TRACE FORMULAE

DORIAN GOLDFELD
NOTES TAKEN BY PAK-HIN LEE

ABSTRACT. Here are the notes I took for Dorian Goldfeld’s course on trace formulae offered
at Columbia University in Fall 2013 (MATH G6674: Topics in Number Theory). The course
was focussed on trace formulae and covered:
Petersson Trace Formula
Kuznetsov Trace Formula
Theta Functions
Degenerate Kuznetsov Trace Formula
Jacquet’s Relative Trace Formula
Selberg Trace Formula
Arthur-Selberg Trace Formula
Jacquet—Langlands Correspondence
e Beyond Endoscopy
with applications to classical problems in analytic number theory.
Due to my own lack of understanding of the materials, I have inevitably introduced
both mathematical and typographical errors in these notes. Please send corrections and
comments to phlee@math.columbia.edu.

CONTENTS

1.

Lecture 1 (September 10, 2013))|

1.1. Introductionl

2.

Automorphic Forms in Generall

(1.3, Petersson Trace Formulal

.

Lecture 2 (September 12, 2013))|

2.1, Petersson Trace Formulal

2.2.  Kuznetsov Irace Formulal

Lecture 3 (September 17, 2013))|

B.1. Maass Formd

[3.2. Fisenstein Series

4.

Lecture 4 (September 19, 2013))|

4.1, Fisenstein Series|

4.2.

Selberg Spectral Decomposition]

0.

Lecture 5 (September 19, 2013))|

0.1

Kuznetsov Trace Formulal

6.

Lecture 6 (September 26, 2013))|

6.1.

Takhtajan—Vinogradov Trace Formula)

Last updated: September 6, 2014.


http://www.math.columbia.edu/~goldfeld/
mailto:phlee@math.columbia.edu

[7. Lecture 7 (October 1, 2013)|

[7.1.__Theta Functiong

[7.2. Symplectic Theta Functions|

[7.3. Theta Functions associated to Indefinite Quadratic Forms|
7.4. 'The simplest Theta Functions|

8. Lecture 8 (October 3, 2013)|

8.1. Modular forms of weight ]

8.2, Proof of Theorem 8.3

9. Lecture 9 (October 8, 2013)|

9.1. Adelic Poincaré series on GL(n)|

10. Lecture 10 (October 10, 2013)
11. Lecture 11 (October 17, 2013)
11.1.  Adelic Poincaré series on GL(n)|
12.  Lecture 12 (October 22, 2013)
13.  Lecture 13 (October 24, 2013)
[13.1." Selberg—Arthur Trace Formulal
14. Lecture 14 (October 29, 2013)
15.  Lecture 15 (October 31, 2013)
15.1.  Selberg Trace Formula)

16. Lecture 16 (November 7, 2013)|

[16.1. Selberg Trace Formulal

17.  Lecture 17 (November 12, 2013)|

17.1.  Selberg Trace Formula (General Case)|
18. Lecture 18 (November 14, 2013)
19. Lecture 19 (November 19, 2013)
19.1. Beyond Endoscopy|

20. Lecture 20 (November 21, 2013)|

20.1.  Booker’s Theorems

20.2.  Selberg Trace Formula for Holomorphic Forms|
21. Lecture 21 (November 26, 2013)|

[2T.1. Jacquet-Langlands Correspondence]

[22.  Lecture 22 (December 5, 2013))|

23
23
23
24
25
26
26
27
30
30
33
33
33
36
36
36
40
40
40
44
44
48
48
52
52
52
56
56
58
60
60
62
62



1. LECTURE 1 (SEPTEMBER 10, 2013)

1.1. Introduction. The notion of a trace formula arises from matrices. The trace of a
matrix is the sum of its diagonal entries, which is also the sum of its eigenvalues. If we are
in an infinite-dimensional space, there could be infinitely many eigenvalues so we have to

introduce a convergence factor
Trace;(T) = Y  f())

This works well if we have countably many eigenvalues. If there are uncountably many, we

have to use an integral
Traces(T) = /f()\)d)\

The Poisson Summation Formula says

St =Y fn)
neZ neL
which can be thought of as a trace formula.
We will talk about the Petersson Trace Formula. Petersson is responsible for three major
things — the trace formula, the Weil-Petersson metric, and the Petersson inner product. I
will introduce the trace formula by first talking about automorphic forms in general.

1.2. Automorphic Forms in General. Let X be a topological space, and G be a topo-
logical group acting on X. For g € G, x € X, we often write gx instead of gox € X. We are
interested in discrete actions of G on X, i.e. the intersection B N (gB) # () for only finitely
many g € G. We will study actions of arithmetic groups, which are discrete. From now on,
assume G acts discretely on X.

F: X — C is an automorphic function if

F(gz) = ¢(g,2)F(2)
forall g € G, v € X. (We will focus on complex-valued automorphic functions only.) v is
called the factor of automorphy. Usually we put further conditions on F', e.g. we may ask
that F' is holomorphic or smooth, or that it satisfies certain differential equations. What
kind of factor of automorphy can we get?
Let g,¢ € G. Then there are two ways to do F'(¢g - ¢'x):

F((g-g)ox)=F(go (g ox)).
This implies certain conditions on :
(g9, ) F(x) = (g, g') F(g'x) = (g, g 2)v (g, ) F ().
If F(z) # 0, this means that
U(gg', x) = (g, g'x)(g', )

This is a 1-cocycle relation in the cohomology of groups.
Let us give an example of such an automorphic function. Let X = b = {z +iy : = €

R,y > 0} be the upper half plane, and G = SL(2,Z). If g = < ) and z € b, then

gr = azifl is an action.



Definition 1.1. j(g,z2) := cz + d.
j satisfies the equation
(99’ z) = (9, 9'2) - j(d’, 2)-
We can now construct an example of an automorphic function.

Ei(z)= > -

k
€T\ SL(2,Z) J (% Z)

where 'y, = Lo 'n € Z}. We have to mod out by 'y, because j ((1 n) ,z) =1

0 1 01
and there would be infinitely many terms repeating. How do we know this sum is non-zero?
In fact,

1
Ei(z)= ) CETIa

c,d
(e,d)=1

This is zero if k is odd, so we want k even, and k > 2 (for convergence). To see this is
non-zero, let z tend to ico. Let us prove that it is automorphic. For o € SL(2,Z), we have

o) = 270 2)
j(v, az) (0.2)

by the cocycle condition, and so

1 , 1 .
Ey(az) = Z: o) jla, 2)F 27: i)k ja, 2) Ey(2).

