $\left.L\right|_{X-Z}$. A pseudo-divisor on X consists of the data of such a triple (L, Z, s), up to the following equivalence: two triples (L, Z, s) and $\left(L^{\prime}, Z^{\prime}, s^{\prime}\right)$ define the same pseudodivisor if $Z=Z^{\prime}$ and there exists an isomorphism $\sigma: L \rightarrow L^{\prime}$ such that restricted to $X-Z$ we have $\sigma \circ s=s^{\prime}$. Note that this is well-behaved under pullback.

Example 2.1. Let $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$ be a Cartier divisor, with support $|D|$. Then each f_{α} away from $\mid D$ gives a local section of the associated line bundle $\mathcal{O}(D)$, and so these glue to a section s_{D} of $\mathcal{O}(D)$ on $X-|D|$; this makes $\left(\mathcal{O}(D),|D|, s_{D}\right)$ a pseudo-divisor.

We say that a Cartier divisor D represents a pseudo-divisor (L, Z, s) when $|D| \subseteq Z$ and there exists an isomorphism $\sigma: \mathcal{O}(D) \rightarrow L$ such that restricted to $X-Z$ we have $\sigma \circ s_{D}=s$, with notation as above.

Lemma 2.2. If X is a variety, then every pseudo-divisor (L, Z, s) on X is represented by a Cartier divisor D. If $Z \subsetneq X$, then D is unique; if $Z=X$, then D is unique up to linear equivalence.

Proof. If $Z=X$, then s is a section on $X-X=\{ \}$, and so a pseudo-divisor is just a line bundle; and we saw in the previous section that the group of Cartier divisors up to linear equivalence is isomorphic to the group of line bundles, so L corresponds to a unique linear equivalence class of Cartier divisors.

If $Z \neq X$, let $U=X-Z$. As above, choose a Cartier divisor $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$ with $\mathcal{O}(D) \simeq L$. The section s consists of a collection of functions s_{α} on $U \cap U_{\alpha}$ such that $s_{\alpha}=f_{\alpha} / f_{\beta} \cdot s_{\beta}$ on $U \cap U_{\alpha} \cap U_{\beta}$; thus $s_{\alpha} / f_{\alpha}=s_{\beta} / f_{\beta}$ on each intersection, i.e. there exists some rational function r such that $s_{\alpha} / f_{\alpha}=r$ on each $U \cap U_{\alpha}$. Then $D^{\prime}:=D+\operatorname{div}(r)$ is the Cartier divisor ($\left\{U_{\alpha}, f_{\alpha} r\right\}$) and by definition $f_{\alpha} r=s_{\alpha}$ on each $U \cap U_{\alpha}$; therefore using the definition above $s_{D^{\prime}}=s$. Since D^{\prime} is linearly equivalent to D, it corresponds to the same line bundle, and since r is regular on each U_{α} the support of $\operatorname{div}(r)$ is contained in Z; therefore D^{\prime} represents (L, Z, s).

For uniqueness, suppose that two Cartier divisors $D_{1}=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$ and $D_{2}=\left(\left\{V_{\beta}, g_{\beta}\right\}\right)$ both represent (L, Z, s). Then similarly there must exist some rational function r such that
$r f_{\alpha}=r g_{\beta}$ on each $U_{\alpha} \cap V_{\beta}$. But since $s_{D_{1}}=s_{D_{2}}=s$, if $Z \neq X$, i.e. U is nonempty, then $s_{D_{1}}$ and $s_{D_{2}}$ must agree on every $U \cap U_{\alpha} \cap V_{\beta}$, and so r restricted to U must be 1 ; since f is rational it follows that $f=1$ and $D_{1}=D_{2}$.

For any pseudo-divisor $D=(L, Z, s)$, as for Weil divisors we will write $\mathcal{O}(D)=L$, $|D|=Z$, and $s_{D}=s$.

If $D=(L, Z, s)$ and $D^{\prime}=\left(L^{\prime}, Z^{\prime}, s^{\prime}\right)$ are two pseudo-divisors, we can define their sum

$$
D+D^{\prime}=\left(L \otimes L^{\prime}, Z \cup Z^{\prime}, s \otimes s^{\prime}\right)
$$

This agrees with the sum on Cartier divisors, except that the supports may be larger in this case. Similarly defining

$$
-D=\left(L^{-1}, Z, s^{-1}\right)
$$

makes the set of pseudo-divisors into an abelian group.
Given a pseudo-divisor D on a variety X of dimension X, we can define the Weil class divisor $[D]$ by taking \tilde{D} to be the Cartier divisor which represents D and setting $[D]:=[\tilde{D}]$, the associated Weil divisor from the previous section. The above lemma shows that this yields a well-defined element of $A_{n-1} X$; this gives a homomorphism from the group of pseudodivisors to $A_{n-1} X$.

