
FORMULAS FOR ALGEBRAIC CURVES

HENRY C. PINKHAM

Here is a compilation of many of the formulas we have come across so far. We
assume throughout that we are over C. We see some of the purely algebraic results
reappearing topologically. The last section contains some exercises about rational
curves.

1. Families of Plane Curves

Counting the monomials of total degree d in 3 variables, we have:

Formula 1.1. The projective space V (d) of all plane curves of degree d has dimen-
sion d(d+ 3)/2.

Let V (d; r1P1, . . . , rnPn) denote the linear subspace of V (d) of curves with at
least multiplicity ri at n given points Pi in the plane.

Formula 1.2. V (d; r1P1, . . . , rnPn) has codimension in V (d) at most

c =

n∑
i=1

ri(ri − 1)

2
.

It is therefore non-empty when d(d+ 3)/2 ≥ c.

Formula 1.3. If d ≥ (
∑
i ri)− 1, then c is precisely the codimension.

See Fulton [2], Theorem 1, p. 110. On the other hand:

Formula 1.4. Given two curves C and D of degrees d and e with no common
components and multiplicities ri and si at their points of intersection Pi, 1 ≤ i ≤ n,
then

n∑
i=1

risi ≤ de.

See Walker [5], Theorem 3.3 of Chapter III, p. 61. This result is used to prove:

Formula 1.5. A plane curve of degree d without multiple components with singular
points Pi of multiplicity ri, 1 ≤ i ≤ n, satisfies

d(d− 1) ≥
n∑
i=1

ri(ri − 1).

Note that this represents a strengthening of Formula 1.2: just divide by 2 and
compare. Furthermore, if the hypothesis of Formula 1.3 is satisfied, then the in-
equality in Formula 1.5 holds. Indeed the curve made up of d concurrent lines does
the trick: it has one singular point of multiplicity d, so Formula 1.5 is sharp for all
d.
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Formula 1.6. An irreducible plane curve C of degree d with multiplicity ri at Pi,
1 ≤ i ≤ n, satisfies

(d− 1)(d− 2) ≥
n∑
i=1

ri(ri − 1).

See Walker [5], Theorems 4.3 and 4.4 of Chapter III, p. 65. The proof of Formula
1.6 in Walker uses Formula 1.2 to show that there is a curve C ′ of degree d−1 passing
through the points Pi with multiplicity ri− 1, and also passing through another m
non-singular points of C. How big can we make m? As big as the codimension given
by Formula 1.2. Then just apply Formula 1.4 to C and C ′, which is permissible
because we know C is irreducible, so it has no common components with a curve
of lower degree.

Example 1.7. Walker gives an example showing that Formula 1.6 is sharp for all
d: the irreducible curve C with equation xd − yd−1z = 0. It has one singular point
of multiplicity d−1. The singularity is not an ordinary multiple point, but a higher
order cusp. C is a rational curve with parametrization x = td−1s, y = td, z = sd:
a projection of the rational normal curve of degree d discussed below.

2. Coverings of Projective Curves

Suppose you have a projective non-singular algebraic curve C and a finite surjec-
tive algebraic map φ to another projective non-singular algebraic curve D. Let d be
the degree of the covering, and νφ(P ) be the ramification index at a point P ∈ C.
For all but a finite number of points Q of D, φ is a covering map, so that the ram-
ification index at all P such that φ(P ) = Q is 1. For all Q,

∑
φ(P )=Q νφ(P ) = d.

Let χ(C) be the Euler characteristic of C, and χ(D) be the Euler characteristic
of D. Let g be the genus, so g = 2−χ

2 .

Formula 2.1.
χ(C) = dχ(D)−

∑
(νφ(P )− 1),

so

g(C) = dg(D)− d+ 1 +
∑ (νφ(P )− 1)

2
where the sums are over all the ramification points.

The proof follows, as in Kirwan [3], by taking a triangulation of D with a vertex
at each point Q ∈ D where there is ramification, and perhaps other vertices. Then
lift the triangulation to C. The proof goes through even though D is not P1 and
C is not in P2.

3. Ramification of Non-Singular Plane Curves

If we now assume that C is a non-singular plane curve, and D is P1, so that its
Euler characteristic is 2. We take for φ a suitable projection of C from a point of
P2 not on C, and use the discriminant of the defining equation of C to compute
the ramification:

Formula 3.1. Choose a center of projection that does not lie on C or any of the
inflectionary tangents of D. Then there are d(d − 1) ramification points, and the
ramification index is 2 at each ramification point.

This is Kirwan [3] Lemma 4.7.
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Formula 3.2. For any non-singular plane curve C of degree d,

χ(C) = 2d− d(d− 1) = 3d− d2

and

g(C) =
(d− 1)(d− 2)

2
.

This follows immediately from 2.1 and 3.1.

4. Ramification of Plane Curves with Ordinary Singularities

Now assume that the plane curve C is irreducible with only ordinary singularities
Pi of multiplicities r1. We make a projection from a point that is not on C, not
on any of the inflectionary tangent lines, and not on any of the tangents to to the
singular points. Since we have excluded a finite number of lines, such a point can
be found. We need to know that C has only a finite number of inflection points:
this follows from the proof of Lemma 3.22 of Kirwan.