1.3. Petersson Trace Formula. We will now write down the Petersson Trace Formula
explicitly. Let

To(N) = {(‘CL 2) €SL(2,Z):c=0 (mod N)} .
If x: (Z/NZ)* € C* is a Dirichlet character mod N, define y : I'((N) — C* by

Let Si(Io(N), x) be the set of holomorphic functions f : h — C satisfying
flrz) = X()i (7. 2)" f(2)
for all v € I'o(N) and z € b, and that f is cuspidal, i.e.
lim f(u+iy) =0
Yy—00
for all u € Q.
Theorem 1.2 (Petersson-Hecke). dim Sy(I'g(N), x) < oo.

The Petersson Trace Formula says

I'(k—1) _— 1 Sy(m,n,c) Admy/mn
(471' /_mn)k_l fezs f(m) f(n) n Tt (27Ti)k Z c k—1 -
orthonormal basis

for m,n > 1. Let us now define the functions involved:
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o If f €5, then f (((1) }) z) = f(z) so there is an expansion

f(z) = Ap(m)e*mm

for some functions Ay(m).
e 5, is the Kloosterman sum

e Finally, J; is the Bessel function

B > (1) 2\ 2l+k
M= gy (2)

1=0

This is the simplest form of trace formula, and was generalized by Selberg, later by Jacquet
and Arthur. The Kloosterman sum S, (m,n, ¢) is associated with algebraic geometry. There
is a famous paper by Weil which counts the number of points on a curve mod p in terms of
Kloosterman sums. Weil’s estimate

Sy(m,n,c) < cate

is equivalent to the Riemann hypothesis for curves over finite fields. The Bessel functions
are certain matrix coefficients of automorphic representations. Selberg was the first to prove
that trace formulae are analogs on GL(2) of the Poisson summation formula.

We will now prove the Petersson Trace Formula.

Proof. The idea is to construct an automorphic function (Poincaré series) and then compute
it in two ways:
(1) using Fourier expansions;
(2) using spectral expansions.
The Poincaré series is
Palzk) = S (i) Fezmime,
Y€l \T'0 (V)

Since j is a cocycle, this is indeed an automorphic function:

Po(az, k,x) = X()j(a, z)kPm(z, k,x)

for all &« € To(N) and z € h. It is not at all obvious that this function is not identically zero.
If you can prove this for a fixed m, I will get your paper published on the Annals. What is
known is that P, is non-zero for many values of m.

(1) Fourier expansions

5



By periodicity, we have
Z k X _ Z 27rinz

where P,,(n) is the n-th Fourier coefficient. The Fourier theorem implies
1

P(n) = ?I}L% P (z + iy, k, x)e ™ dy.
0

The integral is equal to

/1 Z X(d) 627mmazise 27rma:dl,
o (cz + d)*
c=0(N)
(e,d)=1
(where (CCL Z) € I'o(N) — given (c¢,d) = 1, we can pick such a and b).

The first step is to write d = lc + r where 1 < r < ¢ and (r,¢) = 1. We know that
ad—bc=1,80b= “dc_l = “(Zcf)_l. This implies that az+b = az+al + ‘”"C_l, so the integral
is equal to

r—1

. aztal+? .
2 : z : 2mmwe—2wznzdl,
(cz + lc —|— T)

) lez 1
(r c)=

_ - e L 2mim e —2rin(z—1—1)
= Z Z Z X(r) - (cz)’fe = e dx

I B e e
_ AVIE T
- |cf* ! 2

r
c

(r,e)=1
- X
>y T &
c=0(N) r=1 %
(r,e)=1
c _ 2mim )
1 _ 27”7'n+rm > € |C‘22 6_27””50
=2 BE > X(r)e o dz.
c¢=0(N) r=1 —o°

This is the first half of the calculation. We will do the spectral expansion next time.
Let us explain how we get the terms Af(m). Pick m,n > 1, N > 1, x (mod N) and
k > 2. The Petersson inner product is given as follows: for F,G € Sy,

dxd
(F.G)= [ F) G ma) g
To(N)\b Y
Next time we will use the Fourier coefficients that we computed. [l

6



2. LECTURE 2 (SEPTEMBER 12, 2013)

2.1. Petersson Trace Formula. Last time we did the Petersson trace formula, and we will
finish the proof today. We will actually do it in a more general setting than last time. Recall
that we had level IV, a character x (mod NN) and weight k. By level N we mean the subgroup
I'o(N). By a character we mean x : (Z/NZ)* — C*, which lifts to x¥ : ['((N) — C* via

X ((ZL Z)) := x(d). By weight k we mean the cocycle j(v, 2)¥, where j(v, z) = cz + d for

Y= (fj 2) € Ty(N).

There is a one-to-one correspondence between automorphic representations and cusp forms
on GL(2). There are two types of cusp forms:

e Holomorphic in z, which were completely developed by Hecke in the 1930’s. Recall
that they are holomorphic functions on b satisfying

F(vz2) = X(Mi(v, 2)" f(2)
for all v € I'o(N) and
lim f(u -+ iy) =0
for all u € Q.

e Non-holomorphic in z, which were introduced by Maass in the 1940’s. Note that
holomorphic functions satisfy the differential equation

0

0 1 /0 w 0
—===+i=].
0z 2\ 0x oy
For example, 22" = 0. For the non-holomorphic cusp forms, we want them to

' bz
satisfy the differential equation

where

Af = \f

o 0
p— 2 —_— . ——
A=Y (5’2 8E>'

On the other side of the correspondence, we have adelic irreducible automorphic cuspidal
representations. The modern reference is Jacquet and Langlands’ book.

Holomorphic cusp forms correspond to discrete series representations, and non-holomorphic
cusp forms correspond to non-discrete representations. Automorphic representations are eas-
ier to generalize to higher rank groups. On the other hand, applications to number theory
all use the classical language.

What is the most general cocycle we can look at? We must have j(v, z), but instead of
raising it to an integer power we can consider j(v, z)¢ where ¢ € C. Most generally, consider
»e(7)7 (7, 2)¢. In Maass’ book, he considers ¢ € Q and lists all possibilities for 1.(y). There
is an adelic theory for ¢ = g, k € Z. This is the theory of metaplectic forms using a double

cover of GL(2). We will talk about the metaplectic groups when we do theta functions.
7
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Let us consider cocycles for half-integral weights. The level is required to be 4 N. Consider
¥()j (7, 2)%, where 1 is the Shimura symbol

o((c8) =)

1 ifd=1 (mod 4),
i ifd=-1 (mod4
Let us return to the Petersson Trace Formula (for level N, character x and weight k) —

we allow half-integral weights, but then N has to be divisible by 4. Let Si(I'o(N), x) be the
space of cusp forms. Then

(k- 1) _ 1
= 1 Ar(m)As(n) = dmn + ==

k—1 Z f f ; %
(rymn)ht 0 (2mi)* 4

orthonormal basis

where €; = ) and (2) is the quadratic Dirichlet character mod d.

