
1 Cartier and Weil divisors

Let X be a variety of dimension n over a field k. We want to introduce two notions of
divisors, one familiar from the last chapter.

Definition 1.1. A Weil divisor of X is an n − 1-cycle on X, i.e. a finite formal linear
combination of codimension 1 subvarieties of X. Thus the Weil divisors form a group Zn−1X.

Definition 1.2. A Cartier divisor consists of the following data:

• an open cover {Uα} of X;

• for each α a nonzero rational function fα on Uα, defined up to multiplication by a unit,
i.e. a function without zeros or poles, such that for any α, β we have fα/fβ a unit on
Uα ∩ Uβ.

Like the Weil divisors, the Cartier divisors form an abelian group: ({Uα, fα})+({Uα, gα}) =
({Uα, fαgα}) (we can assume that the open covers are the same, since if not they refine to
{Uα ∩ Vβ}). We call this abelian group DivX.

Given a Cartier divisor D = ({Uα, fα}) and a codimension 1 subvariety V of X, we define

ordV D = ordV (fα)

for α such that Uα ∩ V is nonempty; since each fα is defined up to a unit, this order is
well-defined. We define the associated Weil divisor

[D] =
∑
V

ordV D · [V ].

This defines a homomorphism
DivX → Zn−1X.

For any rational function f on X, we get a principal Cartier divisor div(f) by choosing
any cover {Uα} and defining fα = f |Uα . It is immediate that the image [div(f)] of this
divisor under the map to Zn−1X is the Weil principal divisor. Say that two Cartier divisors
D and D′ are linearly equivalent if D −D′ = div(f) for some f ; then we define PicX to be
the group of Cartier divisors modulo linear equivalence, and the above then shows that the
map DivX → Zn−1X descends to a map PicX → An−1X. This map is in general neither
injective nor surjective.

Notice that the definition of a Cartier divisor yields that of a line bundle on X: given
a divisor D = ({Uα, fα}), define a line bundle L = O(D) to be trivialized on each Uα with
transition functions fα/fβ. Two Cartier divisors D and D′ are linearly equivalent if and only
if O(D) = O(D′), and so we get the alternate description of PicX as the abelian group of
line bundles on X with group operation given by the tensor product. Conversely, given a
line bundle L, this determines a Cartier divisor D(L) up to some additional data: a nonzero
rational section s of L. Therefore we can also think of Cartier divisors as the data of a line
bundle together with a nonzero rational section.
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We define the support suppD or |D| of a Cartier divisor D to be the union of codimension
1 subvarieties V of X such that fα is not a unit for Uα nontrivially intersecting V , i.e. ordV D
is nonzero.

We say that a Cartier divisor D = ({Uα, fα}) if all of the fα are regular, i.e. have no
poles.

2 Pseudo-divisors

In general, Cartier divisors are not well-behaved under pullbacks (although line bundles
are). In particular, given the data of a line bundle L and a nonzero rational section s and a
morphism f : Y → X, there is no guarantee that the pullback f ∗s is nonzero. Therefore we
enlarge the notion to make it behave better: let L be a line bundle on X, Z ⊂ X be a closed
subset, and s be a nowhere vanishing section of L restricted to X − Z, or equivalently a
trivialization of L|X−Z . A pseudo-divisor on X consists of the data of such a triple (L,Z, s),
up to the following equivalence: two triples (L,Z, s) and (L′, Z ′, s′) define the same pseudo-
divisor if Z = Z ′ and there exists an isomorphism σ : L→ L′ such that restricted to X − Z
we have σ ◦ s = s′. Note that this is well-behaved under pullback.

Example 2.1. Let D = ({Uα, fα}) be a Cartier divisor, with support |D|. Then each fα
away from |D gives a local section of the associated line bundle O(D), and so these glue to
a section sD of O(D) on X − |D|; this makes (O(D), |D|, sD) a pseudo-divisor.

We say that a Cartier divisor D represents a pseudo-divisor (L,Z, s) when |D| ⊆ Z and
there exists an isomorphism σ : O(D)→ L such that restricted to X−Z we have σ ◦sD = s,
with notation as above.

Lemma 2.2. If X is a variety, then every pseudo-divisor (L,Z, s) on X is represented by
a Cartier divisor D. If Z ( X, then D is unique; if Z = X, then D is unique up to linear
equivalence.

Proof. If Z = X, then s is a section on X −X = {}, and so a pseudo-divisor is just a line
bundle; and we saw in the previous section that the group of Cartier divisors up to linear
equivalence is isomorphic to the group of line bundles, so L corresponds to a unique linear
equivalence class of Cartier divisors.