3 Intersecting with divisors

Let X be a variety of dimension n, D be a pseudo-divisor on X, and V be a subvariety of dimension k. Let $j: V \hookrightarrow X$ be the inclusion of V into X; then the pullback $j^{*} D$ is a pseudo-divisor on V with support $V \cap|D|$. We define the class $D \cdot[V]$ in $A_{k-1}(V \cap|D|)$ given by the Weil class divisor of $j^{*} D$:

$$
D \cdot[V]=\left[j^{*} D\right] .
$$

For any closed subscheme $Y \subset X$ containing $V \cap|D|$, we can also view this as an element of $A_{k-1} Y$; we will also denote this by $D \cdot[V]$.

Let $\alpha=\sum_{V} n_{V} \cdot V$ be a k-cycle on X, with support $\mid \alpha$ the union of the subvarieties V such that n_{V} is nonzero. For a pseudo-divisor D on X, we define the intersection class $D \cdot \alpha$ in $A_{k-1}(V \cap|D|)$ by

$$
D \cdot \alpha=\sum_{V} n_{V} \cdot(D \cdot[V])
$$

As above, we can also view this as an element of $A_{k-1} Y$ for any Y containing $|\alpha| \cap|D|$.
We will apply this in two main cases. First: $\mathrm{f}|D|=X$, then the data of $D=(L, X, s)$ is just that of a line bundle as above; in this case the action of D on a k-cycle α is called that of the first Chern class, written $D \cdot \alpha=c_{1}(L) \cap \alpha$.

Second: if $i:|D| \hookrightarrow X$ is the inclusion of $|D|$ into X, then $D \cdot \alpha$ is called the Gysin pullback $i^{*} \alpha$.

Theorem 3.1. Let X be a scheme, D be a pseudo-divisor on X, and α be a k-cycle on X.
(a) Let α^{\prime} be a k-cycle on X. Then

$$
D \cdot\left(\alpha+\alpha^{\prime}\right)=D \cdot \alpha+D \cdot \alpha^{\prime}
$$

in $A_{k-1}\left(\left(|\alpha| \cup\left|\alpha^{\prime}\right|\right) \cap|D|\right)$.
(b) Let D^{\prime} be a pseudo-divisor on X. Then

$$
\left(D+D^{\prime}\right) \cdot \alpha=D \cdot \alpha+D^{\prime} \cdot \alpha
$$

in $A_{k-1}\left(|\alpha| \cap\left(|D| \cup\left|D^{\prime}\right|\right)\right)$.
(c) Let $f: Y \rightarrow X$ be a proper morphism, β be a k-cycle on Y, and $g:|\beta| \cap f^{-1}(|D|) \rightarrow$ $f(|\beta|) \cap|D|$ be the restriction of f to $|\beta| \cap f^{-1}(|D|)$. Then

$$
g_{*}\left(f^{*} D \cdot \beta\right)=D \cdot f_{*} \beta
$$

in $A_{k-1}(f(|\beta|) \cap|D|)$.
(d) Let $f: Y \rightarrow X$ be a flat morphism of relative dimension n and $g: f^{-1}(|\alpha| \cap|D|) \rightarrow$ $|\alpha| \cap|D|$ be the restriction of f to $f^{-1}(|\alpha| \cap|D|)$. Then

$$
f^{*} D \cdot f^{*} \alpha=g^{*}(D \cdot \alpha)
$$

in $A_{n+k-1}\left(f^{-1}(|\alpha| \cap|D|)\right)$.
(e) If the line bundle $\mathcal{O}(D)$ is trivial, then

$$
D \cdot \alpha=0
$$

in $A_{k-1}(|\alpha| \cap|D|)$.
Proof. Part (a) is immediate from the definition. Using part (a), then, we can assume by linearity that $\alpha=[V]$ for some k-dimensional subvariety $V \subset X$. Restricting to V, (b) is just the statement that taking the Weil class divisor is compatible with sums.