Recall the Bessel function

9 :;ﬁ (g)ﬂﬂc.

Last time we introduced the Poincaré series and computed its Fourier coefficients.

Pm(27 ]C, X) _ Z 5‘5(7)](77 k€2mm'yz Z P 27rinz

'YGFOO\FO (N)

(If we want to include half-integral weights, then we insert the Shimura symbol ¢ () in the
sum.) We will not finish the computations from last time, but it turns out that

m n,c) (47‘(’\/771%)
Ji—1 -
c

k

(The term d,,, comes from the special case when ¢ = 0. Last time we only computed the
sum over ¢ # 0.)

Now we will talk about how to get the left side. Let fi, fo, -, f, be an orthonormal basis
of Sk(I'o(IV), x). Recall the Petersson Inner Product: for F, G € Sy,

(R.G)= [ PG
To(N)\b

dxdy 1dz Ndz . | ) az+b
is invariant under z —
~ 2 (Imz)? cz+d

(CCL b) € SL(2,R), and so defines an invariant Haar measure on I'g(N)\h. Thus

d
<fi,fj>:{1 =,

for

where z = x + 1y. The differential

0 if¢# 7.
8



This implies that for all F' € S}, we have

Applying this to the Poincaré series,

T

Pm<Z7X) = Z(Pm<*7X)> f])f](’z)

J=1

This is the spectral computation. We have

j=1
It remains to compute
—— dxdy
P05} = [ Pule g T
Lo(N)\b Y
Since f is a cusp form, it has a Fourier expansion f(z) = > ;= Ay(l)e*™"*. The space

Co(N)\b is quite complicated — its fundamental domain can be obtained by choosing coset
representatives for I'o(IV)\I'g(1). Let us continue with the computation

=/ N - TImYzZ £1 .\ d[[‘dy
- / S X0, 2) e ) (T 2)
To(N) Y

\D e \To(N)

TN — - TImz — d(l,’dy
- > 7 (3,7 2) e F (3 12) (I 1) oY,
WEFoo\Fo(N) "/(FO(N)\h) y

The cocycle condition implies

1=j(y " 2) =j(r,v )ity 2)
and so

1
: -1
LY R) = o
( ) J(rt2)
Since f is modular, f(y712) = X(v"1)j(v71, 2)*f(2) and the above is equal to

Y rimz 1 NP\ — d.dey
= > / JOy )R (v ) f(2)Imy T a)F
vEL o\ (V) 7 (To(N)\h) Y

p dxdy

_ Z / eQﬂimzﬁ(Im Z) )
Y€\ (V) 7 (To(N)\h) Y

az+b _ _Imz
czt+d — |ez+d|??

since Im which can be shown by a brute-force computation. The above

becomes

‘ —— pdxd
— / eszmxe—Qﬂ'myf<Z)yk xQ Y
I'so\b Yy

1 ) 0
. . dxd
_ / / 6—27rmyyk627rmw: E Af(l)6—27rllx6—27rly 23/
=0 Jy =1 y

=0

9



:Af(m)/ e—47rmyyk’—1@
0 Y
_ Ag(m)

The factor /mn comes from renormalization, but we will not try to fix that now.
The Ramanujan—Petersson Conjecture says that if f € Sp(I'o(N), x), then

|Af(n)] < n'z e
This was proved by Deligne for f holomorphic. It is enough to prove

As(p)| < 2p°%

for p prime. This can be thought of as the error term for counting points on an algebraic
variety mod p.
Using the trace formula, we get that

gl < | 3 S ()

c=0(N)

but this gives a weaker bound than the Ramanujan—Petersson Conjecture. In the case of

half-integral weights, for which Deligne’s proof does not work, there is an exact formula by
Salié. The Salié sum looks like

C

a 2wi(ant+an)
E —]€ c .
C

a=1
(a,c)=1

Kloosterman sums are recently generalized as Kloosterman sheaves by Ngo. There should

be a theory of Salié sums for metaplectic groups, but no one has done that yet.
This ends the discussion of the Petersson Trace Formula.

2.2. Kuznetsov Trace Formula. The Kuznetsov trace formula came out in around 1978.
I am skipping the Selberg trace formula (1950) for the moment. It was only after Selberg
that people realized what a trace formula was. Jacquet asked me lots of questions in 1979
about the Kuznetsov Trace Formula, and vastly generalized it in around 1979 or 1980 to the
Relative Trace Formula in the language of representation theory.

Again, we will be looking at level N, character xy mod N, and weight k. I will not put in
the Shimura symbol explicitly, but it also works for the half-integral weight case. The idea
is to develop the Petersson trace formula for non-holomorphic forms.

I want to first talk about cusps, but it is time.

3. LECTURE 3 (SEPTEMBER 17, 2013)

I've been doing work of Hecke and Petersson from the 1930’s. Now I want to move to
Maass (1940’s). Hecke and Petersson studied holomorphic modular forms. The Petersson
trace formula is one of the deepest formulas for the finite-dimensional space of modular
forms. Maass introduced non-holomorphic modular forms. We will briefly review Maass’

theory and then apply it.
10



3.1. Maass Forms. Let I' C SL(2,R) be a discrete subgroup. The example I'll be looking
at is the congruence subgroup I' = I'y(N). On GL(2) (which has rank 1 as a Lie group), there
exist non-congruence discrete subgroups. Selberg conjectured that for higher rank groups,
the only discrete subgroups of finite index are congruence subgroups. This was proved by
Margulis.

A Maass form ¢ is

(1) a complex-valued function ¢ : h — C;
(2) 6(12) = 9(2) for all 5 € T
(3) Ag = Mo for some Ay € R, where A = —y/? (% + 50_;) is the Laplacian;
(4) ¢ has moderate growth at the cusps of I'.
Now we have to talk about cusps. A cusp is k € R U {oo} such thad]

a b . oaty+b a
K= 00 = lim — = —
c d y—oo ciy+d ¢

b .
for (CCL d) € I'. A cusp for a congruence subgroup must be a rational number, but for a

non-congruence subgroup, a cusp could be irrational. There are finitely many inequivalent
cusps.

['\h is not compact, so we compactify by adding in the cusps: I'\b* where h* = b U
{ic0o, K1, ke, - - - }. It requires some work to show this is a complex manifold. I think Shimura
was the first to write down the complete proof.