Compute the discriminant of C in the direction of projection.

Formula 4.1. An ordinary r-fold point contributes exactly r(r− 1) to the discrim-
inant.

Proof. This is a new computation. Because of the choice of direction, each one of the
r non-singular branches intersects the derivative term (of degree r-1) transversely,
so with multiplicity r − 1. �

Now let C̃ be the resolution of all these ordinary singularities, so that C̃ is non-
singular. C̃ is just C with the ordinary multiple points pulled apart. So if P is
an r-fold point, it is replaced on C̃ by r points. We can apply Formula 2.1, since
we can compute the total ramification by simply subtracting the contribution that
would have come from the ordinary multiple points.

Formula 4.2. The Euler characteristic of the resolution C̃ of a curve C in P2 with
n ordinary multiple points Ri of multiplicity ri is

χ(C̃) = 3d− d2 +
∑

ri(ri − 1).

so the genus is

g(C̃) =
(d− 1)(d− 2)

2
−

n∑
i=1

ri(ri − 1)

2
.

Happily, Formula 1.6 tells us that g(C̃) is non-negative, as it must be.

5. Rational Curves

We can map P1 into Pd, for any d ≥ 2 as a non-singular curve of degree d by
using all d + 1 monomials of degree d in the homogeneous coordinates x and y of
P1, so that the mapping is given by

zi = xiyd−i

to the homogeneous coordinates zi, 0 ≤ i ≤ d of Pd. The image of P1 is called the
rational normal curve of degree d. It does not lie in a hyperplane in Pd: indeed it
intersects each hyperplane in d points counted with multiplicity.
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Exercise 5.1. Consider the degree 4 plane curve x4 − 2x2yz + y2z2 − y3z = 0.
Show it is irreducible and rational, and find its singular points.

By taking a suitable projection of P2 as explained in class, we get an irreducible
curve C with only ordinary singular points.

By Formula 4.2 we get:

Formula 5.1. A rational curve of degree d in the plane with only ordinary singular
points Pi of multiplicity ri, 1 ≤ i ≤ n, satisfies

(d− 1)(d− 2)

2
=

n∑
i=1

ri(ri − 1)

2
.

In particular, if it only has ordinary double points, there are exactly (d−1)(d−2)
2

of them.

Example 5.2. In the very first lecture of this class, we consider the nodal cubic,
and we parametrized it. In our current notation, we get

z0 = y(x2 − y2),

z1 = x(x2 − y2),

z2 = y3.

This shows that the node occurs at the parameter values x/y = ±1, so when
z0 = z1 = 0. The equation of the curve is z30 + z20z2 − z21z2 = 0.

Exercise 5.2. Using the same method as in the above example, write the parametriza-
tion of a rational quartic with three ordinary double points. Also write its equation.

Do you see how this could be extended (in principle) to all degrees?

Formula 5.3. If C has genus 0, then D also has genus 0.

Exercise 5.3. Prove Formula 5.3 using the notation and hypotheses of Formula
2.1.

This proves a special case of a theorem in field theory:

Theorem 5.4 (Lüroth’s Theorem). Let k be any field, and let k(x) be a purely
transcendental extension of k. Then any subfield of k(x) containing k and strictly
bigger than k is purely transcendental, so can be written k(t). Since t ∈ k(x) is
a rational function in x, it can be written as f(x)/g(x), where f(x) and g(x) are
polynomials with no common factors. Then the degree of the field extension k(x)
over k(t) is the max of the degrees of f and g in x. In particular all the generators
of k(x) are of the form

ax+ b

cx+ d
, ad− bc 6= 0.

This theorem is proved algebraically in van der Waerden, [4], Volume 1, §63. It
is also proved in Walker [5], Chapter V, Theorem 7.2. It is stated in Dummit and
Foote, [1] in §14.9 and partly proved in Exercise 18 of §13.2.

The transformation x→ ax+b
cx+d is a fractional linear transformation.
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Exercise 5.4. The rational curve C is a finite cover of the rational curve D, as
above. The field of rational functions of C is the purely transcendental extension
k(x), and that of D is the subfield k(t). Assume that this field extension is Galois,
so that there is a finite group G acting on k(x), with the subfield of invariants being
k(t).

• Show that every element of G sends x to another generator of k(x), so that
by Lüroth’s Theorem, G is a finite subgroup of the group of fractional linear
transformations. Indeed this exercise requires the description of all these
finite subgroups.
• Show that G permutes the points of P1.
• Because G acts trivially on k(t), show that this implies that G permutes the

points on C above a given point of D. Show that the ramification index of
all the points above a given point of D must be the same.
• Find all possible combinations of ramification indices using the genus for-

mula for the covering. Hint: first show that you cannot get more than three
branch points.
• Find a group of the right order that realizes the ramification and acts on
P1 in all cases. You can normalize the branch points so that they are - for
example - 0, 1 and ∞.
• Write t explicitly in terms of x in all cases. Verify that the expression you

find is a rational function f(x)/g(x) in reduced form, with the max of the
degrees of f and g equal to the degree of the Galois group G. Hint: Read
van der Waerden [4], §63, and note the exercise p.200.
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