For part (c), we can likewise assume that $\beta=[W]$ for some k-dimensional subvariety $W \subset$ Y; then $f^{*} D \cdot \beta$ is the restriction of the Cartier divisor $f^{*} \tilde{D}$ representing $f^{*} D$ to W, and so we can assume that $Y=W$. Similarly on the right-hand side $D \cdot f_{*} \beta=D \cdot \operatorname{deg}(f(W) / W)[f(W)]$ and so concerns only the restriction of D to $f(W)$, and so we can assume that $f(W)=X$. In this case $g=f$ on the support of D and so the statement is

$$
f_{*}\left(f^{*}[D]\right)=\operatorname{deg}(W / f(W))[D]
$$

since $D \cdot[X]=[D]$ and $f^{*} D \cdot[Y]=f^{*}[D]$. If f is a map of degree d and $D=\operatorname{div}(r)$ for some function r on some open subset of $f(W)$, then from last time we know that locally

$$
f_{*}\left[\operatorname{div}\left(f^{*} r\right)\right]=\left[\operatorname{div}\left(N\left(f^{*} r\right)\right)\right]=d[\operatorname{div}(r)]
$$

where N is the determinant map from functions on subsets of W to functions on their images, since $N\left(f^{*} r\right)=d r$ since f has degree d. But locally we can always assume that $[D]$ is principal, and so $f_{*} f^{*}[D]=d[D]$ as desired.

For (d), we can again assume that $\alpha=[V]=[X]$, so the statement similarly becomes

$$
\left[f^{*} D\right]=f^{*}[D] .
$$

By linearity, we can assume $D=[W]$ for some subvariety W of $X=V$, at which point the statement is $f^{*}[W]=\left[f^{-1}(W)\right]$, which is true whenever f is flat.

Finally for (e) we can again assume $\alpha=[V]=[X]$, so that the statement is $[D]=0$ in $A_{n-1} X$ whenever $\mathcal{O}(D)$ is trivial, where n is the dimension of $V=X$. Letting \tilde{D} be the Cartier divisor representing D, we know from section 1 that $\mathcal{O}(D)$ is trivial precisely when \tilde{D} is linearly equivalent to the trivial Cartier divisor $0=\left(\left\{U_{\alpha}, 1\right\}\right)$ for which every local function is a unit; and we know that the associated Weil divisor map $\operatorname{Div} X \rightarrow Z_{n-1} X$ descends to a map Pic $X \rightarrow A_{n-1} X$, i.e. $[D]=[\tilde{D}]=0$ whenever $\mathcal{O}(D)$ is trivial.

4 Commutativity

Suppose that we have two Cartier divisors D, D^{\prime} on an n-dimensional variety X. Then they both determine associated Weil divisors $[D],\left[D^{\prime}\right] \in Z_{n-1} X$ (and thus in $A_{n-1} X$), and so it is natural to consider the intersections

$$
D \cdot\left[D^{\prime}\right], \quad D^{\prime} \cdot[D]
$$

Theorem 4.1. In $A_{n-2}\left(|D| \cap\left|D^{\prime}\right|\right)$, we have

$$
D \cdot\left[D^{\prime}\right]=D^{\prime} \cdot[D]
$$

Corollary 4.2. Let D be a pseudo-divisor on a scheme X, and α be a k-cycle on X rationally equivalent to 0 . Then

$$
D \cdot \alpha=0
$$

in $A_{k-1}(|D|)$.
Proof. We can assume without loss of generality that $\alpha=[\operatorname{div}(f)]$ for some rational function f on a subvariety V of X. Then letting \tilde{D} be the Cartier divisor representing D we can replace D with \tilde{D} and X with V without changing the result; then we can apply Theorem 4.1 to get

$$
D \cdot \alpha=\tilde{D} \cdot[\operatorname{div}(f)]=\operatorname{div}(f) \cdot[\tilde{D}] .
$$

But by part (e) of Theorem 3.1, we have $\operatorname{div}(f) \cdot[\tilde{D}]=0$.
Given a closed subscheme $Y \subset X$ and a k-cycle α on Y, we can construct its intersection $D \cdot \alpha \in A_{k-1}(Y \cap|D|)$ for any pseudo-divisor D on X. This gives a map

$$
Z_{k} Y \rightarrow A_{k-1}(Y \cap|D|)
$$

The above corollary shows that in fact this map descends to a map

$$
A_{k} Y \rightarrow A_{k-1}(Y \cap|D|)
$$

this is called intersecting with D.
Corollary 4.3. For two pseudo-divisors D, D^{\prime} on a scheme X and a k-cycle α on X, we have

$$
D \cdot\left(D^{\prime} \cdot \alpha\right)=D^{\prime} \cdot(D \cdot \alpha)
$$

in $A_{k-2}\left(|\alpha| \cap|D| \cap\left|D^{\prime}\right|\right)$.
Proof. We can assume without loss of generality that $\alpha=[V]$ for some subvariety $V \subseteq X$ of dimension k. Then we can restrict D and D^{\prime} to V, so that $D^{\prime} \cdot[V]=\left[\mathrm{id}^{*} D^{\prime}\right]=\left[D^{\prime}\right]$ and similarly $D \cdot[V]=[D]$; and then applying Theorem 4.1 immediately gives the result.