As long as we're away from the cusps, ¢ is bounded by some constant. Let k be a cusp.
Then there exists 0 € SL(2,R) such that coo = k. Let I'y = {y € ' : 7k = K} be the
stabilizer of the cusp k. It is always possible to choose o such that o0~'T' 0 = 'y, which is
equivalent to I'y, = ol oo ™!,

Let’s look the function ¢ at a cusp. ¢(oz) is periodic in z, i.e.

¢(o(z+1)) = ¢(o2).

o3 DI -o(e s D)o

since ((1) D € I'wo. Thus there is a Fourier expansion

This is because

602) = Y aglm, ).
meZ
We say ¢ has moderate growth at a cusp k if there exists a constant B > 0 such that
|p(02)| < yP asy — oo (and z fixed). This implies that |as(m,y)| < yPe ™ asy — oo and
¢ > 0. Let’s explain how we get a bound like this. If the function is not an eigenfunction for
the Laplacian (i.e. we have an automorphic function, not automorphic form), this estimate
does not hold.
Since A is invariant under SL(2,R), We have

AG(02) = Ao - 6(02),

IThe correct definition is that % be fixed by some parabolic element of T'.
11



ie.
0? 0? ,
_ 2 2mime
Ad(oz) = —y (—axQ + _ay2) Em ag(m,y)e

_ Z _y2(a/¢/)(m’ y)e2m'm:v . 471_2,’77/26%(,’n7 y)€2m'mx>
= /\¢ ’ QS(O-Z):
and hence
—y*(ag(m,y) — Ar*m*ag(m, y)) = Asag(m. y).
This is Whittaker’s differential equation, and there are two solutions, one with exponential
decay in y and one with exponential growth in y. Since ¢ has moderate growth, as(m,y)
must have exponential decay in y.

Now the question is, do Maass forms exist? The answer is yes, thanks to the Eisenstein
series. But then we can ask, do Maass cusp forms exist? A Maass cusp form is a Maass form
such that a,(0,y) = 0 for all cusps .

The simplest discrete subgroup one can look at is SL(2,Z). In 1940, Maass actually
constructed cusp forms for I'o(N) for certain N. In my book Automorphic Forms and
L-functions for the Group GL(n,R), I gave the construction. But Maass was unable to
construct it for SI(2,Z). in 1950, Selberg proved infinitely many Maass forms for ' a
congruence subgroup of SL(2,Z) (in particular, for SL(2,7Z)). Not only did he prove there
are infinitely many, but he could count how many there were. This was one of the first
applications of his trace formula.

The final question is, can Maass cusp forms exist for non-congruence subgroups? Around
1980 (at Selberg’s 60th birthday), Sarnak and Philips developed the theory of spectral defor-
mation, and conjectured that for the general non-congruence subgroup there are no Maass
cusp forms. This is now wide open.

3.2. Eisenstein Series. Let I' C SL(2,R) be a discrete subgroup. We will denote z € b

and s € C. Define
s y
E(Z,S) = Z Im(’)/Z) = Z m
I

e (10)e
This converges for Re(s) > 1 (using the fact that I' is discrete). Note that
0? 0?
s __ 2 s __ 2 s—2 S
Ay® = —y <@+a_y2>y =—y - s(s— 1y =s(1—s)y".

Since A, = A, for all o € SL(2,R), we have
A(Im~yz)* = s(1 — s)(Imvz)*
and so
AE(z,s) = s(1 —s)E(z,s).
By definition it is easy to see that F(vyz,s) = E(z,s). The only question is whether E(z, s)

has moderate growth. Since it satisfies the Whittaker differential equation, it is of either
moderate or exponential growth.

Theorem 3.1. E(z,s) has moderate growth.
12



There are other Eisenstein series. Actually we can construct an Eisenstein series for each

Cusp Ki, Ka, -+ , ki (a set of inequivalent cusps). Let x be a cusp, and ooo = k, 0710 = .
We define
Eu(z,5)= Y (Im(c'v2))".
~vyel\I'

Then we claim that E,(az,s) = Ex(z,s) for all « € I'. Indeed, we have

E.(az,s) = Z (Im(c 'yaz))® = E.(z,5).

YELL\I
Assume I' has r inequivalent cusps k; = 00,Ka,- - ,Kk,. Then there exist r different
Eisenstein seires Ey(z,s), -, E.(z,s). Each E;(z, s) has a Fourier expansion at the cusp &;

27rimx
Ei(0jz,s) E Apii(y,s )

Theorem 3.2. E;(z,s) has moderate growth fori=1,2,--- r.

We don’t have enough time to prove this now. Let me talk about the Selberg Spectral
Decomposition — every automorphic function of moderate growth on I'\h can be written as
a linear combination of Maass cusp forms and integrals of Eisenstein series

2+zoo
Z/ (z,8)ds

and sums of residues of Eisenstein series. This can be made very explicit. The Eisenstein
series at the different cusps all come into the picture. Thus I' has:

e a discrete spectrum, given by “Maass cusp forms”;

e a continuous spectrum, given by E;(z,s) fori =1,2--- ,r; and
e a residual spectrum, given by Resl Ei(z,s) fori=1,2,--- r.
s=pole

4. LECTURE 4 (SEPTEMBER 19, 2013)
4.1. Eisenstein Series. Last time we were doing the Eisenstein series for I' C SL(2,R),

where I' is a discrete subgroup. For simplicity we assume that . Let ¢1,¢9,-++ , ¢, be

11
0 1
inequivalent cusps for I". For each cusp ¢, the stabilizer is I'. = {y € ' : v¢ = ¢}. At each

cusp ¢;, we can pick o; € SL(2,R) such that o,¢; = o0 and 0; 'T.,0; = [o = {((1) T) }

The Eisenstein series is

which is convergent for Re(s) > 1. Each E;(z, s) has a Fourier expansion at a cusp c;

Ei(o;z,s) ZA” m,y, s)e*m e,
meEZ
Very important is the constant term A;;(0,y, s).
For the case of GL(2), we can compute these A;; very explicitly, and they turn out to be

Bessel functions multiplied by certain divisor sums. Thus we can prove things every easily,
13



e.g. the functional equation and moderate growth, by explicit computations. If we go to
higher rank groups, then the explicit calculations break down. The only thing people can
compute explicitly in general is the constant term. That’s the problem Langlands gave to
Shahidi. Once we know the constant term and we know the function is an eigenfunction of a
differential operator, we can prove all the properties we want. The first proof was found by
Selberg. Langlands, in his book on L-functions, took Selberg’s proof and generalized it to all
reductive groups. Later Selberg found a second proof who only had one step (without first
finding the constant term). In the 1970’s and 80’s, Sarnak and Phillips were going through
that proof, but it didn’t seem to work for all cases.