If Z 6= X, let U = X − Z. As above, choose a Cartier divisor D = ({Uα, fα}) with
O(D) ' L. The section s consists of a collection of functions sα on U ∩ Uα such that
sα = fα/fβ · sβ on U ∩ Uα ∩ Uβ; thus sα/fα = sβ/fβ on each intersection, i.e. there exists
some rational function r such that sα/fα = r on each U ∩Uα. Then D′ := D+ div(r) is the
Cartier divisor ({Uα, fαr}) and by definition fαr = sα on each U ∩ Uα; therefore using the
definition above sD′ = s. Since D′ is linearly equivalent to D, it corresponds to the same line
bundle, and since r is regular on each Uα the support of div(r) is contained in Z; therefore
D′ represents (L,Z, s).

For uniqueness, suppose that two Cartier divisors D1 = ({Uα, fα}) and D2 = ({Vβ, gβ})
both represent (L,Z, s). Then similarly there must exist some rational function r such that
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rfα = rgβ on each Uα ∩ Vβ. But since sD1 = sD2 = s, if Z 6= X, i.e. U is nonempty, then
sD1 and sD2 must agree on every U ∩Uα ∩ Vβ, and so r restricted to U must be 1; since f is
rational it follows that f = 1 and D1 = D2.

For any pseudo-divisor D = (L,Z, s), as for Weil divisors we will write O(D) = L,
|D| = Z, and sD = s.

If D = (L,Z, s) and D′ = (L′, Z ′, s′) are two pseudo-divisors, we can define their sum

D +D′ = (L⊗ L′, Z ∪ Z ′, s⊗ s′).

This agrees with the sum on Cartier divisors, except that the supports may be larger in this
case. Similarly defining

−D = (L−1, Z, s−1)

makes the set of pseudo-divisors into an abelian group.
Given a pseudo-divisor D on a variety X of dimension X, we can define the Weil class

divisor [D] by taking D̃ to be the Cartier divisor which represents D and setting [D] := [D̃],
the associated Weil divisor from the previous section. The above lemma shows that this
yields a well-defined element of An−1X; this gives a homomorphism from the group of pseudo-
divisors to An−1X.

3 Intersecting with divisors

Let X be a variety of dimension n, D be a pseudo-divisor on X, and V be a subvariety
of dimension k. Let j : V ↪→ X be the inclusion of V into X; then the pullback j∗D is a
pseudo-divisor on V with support V ∩|D|. We define the class D · [V ] in Ak−1(V ∩|D|) given
by the Weil class divisor of j∗D:

D · [V ] = [j∗D].

For any closed subscheme Y ⊂ X containing V ∩ |D|, we can also view this as an element of
Ak−1Y ; we will also denote this by D · [V ].

Let α =
∑

V nV · V be a k-cycle on X, with support |α the union of the subvarieties V
such that nV is nonzero. For a pseudo-divisor D on X, we define the intersection class D ·α
in Ak−1(V ∩ |D|) by

D · α =
∑
V

nV · (D · [V ]).

As above, we can also view this as an element of Ak−1Y for any Y containing |α| ∩ |D|.
We will apply this in two main cases. First: f |D| = X, then the data of D = (L,X, s) is

just that of a line bundle as above; in this case the action of D on a k-cycle α is called that
of the first Chern class, written D · α = c1(L) ∩ α.

Second: if i : |D| ↪→ X is the inclusion of |D| into X, then D · α is called the Gysin
pullback i∗α.

Theorem 3.1. Let X be a scheme, D be a pseudo-divisor on X, and α be a k-cycle on X.
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(a) Let α′ be a k-cycle on X. Then

D · (α + α′) = D · α +D · α′

in Ak−1((|α| ∪ |α′|) ∩ |D|).

(b) Let D′ be a pseudo-divisor on X. Then

(D +D′) · α = D · α +D′ · α

in Ak−1(|α| ∩ (|D| ∪ |D′|)).

(c) Let f : Y → X be a proper morphism, β be a k-cycle on Y , and g : |β| ∩ f−1(|D|) →
f(|β|) ∩ |D| be the restriction of f to |β| ∩ f−1(|D|). Then

g∗(f
∗D · β) = D · f∗β

in Ak−1(f(|β|) ∩ |D|).

(d) Let f : Y → X be a flat morphism of relative dimension n and g : f−1(|α| ∩ |D|) →
|α| ∩ |D| be the restriction of f to f−1(|α| ∩ |D|). Then

f ∗D · f ∗α = g∗(D · α)

in An+k−1(f
−1(|α| ∩ |D|)).

(e) If the line bundle O(D) is trivial, then

D · α = 0

in Ak−1(|α| ∩ |D|).

Proof. Part (a) is immediate from the definition. Using part (a), then, we can assume by
linearity that α = [V ] for some k-dimensional subvariety V ⊂ X. Restricting to V , (b) is
just the statement that taking the Weil class divisor is compatible with sums.