For pseudo-divisors D_{1}, \ldots, D_{n} on X and a k-cycle α on X, we can then define inductively

$$
D_{1} \cdots D_{n} \cdot \alpha=D_{1} \cdot\left(D_{2} \cdots D_{n} \cdot \alpha\right)
$$

in $A_{k-n}\left(|\alpha| \cap\left(\left|D_{1}\right| \cup \cdots \cup\left|D_{n}\right|\right)\right)$. Theorem 4.1 implies that the order of the D_{i} is unimportant, and parts (a) and (b) of Theorem 3.1 implies that the action is linear in each D_{i} and in α. More generally if $p\left(t_{1}, \ldots, t_{n}\right)$ is a homogeneous polynomial of degree d and Z is a closed subscheme of X containing $|\alpha| \cap\left(\left|D_{1}\right| \cup \cdots \cup\left|D_{n}\right|\right)$, then we can define $p\left(D_{1}, \ldots, D_{n}\right) \cdot \alpha$ in $A_{k-d}(Z)$.

Definition 4.4. We say that an algebraic variety Y is complete if for any variety Z the projection $Y \times Z \rightarrow Y$ is a closed map.

For example, any projective variety is complete.
If $n=k$ and $Y=|\alpha| \cap\left(\left|D_{1}\right| \cup \cdots \cup\left|D_{k}\right|\right)$ is complete, then we can define the intersection number

$$
\left(D_{1} \cdots D_{k} \cdot \alpha\right)_{X}=\int_{Y} D_{1} \cdots D_{k} \cdot \alpha
$$

Similarly if p is a homogeneous polynomial of degree k in k variables then we can define

$$
\left(p\left(D_{1}, \ldots, D_{k}\right) \cdot \alpha\right)_{X}=\int_{Y} p\left(D_{1}, \ldots, D_{n}\right) \cdot \alpha
$$

For a subvariety V purely of dimension k, we will sometimes write simply V instead of $[V]$; similarly we will sometimes write D instead of $[D]$.
Example 4.5. Let X be the projective completion of the affine surface $X^{\prime} \subset \mathbb{A}^{3}$ defined by $z^{2}=x y$. Consider the Cartier divisor D on X defined everywhere by the equation x, corresponding to the subvariety cut out by $x=0$. Define the lines ℓ, ℓ^{\prime} by $x=z=0$ and $y=z=0$ respectively, and let P be the origin $(0,0,0)$. Along the subvariety $x=0$, from the defining equation we also have $z=0$ (in affine space), and so $[D]=\operatorname{ord}_{\ell} D \cdot[\ell]$; we have

$$
\operatorname{ord}_{\ell} D=\operatorname{len}_{A} A /(x)
$$

where (in the affine variety) $A=\mathcal{O}_{X, \ell}=K[x, y, z] /\left(z^{2}-x y\right)$. Thus $A /(x)=K[x, y, z] /\left(z^{2}-\right.$ $x y, x)=K[y, z] /\left(z^{2}\right)$ which has length 2 , with maximal proper subsequence of modules given by $0 \subset K[y]=K[y, z] /(z) \subset K[y, z] /\left(z^{2}\right)$. Therefore $[D]=2[\ell]$. We can compute

$$
D \cdot\left[\ell^{\prime}\right]=\left[j^{*} D\right]=[P]
$$

where j is the inclusion of ℓ^{\prime} into X, since restricted to the line $y=z=0$ the equation $x=0$ specifies only the point P with multiplicity 1 . Therefore there cannot exist any Cartier divisor D^{\prime} with $\left[D^{\prime}\right]=\left[\ell^{\prime}\right]$, since if there were we would have

$$
[P]=D \cdot\left[\ell^{\prime}\right]=D \cdot\left[D^{\prime}\right]=D^{\prime} \cdot[D]=2 D^{\prime} \cdot[\ell]
$$

in either $Z_{1} X$ or $A_{1} X$, by Theorem 4.1 and the above calculation. This proves our above claim that the maps Div $X \rightarrow Z_{\operatorname{dim} X-1}$ and $\operatorname{Pic} X \rightarrow A_{\operatorname{dim} X-1} X$ are not in general surjective.