Anyway, now we are going to prove everything using the expansion. We have the following
theorem, first proved by Kubota in his book Elementary theory of Eisenstein series. I think
the proof was known to Selberg, but he never wrote it up.

Theorem 4.1 (Kubota).

00 €—2mmmy

s s 1 2mimd
Aij(mayv S) = 50,my + yl Z Z |C|256 ‘ / (.23'2 + 1)sdl'

c d (mod c)
(% 5)elo\o; 'To;/Tog

The integral is a Whittaker function

00 e—27rixy 27T5’y‘87%
= K 2
/oo ($2+ 1)5 x F(S) s—%( 7T|y|)

where K is the Bessel function with exponential decay as |y| — oco. When m = 0, there is a

simpler formula
= ds D(s—1)
| wvr

Theorem 4.2. For any fixed s € C, the Eisenstein series is of moderate growth if and only
if |Ei(z,8)| < yP (asy — o) for some B = B(s) > 1.

Proof. Assume we have proved the Fourier expansion (Theorem 1). Then
|Aij (mv Y S)l < yRe(s)

for Re(s) > 1, because

B Re(s) 1—Re(s) ¢ . Re(s)—1
[Aij(m,y, 5)] <y +y Z—|C’2RQ(S) YO |K,_ (27|mly)].

O

Next I want to talk about the functional equation of Eisenstein series. The individual
Eisenstein series do not have a functional equation. We have to define a vector of Eisenstein
series.

Definition 4.3. £(z,s) = (Ei(z,s), Ea(z,5),- -+, E (2, 5)).
14



Theorem 4.4 (Functional Equation (Selberg)).
E(z,8) = P(s)E(z,1 — s).

.. r 18 the Scattering Matriz, where

s—H X 1
R ) e Y
(S) c=1 ‘C| d (mod c)
(z;)EU;IFUj

Here ®(s) = (¢i;(9))

is the Fourier coefficient of y'=*.

All the higher terms satisfy the functional equation because K (y) = K_4(y), so the only
problem is with the constant term. The key step in the proof is that ® is a symmetric matrix.

We are looking at the kind of sums
>, b

(z 2)60;11—‘03-

*\ . C - —
d) in distinct cosets of I'y,\o; 'To;/T o

for a fixed ¢. Now apply the map g — g~ ! where g € T', and we can see that we get the
exact same counting. Thus ® is symmetric

P(s) ="d(s)

and @ is unitary at s = % + it for t € R.

Selberg’s second proof is really amazing — it doesn’t use this formula, but instead uses
Fredholm theory which is pure analysis.

We have established that the Eisenstein series has moderate growth for Re(s) > 1 and
satisfies a functional equation. Combining the two gives moderate growth in the region
Re(s) < 0, and by the maximum principle we get moderate growth in between.

All that remains to prove is the Fourier expansion. Last time I proved the Fourier ex-
pansion of non-holomorphic Poincaré series, which is elementary. Now we are going to give
essentially the same proof, in a group-theoretic setting.

We define the Poincaré series

P,(z,s) = Z Im(yz)*e*™m72,

YEL o \I

i.e. we are counting the number of representations of (c

When m = 0, this gives the Eisenstein series. We can do this for an arbitrary cusp, but let’s
just look at the cusp at oo for simplicity. It has a Fourier expansion

P,(z,s) = Z P (n,y, s)e*mne
nez

where

A

1
Pn(n,y, s):/ P(z,8)e ™" dy
0

1
_ / Z (Im 72)362wim72672ﬂ'in1dx.
0

YEL\I
15



We need the Bruhat decomposition of I" (which is only assumed to be a discrete subgroup).
There are basically two kinds of decompositions for discrete groups — double cosets or
conjugacy classes. The Bruhat decomposition is a double coset decomposition. Very roughly,
the Selberg trace formula involves conjugacy classes and the relative trace formula involves

double cosets. The identity coset is ['y (é (1)) I', and the other coset is ' (Z Z) 'y for
¢ # 0. We have

(6 D)y )

/ /
where I'y (CCL Z) I'w =I's (CCL, Z,) I if and only if ¢ = ¢ and d = d’' (mod ¢). The

Bruhat decomposition is

(D) Y ()

c#0
d (mod c)

Now we can continue with the computation.

n LY, 8 / Z (Imyz)s 2mm7z 27rm;rdl,

% ¥€Too\I'/Too
_ 60 mys€27rmy+/ Z Im")/Z)S 2mimyz 727rzm:rdx
(c d)EF
c#0
d (mod ¢)
T ys 2rim 2t _oming
_(5 m -2 Y cz+d d .
omye * Z / ((cx +d)? + 2y )e ‘ v
(c d)EF
c#0
d (mod c)

For the Eisenstein series, m = 0. We substitute x +— x — Czl and then z — xy to get

> 1-s ) oo, —2minxTy
2 s, —2mm Y 2mind e
Pm(n, Yy, 8) = 6O,my (& 2mmy + Z 25 Z e c / mdl’
c=1 d (mod c) -
(c d)EF

4.2. Selberg Spectral Decomposition. Let I" C SL(2,R) be a discrete subgroup, ¢, ¢, - - -
R U {oco} be inequivalent cusps of ', and F;(z,s) (¢ =1,2,--- ,r) be the Eisenstein series at
each cusp ¢;. Let n;(2) ( =1,2,3,---) be a basis of Maass cusp forms for I'. Let ny(z) be
the constant function.

As I mentioned last time, it is very hard to prove that Maass cusp forms exist. We only
expect them for congruence subgroups.

We have the space

L(T\h) = {F :T\h — C: |F(z)|2d"”fy < oo}.

r\h Yy

16



The spectral decomposition says that if F' € £2(T'\b), then

+Z°° z
ZZ 47”/ (%,5))Ei(z, s ds+z (F, Ry) —<RRk>(R)lc>

k=1

[e.o]

F(Z):Z<Fv M5

Jj=1

<77], )

where Ry(z) is the residue at a pole of some F;

Ri(z) = ResE;(z, s).
s=s0

This was first prove by Selberg, but I will not prove this. There is a nice exposition by
Miiller.

For congruence subgroups, the only residual term comes from the constant function, so
we can rewrite this sum as

o0

> (Fom)

J
j=0 77]7 j

Z4m /QHOO (%, 8)) Ei(2, s)ds.

In the case of GL(2) where we can compute Fourier expansions explicitly, the proof is very
easy. In my book I gave a proof for GL(3). The most general proof can be found in Arthur’s
article in the Corvallis proceedings.