For part (c), we can likewise assume that β = [W ] for some k-dimensional subvariety W ⊂
Y ; then f ∗D ·β is the restriction of the Cartier divisor f ∗D̃ representing f ∗D to W , and so we
can assume that Y = W . Similarly on the right-hand side D ·f∗β = D ·deg(f(W )/W )[f(W )]
and so concerns only the restriction of D to f(W ), and so we can assume that f(W ) = X.
In this case g = f on the support of D and so the statement is

f∗(f
∗[D]) = deg(W/f(W ))[D]

since D · [X] = [D] and f ∗D · [Y ] = f ∗[D]. If f is a map of degree d and D = div(r) for
some function r on some open subset of f(W ), then from last time we know that locally

f∗[div(f ∗r)] = [div(N(f ∗r))] = d[div(r)]
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where N is the determinant map from functions on subsets of W to functions on their
images, since N(f ∗r) = dr since f has degree d. But locally we can always assume that [D]
is principal, and so f∗f

∗[D] = d[D] as desired.
For (d), we can again assume that α = [V ] = [X], so the statement similarly becomes

[f ∗D] = f ∗[D].

By linearity, we can assume D = [W ] for some subvariety W of X = V , at which point the
statement is f ∗[W ] = [f−1(W )], which is true whenever f is flat.

Finally for (e) we can again assume α = [V ] = [X], so that the statement is [D] = 0
in An−1X whenever O(D) is trivial, where n is the dimension of V = X. Letting D̃ be
the Cartier divisor representing D, we know from section 1 that O(D) is trivial precisely
when D̃ is linearly equivalent to the trivial Cartier divisor 0 = ({Uα, 1}) for which every
local function is a unit; and we know that the associated Weil divisor map DivX → Zn−1X
descends to a map PicX → An−1X, i.e. [D] = [D̃] = 0 whenever O(D) is trivial.

4 Commutativity

Suppose that we have two Cartier divisors D,D′ on an n-dimensional variety X. Then they
both determine associated Weil divisors [D], [D′] ∈ Zn−1X (and thus in An−1X), and so it
is natural to consider the intersections

D · [D′], D′ · [D].

Theorem 4.1. In An−2(|D| ∩ |D′|), we have

D · [D′] = D′ · [D].

Corollary 4.2. Let D be a pseudo-divisor on a scheme X, and α be a k-cycle on X rationally
equivalent to 0. Then

D · α = 0

in Ak−1(|D|).

Proof. We can assume without loss of generality that α = [div(f)] for some rational function
f on a subvariety V of X. Then letting D̃ be the Cartier divisor representing D we can
replace D with D̃ and X with V without changing the result; then we can apply Theorem
4.1 to get

D · α = D̃ · [div(f)] = div(f) · [D̃].

But by part (e) of Theorem 3.1, we have div(f) · [D̃] = 0.

Given a closed subscheme Y ⊂ X and a k-cycle α on Y , we can construct its intersection
D · α ∈ Ak−1(Y ∩ |D|) for any pseudo-divisor D on X. This gives a map

ZkY → Ak−1(Y ∩ |D|).
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The above corollary shows that in fact this map descends to a map

AkY → Ak−1(Y ∩ |D|);

this is called intersecting with D.

Corollary 4.3. For two pseudo-divisors D,D′ on a scheme X and a k-cycle α on X, we
have

D · (D′ · α) = D′ · (D · α)

in Ak−2(|α| ∩ |D| ∩ |D′|).

Proof. We can assume without loss of generality that α = [V ] for some subvariety V ⊆ X
of dimension k. Then we can restrict D and D′ to V , so that D′ · [V ] = [id∗D′] = [D′] and
similarly D · [V ] = [D]; and then applying Theorem 4.1 immediately gives the result.

For pseudo-divisors D1, . . . , Dn on X and a k-cycle α on X, we can then define inductively

D1 · · ·Dn · α = D1 · (D2 · · ·Dn · α)

in Ak−n(|α|∩(|D1|∪· · ·∪|Dn|)). Theorem 4.1 implies that the order of the Di is unimportant,
and parts (a) and (b) of Theorem 3.1 implies that the action is linear in each Di and in α.
More generally if p(t1, . . . , tn) is a homogeneous polynomial of degree d and Z is a closed
subscheme of X containing |α| ∩ (|D1| ∪ · · · ∪ |Dn|), then we can define p(D1, . . . , Dn) · α in
Ak−d(Z).

Definition 4.4. We say that an algebraic variety Y is complete if for any variety Z the
projection Y × Z → Y is a closed map.

For example, any projective variety is complete.
If n = k and Y = |α| ∩ (|D1| ∪ · · · ∪ |Dk|) is complete, then we can define the intersection

number

(D1 · · ·Dk · α)X =

∫
Y

D1 · · ·Dk · α.