5 The first Chern class

Let X be a scheme, $V \subseteq X$ a subvariety of dimension k, and L a line bundle on X. The restriction of L to V is a line bundle on V and so is isomorphic to $\mathcal{O}(C)$ for some Cartier divisor C on V, determined up to linear equivalence. This in turn defines a well-defined element $[C]$ of $A_{k-1} X$; we write $c_{1}(L) \cap[V]:=[C]$. More generally, if $\alpha=\sum_{V} n_{V} \cdot[V]$ is a k-cycle on X then define C_{V} for each V as above, and write

$$
c_{1}(L) \cap \alpha:=\sum_{V} n_{V} \cdot\left[C_{V}\right] .
$$

If $L=\mathcal{O}(D)$ for some pseudo-divisor D, then if $j: V \hookrightarrow X$ is the inclusion then the Cartier divisor \tilde{D} on V representing $j^{*} D$ satisfies $\mathcal{O}(\tilde{D}) \simeq \mathcal{O}(D)$ by construction; by definition, this means that $\left[C_{V}\right]=\left[j^{*} D\right]=D \cdot[V]$ and so

$$
c_{1}(L) \cap \alpha=D \cdot \alpha
$$

in $A_{k-1} X$.
Theorem 5.1. Let X be a scheme, L be a line bundle on X, and α be a k-cycle on X.
(a) If α is rationally equivalent to 0 , then $c_{1}(L) \cap \alpha=0$. Therefore there is an induced homomorphism $c_{1}(L) \cap-: A_{k} X \rightarrow A_{k-1} X$.
(b) If L^{\prime} is a second line bundle on X, then

$$
c_{1}(L) \cap\left(c_{1}\left(L^{\prime}\right) \cap \alpha\right)=c_{1}\left(L^{\prime}\right) \cap\left(c_{1}(L) \cap \alpha\right)
$$

in $A_{k-2} X$.
(c) If $f: Y \rightarrow X$ is a proper morphism and β is a k-cycle on Y, then

$$
f_{*}\left(c_{1}\left(f^{*} L\right) \cap \beta\right)=c_{1}(L) \cap f_{*} \beta
$$

in $A_{k-1} X$.
(d) If $f: Y \rightarrow X$ is a flat morphism of relative dimension n, then

$$
c_{1}\left(f^{*} L\right) \cap f^{*} \alpha=f^{*}\left(c_{1}(L) \cap \alpha\right)
$$

in $A_{n+k-1} Y$.
(e) If L^{\prime} is a second line bundle on X, then

$$
c_{1}\left(L \otimes L^{\prime}\right) \cap \alpha=c_{1}(L) \cap \alpha+c_{1}\left(L^{\prime}\right) \cap \alpha
$$

and

$$
c_{1}\left(L^{-1}\right) \cap \alpha=-c_{1}(L) \cap \alpha
$$

in $A_{k-1} X$.
Proof. A line bundle on X defines a pseudo-divisor with support X, and so the analogous properties from Theorem 3.1 and its corollaries immediately imply these.

6 The Gysin map

Fix an effective Cartier divisor D on a scheme X, with the inclusion given by $i:|D| \hookrightarrow X$. Then we define the "Gysin homomorphism"

$$
i^{*} \alpha:=D \cdot \alpha
$$

for k-cycles α on X.
Proposition 6.1. With notation as above:
(a) If α is rationally equivalent to 0 , then $i^{*} \alpha=0$, and so there is an induced homomorphism $i^{*}: A_{k} X \rightarrow A_{k-1}(|D|)$.
(b) We have

$$
i_{*} i^{*} \alpha=c_{1}(\mathcal{O}(D)) \cap \alpha
$$

(c) If β is a k-cycle on $|D|$, then

$$
i^{*} i_{*} \beta=c_{1}\left(i^{*} \mathcal{O}(D)\right) \cap \beta
$$

(d) If X is purely n-dimensional, then

$$
i^{*}[X]=[D]
$$

in $A_{n-1}(|D|)$.
(e) If L is a line bundle on X, then

$$
i^{*}\left(c_{1}(L) \cap \alpha\right)=c_{1}\left(i^{*} L\right) \cap i^{*} \alpha
$$

in $A_{k-2}(|D|)$.
All of these follow immediately from the definitions and the results above.