5. LECTURE 5 (SEPTEMBER 19, 2013)

5.1. Kuznetsov Trace Formula. The Kuznetsov trace formula is a generalization of the
Petersson trace formula, except that it uses non-holomorphic functions. Take I' = T'o(V) €
SL(2,Z). We can work more generally but let’s stick to this case. We have the standard

Poincaré series
Pn(z,s) = Z (Im yz)Se?mm7=
YET o \I'
and also the more general Poincaré series

Pu(z,p) = Y p(2rmlIm(y2))e™™?,

YEL o\

where p : R — C satisfies |p(y)| < y'™¢ as y — oo. This condition ensures that the series
converges.
The KTF is obtained by computing

dwdy
r'\h y?

in two different ways, where Q,,(z,q) = > ¢(2mnIm(vyz))e*™* is another Poincaré series,
Let’s first do the spectral computation. Let n;(2) (j = 1,2,---) be Maass forms for I'y(V).

There is an expansion
= A ()Y K, (2r|l|y)e™™
1£0
where A; are the arithmetic Fourier coefficients and Kj;; is the Whittaker function.
We need to know that these Poincaré series are in L2 Let’s just assume p is chosen such
that P,, € L*(T'\h). In fact |p(y)| < y'™* is enough, because there is a Fourier expansion

Pz, p) = y*e” > 4 higher terms
17



where the higher terms are very small, and the first term has decay in y — oco. It is easy to
see that at the cusp at infinity, the function is L2. We also have to check the other cusps,
but the Fourier expansions are similar, possibly without the first term.
Since P,, € L?, it has a spectral expansion
oo
Pm(z,p) = Z(Pm

Jj=1

2+'Loo

Z 47m/ (P, Ex(,5)) Ex(z, s)ds

—100

7 J 7737773

(the only residue for I'g(N) is the constant function, but that is orthogonal to the Eisenstein
series anyway). We have to compute these inner products explicitly, but we can already say

> +zoo

. < man] Qnanj TO O (e o)\
(P @) =3 Z w1 ), P B QTR 90

This is the key formula.
We need to compute the inner products

TImYyz dl’dy
(P, 1j) =/ > p2rmImyz)e’™™ - n;(z) =
P\ e o () Y

_/ p(2mmy)e? m(z)—2

Too\b Yy

dwdy
T2

/ / 27Tmy 2mima —27rmyZA \/_Kzt (27T|l|y) —2milx
z=0 Jy=0

140

(We know that the Bessel function satisfies K (y) = K_i(y) = Ki:(y), which is the functional
equation of the GL(2) Whittaker function. In fact A;(l) are real too because the Maass forms
are self-dual, but we don’t need to assume that.)

o0 d
— / p(27rmy)e_2”mij(m)\/§Kitj (27rmy)y—32/
0

_ Aj(m) / > 1 dy
- \/ﬁ 0 p<y)y th(y) y :
Thus,

(P, Qn) = ]ZI 2?\]/(;1—7)1?7;](?2>p t;) kz %/ = Er(m, s)Ey(n, s)p™ (x)q# (x)ds

where
p*(t) = /0 ply)y = it(y)dyy

is the Whittaker transform of p.
Let’s work out the last term more precisely. Recall that we have

1
Anj = (ZL + t2> N

AE(z,s) = 51(81 —s)E(z,s).

and



Substituting s = % + it will give the second term.
In conclusion, we have obtained the spectral side of the KTF

(P, Qn) = ]f; 27?%%) (t;) +Z /m (m —i—zt) Ey, (n % —I—it)p#(t)q#—(t)dt.

Selberg was the first one to prove infinitely many Maass forms, using the Selberg trace
formula. At a conference 12 years ago I asked if we can use the Kuznetsov trace formula to
prove the same thing. The answer turned out to be yes.

Now we move to the geometric side of KTF. We evaluate (P,,, Q,) using the Fourier
expansion of P,

Pun(z,p) = Z p(2mm Im(yz))e*™ ™ = ZB (1, p,y)e2mil

YET o \I' leZ

where By(l,p,y) = p(2mily)e=>W + .... Basically B,,(l,p,y) are related to Kloosterman
sums, which are related to algebraic geometry and explain why this is called the geometric
side.

We have

———dzd
I'\b y?

L e dxd
= / / p(2ﬂ.my)e2mmz Qn(z, q) 2y
0o Jo Y

1 )
. _ . d
— / / p(27rmy)627mmxe—27rmy E :Bn(h q, y)e—lea:dx_g
o Jo ] Y

> Coemy Y
=/ p(2mmy)e> an(m,q,y)?-
0

Now we can write down the Kuznetsov trace formula

A () A () () T () ey
N e

J=1

> “omm dy
:/ p(2mmy)e an(m,q,y)?
0

where B,(m,q,y) is an infinite sum of S(m,n,c).

On GL(2), there are many applications of this formula. The first was by Deshouillers and
Iwaniec in 1980’s. Last time I mentioned that Sarnak and Phillips conjectured there are
no Maass forms for non-congruence subgroups. In order to prove this they needed certain
special values of L-functions to be non-zero. Deshouillers—Iwaniec used the KTF to prove
these values are non-zero infinitely often.

When Kuznetsov first came up with his trace formula, he thought it was so powerful that
he used it to prove four other major conjectures, including the Ramanujan and Lehmer
conjectures. These proofs even got published in some obscure Russian journals (Kuznetsov
was residing in Siberia), but I don’t think they were correct. Of course the trace formula was

correct. One application that was correct was concerned with the Linnik—Selberg conjecture.
19



Conjecture 5.1 (Linnik—Selberg). For every e > 0, we have

- S(m,n,c) .
2T

c=1
as r — OQ.

Kuznetsov proved this for e = %, which is the best bound so far.
Another application of the KTF was a result of Sarnak—Luo—Iwaniec.

6. LECTURE 6 (SEPTEMBER 26, 2013)

6.1. Takhtajan—Vinogradov Trace Formula. Today we will talk about an interesting
application that is not well-known. The reference is The Gauss—Hasse hypothesis on real
quadratic fields with class number one by L. Takhtajan and A.I. Vinogradov, published in
Crelle’s Journal in 1982. This application has to do with the following conjecture of Gauss:

Conjecture 6.1 (Gauss, 1801). There are infinitely many real quadratic fields with class
number equal to 1.

I think this is the only conjecture in the Disquisitiones that remains unproved.

We will use the theta function

9(2’): Z 627rm22

n=—oo

az+0b d
9(02+d> -« (E) (cz+4d)
1 ifd=1 (mod 4),

d
for <((1: Z) e I'h(4), <E> is a real character mod ¢ and €; = {z £ d=3 (mod 4).