Similarly if p is a homogeneous polynomial of degree k in k variables then we can define

(p(D1, . . . , Dk) · α)X =

∫
Y

p(D1, . . . , Dn) · α.

For a subvariety V purely of dimension k, we will sometimes write simply V instead of
[V ]; similarly we will sometimes write D instead of [D].

Example 4.5. Let X be the projective completion of the affine surface X ′ ⊂ A3 defined
by z2 = xy. Consider the Cartier divisor D on X defined everywhere by the equation x,
corresponding to the subvariety cut out by x = 0. Define the lines `, `′ by x = z = 0 and
y = z = 0 respectively, and let P be the origin (0, 0, 0). Along the subvariety x = 0, from
the defining equation we also have z = 0 (in affine space), and so [D] = ord`D · [`]; we have

ord`D = lenAA/(x),
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where (in the affine variety) A = OX,` = K[x, y, z]/(z2−xy). Thus A/(x) = K[x, y, z]/(z2−
xy, x) = K[y, z]/(z2) which has length 2, with maximal proper subsequence of modules given
by 0 ⊂ K[y] = K[y, z]/(z) ⊂ K[y, z]/(z2). Therefore [D] = 2[`]. We can compute

D · [`′] = [j∗D] = [P ]

where j is the inclusion of `′ into X, since restricted to the line y = z = 0 the equation x = 0
specifies only the point P with multiplicity 1. Therefore there cannot exist any Cartier
divisor D′ with [D′] = [`′], since if there were we would have

[P ] = D · [`′] = D · [D′] = D′ · [D] = 2D′ · [`]

in either Z1X or A1X, by Theorem 4.1 and the above calculation. This proves our above
claim that the maps DivX → ZdimX−1 and PicX → AdimX−1X are not in general surjective.

5 The first Chern class

Let X be a scheme, V ⊆ X a subvariety of dimension k, and L a line bundle on X. The
restriction of L to V is a line bundle on V and so is isomorphic to O(C) for some Cartier
divisor C on V , determined up to linear equivalence. This in turn defines a well-defined
element [C] of Ak−1X; we write c1(L) ∩ [V ] := [C]. More generally, if α =

∑
V nV · [V ] is a

k-cycle on X then define CV for each V as above, and write

c1(L) ∩ α :=
∑
V

nV · [CV ].

If L = O(D) for some pseudo-divisor D, then if j : V ↪→ X is the inclusion then the Cartier
divisor D̃ on V representing j∗D satisfies O(D̃) ' O(D) by construction; by definition, this
means that [CV ] = [j∗D] = D · [V ] and so

c1(L) ∩ α = D · α

in Ak−1X.

Theorem 5.1. Let X be a scheme, L be a line bundle on X, and α be a k-cycle on X.

(a) If α is rationally equivalent to 0, then c1(L) ∩ α = 0. Therefore there is an induced
homomorphism c1(L) ∩ − : AkX → Ak−1X.

(b) If L′ is a second line bundle on X, then

c1(L) ∩ (c1(L
′) ∩ α) = c1(L

′) ∩ (c1(L) ∩ α)

in Ak−2X.
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(c) If f : Y → X is a proper morphism and β is a k-cycle on Y , then

f∗(c1(f
∗L) ∩ β) = c1(L) ∩ f∗β

in Ak−1X.

(d) If f : Y → X is a flat morphism of relative dimension n, then

c1(f
∗L) ∩ f ∗α = f ∗(c1(L) ∩ α)

in An+k−1Y .

(e) If L′ is a second line bundle on X, then

c1(L⊗ L′) ∩ α = c1(L) ∩ α + c1(L
′) ∩ α

and
c1(L

−1) ∩ α = −c1(L) ∩ α
in Ak−1X.

Proof. A line bundle on X defines a pseudo-divisor with support X, and so the analogous
properties from Theorem 3.1 and its corollaries immediately imply these.

6 The Gysin map

Fix an effective Cartier divisor D on a scheme X, with the inclusion given by i : |D| ↪→ X.
Then we define the “Gysin homomorphism”

i∗α := D · α

for k-cycles α on X.

Proposition 6.1. With notation as above:

(a) If α is rationally equivalent to 0, then i∗α = 0, and so there is an induced homomor-
phism i∗ : AkX → Ak−1(|D|).

(b) We have
i∗i
∗α = c1(O(D)) ∩ α.

(c) If β is a k-cycle on |D|, then

i∗i∗β = c1(i
∗O(D)) ∩ β.

(d) If X is purely n-dimensional, then

i∗[X] = [D]

in An−1(|D|).
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(e) If L is a line bundle on X, then

i∗(c1(L) ∩ α) = c1(i
∗L) ∩ i∗α

in Ak−2(|D|).

All of these follow immediately from the definitions and the results above.
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