Consider the real quadratic field @(\/8), where d > 0. Takhtajan and Vinogradov consid-
ered the following inner product

which satisfies

N[

0(z)

dxdy
Y2

N

(Py(x*,5),0(x)0(*d) Im(*)

= Py(z,5)0(2)0(dz 3 ) 1
) /wh (=, $)B(0(d2)y 1)

Note that 6(z)0(dz)y? is invariant under the action of I'o(4d?). Here
Pi(z,s) = Z Im(yz)%e*™ .

YET 0\ (4d2)
Let’s first do the geometric computation to compute (|1)) using Fourier expansions.

— m(~2)5e2™% . (0()0(d %dxdy
Co= [ 3 e G

\D yer o \To(4d2)

L v dxd
= [ e
oo\ Yy

1 00 00 00
o 92, 2 2 _ 2 _1 d{L’dy
— / / e27m:pe 21y § : e 2mim Te 2rmy E : e27rm dxe 2mn*dy ys 3 .
=0 Jy=0 Yy

m=—00 n=—oo
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Note that the z-integral gives m? — dn? = 1, which is Pell’s equation. Thus

77'(' m n S**dy
<> >_/ Z 21y(m2+d +1)y »

m?2 dn =1

— Z 1 F(s—l)
£~ (2r(m? +dn? + 1))z 2)"

m2—dn?=1

So we have proved:

Theorem 6.2.
r (s — l)

2

1
(2m)s2 Z (m?+dn?+ 1) 2

m2—dn2=1

(Py(x,s),00,Im()2) =

We need the following old theorem about Pell’s equation.

Theorem 6.3 (Pell’s Equation). All solutions to Pell’s equation x*> — dy?> = 1 are of the

form (£x, £y) where
x4+ yVd = (z0 + yoVd)*
for some k >0 and xo + yoV/d is a fundamental unit of Q(+/d).

Thus N(z¢ + yoVd) = 22 — y2d = 1. We usually call 2o + yov/d = e5. We have

1 — d
-1 _ 2o yO\/__$o—y0\/E

€ = = =
T rotywvd R —yid

and so
-1
€q+€; = 2,

ko —k
€q T €, = 2.

Now we can express the inner product as

F(s—%) 1 _F(s % >
2nt > 1 <+Z€+€ 231>-

2 (m? +dn?+1)°"2 T

m2—dn2=1

Let’s look at

S = Cobil2s | o (1-2)k 25 —1
TR U (ed o(z22))
le.
v — 5 T h(s)
; (ed +€ 25 1 kz: k(2s—1)

where h(s) is holomorphic for Re(s) > 0, and

> s - 1

Pt 25 1) 6Zs—l

has a simple pole at s = % with residue equal to (x)log eg.
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Theorem 6.4. The inner product (Pi(x,s),00;,Im()2) has a double pole at s = % with

residue () logeq (a constant multiple of the reqular of Q(+/d)).

1
2

This is the geometric side of the trace formula. Now let’s look at the spectral side of the
Takhtajan-Vinogradov trace formula.

When we look at the spectral side only Maass forms with eigenvalues i will produce double
poles at s = % What are special about these? They are the cohomological forms on GL(2);
in the theory of automorphic forms, only cohomological forms can be associated to Galois
representations.

Let n1(2),m2(2), - -+ be a basis of Maass forms for T'g(4d?). We have the expansions

ZA \/_Kzt 27T’l‘y) 2milz

140

We will conisder the spectral expansion of P;(z, s)

0 +zoo
Pi(z,s) Z Pi(x,s), 17]> 77 47” Z/ (P, E))E)(z, s)ds.
st Mj>M; i

—100

s mz d:cdy
< * S 77] / / 2 yg

d
— 4,1 / ye mfwzwy)y—f

Then

This integral can be found in the Russian book Table of Integrals, Series and Products, and

is equal to
R —1_ ¢t

When does T’ <S_%+itj> r (S_%_it‘j) have a double pole at s = 1?7 Only when t; = 0.

2 2
Remember that
1
An; = (Z + tf) Njs

so t; = 0 if and only if 1; has eigenvalue ;.
On the other hand, the double pole contribution s = % from the Eisenstein series is 0.
We take residue of the double pole at s = % on both sides of the Takhtajan-Vinogradov
trace formula leading to identities of the following type. Let fi(z), f2(2), -, fu(z) be coho-
mological Maass forms with eigenvalue § for T'o(4d?) (by cohomological I mean they are cusp
forms which are eigenforms for all the Hecke operators, and have eigenvalue %) Consider
the Dirichlet L-functions

Lisyy) = 3 )

mS

m=1
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associated with characters of the ideal class group of Q(v/d). Let h be the class number of
Q(v/d). Then

S 1) = YD §7 (1)

where the left side is summed over the non-trivial characters, x4 is the Dirichlet character
(so that (g (s) = C(s)L(s, xa)), and (x) is some simple factor (but hard to define).

n should be equal to h, but Takhtajan and Vinogradov could only prove n > h.

In all trace formulae I have seen, both sides involve infinite sums. I asked if there exists
a trace formula with a finite sum on the geometric side, and found one which I called the
degenerate trace formula. We will talk about this next time.

7. LECTURE 7 (OCTOBER 1, 2013)

7.1. Theta Functions. Today we will study theta functions as examples of automorphic
forms. In his paper Indefinite quadratische formen and funktionentheorie in Math. Ann.,
Siegel (1951, 1952) constructed theta functions, generalizing Maass’ earlier construction. He

proved things like
az+b a b 1
0 <cz m d) =€) (c d) (cz+d)20(z)

where € is some 8-th root of unity. The problem of solving for € explicitly was solved by Stark
(1982) in On the transformation formula for the symplectic theta functions and applications
in J. Fac. Sci. Tokyo, but this was only for the symplectic case. If you look at the binary
quadratic form az? + bzy + cy* (whose discriminant is D = b? — 4ac), D < 0 is the positive
definite case, with az? + bxy + cy? always positive. We can ask how often ax? + bxy + cy?
equals a fixed integer, which happens finitely many times. But this may be infinitely often
in the indefinite case D > 0.

For the simple theta function 3 e?™°# Shimura was able to compute the 8-th root of
unity. Stark asked his student Friedberg to compute this for theta functions for indefinite
forms, and the result was published in On theta functions associated to indefinite quadratic
forms in J. Number Theory. I'm not going to give proofs but I will just give a review of
these papers.

Let’s begin with the symplectic theta functions.

7.2. Symplectic Theta Functions. Let Sp,,(R) be the symplectic group consisting of 2n x
2n matrices M = (A B> satisfying the identity

¢ D
¢ _ (0 —Iy
MJM—J—(]n 0)

where [, is the n x n identity matrix. Hecke and Maass developed the theory of automorphic
forms on the upper half plane. Siegel generalized this to higher dimensions.

The Siegel upper half plane b, is the set of n x n symmetric matrices Z with Im(Z) > 0.
23



The discrete subgroup I'™ is defined to be Sp, (Z), which acts on the Siegel upper half

plane: for M = <A B

C D) e '™ and Z € b, the action is given by

MZ = (AZ + B)(CZ + D)™
Now we will construct the theta function. We need a special subgroup (even in GL(2), we

need to get to level 4 to get theta functions). We define the theta subgroup Fé") c I'™ to

be the set of all (é g) € IT™(Z) such that A'B and C*D have even diagonal entries.

Definition 7.1 (Siegel Theta). Let u,v be column vectors in C". Let Z € h,,. We define

U L 2mi[t (m+v) Z (m+v)—2tmu—tou]
9<Z, ()) =Y. |

mezZ"
We have the following

Theorem 7.2 (Eichler). For M = (é 15)) ery,

0 (MZ, M (";)) = x(M)(det(CZ + D))26 (Z, (g))

for some x(M) an 8-th root of unity.

x was determined by Stark. The formula for y is very complicated. It was quite a technical
feat to get that 8-th root of unity.
The fact that 0 is automorphic basically comes from the Poisson summation formula.

7.3. Theta Functions associated to Indefinite Quadratic Forms. The main problem
with the indefinite case is that we cannot write down a series like above, since the expression
does not converge. Siegel showed that indefinite forms are connected to certain definite
forms, via “majorants”.

Let K be a totally real algebraic number field of degree r1, Ok be the ring of integers of
K, 6 be the different, and Dg be the discriminant of K. For a € K, let oV, a® ...  alm)
be the conjugates. We put I' = SLy(Ok). For an integral ideal m, let

Fo(m):{M:(g g):MGF,WEm}.

The upper half plane is h™ | which is just 71 copies of the standard h = {z+iy : x € R,y > 0}.

Let z = (21,29, , 2, ) € ™. The action of M = (3 g) on h™ is given by

Moz = (M(l) o zl,M(Z) 0 29, ’M(n) 0 2

e pw
(6
where M(]) = <")/(j) 50)) and

M o Zj = (a(j)zj + 5(]’))(7(1)% + 5(]’))—1

is the usual GL(2)-action.
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Let @ be a symmetric n X n matrix defining the quadratic form

Q[z] :=="2Qx
for x € R™. If ) has entries in Ok and diagonal entries divisible by 2, we say @) is of level
N € Ok if

e NQ ! has entries in O, and 2 divides the diagonal entries of NQ1;
o for M € Ok, N | M whenever MQ~! has entries in Ok and 2 divides the diagonal
entries in MQ 1.

Definition 7.3 (Signature). QU) has signature (p,q) for j = 1,2, 7 if there exists L; €
GL(n,R) such that
QY ="L (Ip _ ) Lj.
q

We have now set up generalizations of congruence subgroups of level N. The problem is
that this is an indefinite quadratic form, so we cannot construct a theta function in the usual
way. We will first construct a symplectic theta function.

Definition 7.4 (Siegel’s Majorant). Let @) be a symmetric n x n matrix of signature (p, ).
Let Rj ='L;- L;. Then R; is a majorant for Q) if *R; = R; > 0 and

=1 .
RjQ(J) R; = Q(])'
Example 7.5. Let Q = (Ip 7 > Then R = I,4, is a majorant.
q

Majorants always exist but may not be unique, which gives lots of trouble.

Now I can define Siegel’s theta function (indefinite case).

Let @ be an n x n symmetric matrix with entries in Ok such that 2 divides all diagonal
entries and @ is of level N € Og. Assume @ has signature (p,q). Let (uq,---,u,,) and
(v1,--+ ,v,) bein C™. Let J € Ok be an integral ideal. Let z = (z1,- -+, 2,,) € h™, where
zj = x; +1y;. Then we define the theta function

q
71 2
w\\ Z mi[X0L, QW) (MG 4u)a+i Ry (AD 40;)y; —2PAD QU u—tv; QW u;
HQ (Z, <U>> B <H yj) e i1 ( vj)xj+iR;( v5)Y; R u]]-
j=1

Aegn

Remarkably it can be shown that 60 (z, (5)) is a symplectic theta function. Friedberg

determined the 8-th root of unity for this theta function in his thesis.

Theta functions have been generalized to the adelic setting.

Theta functions and modular forms of half integral weight are not covered by the Langlands
program. It may be possible to use ideas from Mumford’s book Tata Lectures on Theta to
give a geometric interpretation of majorants.

7.4. The simplest Theta Functions. These will be weight 1 modular forms for [y(4N).
We are looking for holomorphic functions

PR =1 (0 0) e v
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d
We can ask:

for (CCL b) € I'o(V) and x (CCL Z) some 8-th root of unity.

e Can we find a basis for the space? What is the dimension?
e Can theta functions be cusp forms?

The answers to all these questions were solved by Serre-Stark (1976). It is a surprising
fact that theta functions can be cusp forms! The Ramanujan conjecture says that if f(z) =

> a,e*™ is a holomorphic cusp form of integral weight, then |a,| < n"7+¢. Here, the
Ramanujan conjecture fails for  but it holds “on average” by Piatetski-Shapiro. One of the
goals of the Langlands conjectures is to prove the Ramanjan conjecture, which is another
reason for why there isn’t a Langlands conjecture for half-integral weights.

Next time I will talk about the Serre—Stark paper.

8. LECTURE 8 (OCTOBER 3, 2013)

8.1. Modular forms of weight % Today I will discuss the Serre-Stark paper “Modular
forms of weight %” in Lecture Notes in Mathematics 627, Modular forms of one variable VI
(1976). T will not prove everything, but only the more important results.

Let v = (CCL Z) € [o(4N) and j(7,2) = €q (%) (cz + d)2 be the weight 3 cocycle, where
(%) is the quadratic symbol. We define the action
(fI)(2) = (7, 2) 7" f(72)-
Let x : (Z/ANZ)* — C* be a Dirichlet character. We let My(4N, 3, x) be the space of
weight % modular forms for I'g(4V) with character x, i.e. functions satisfying
(f17)(2) = x(d) f(2).

Let Mi(4N,3) = D, (mod 4n) My(4N,%,x). If f € My, then (f|y)(z) = f(z) for all ¥ €
[(4N) = a4 Z = (1) ?) (mod 4N)}. (It is because of this relation that we just

need to study I'y instead of T';.)
The first theorem of Serre—Stark is as follows:

Theorem 8.1. A basis for M;(4N, %) is given by the theta functions
B(v,t2) = 3 W(n)emin’tz

nez
where
(1) ¢ : (Z/ANZ)* — C* is an even character of conductor ry;
(2) it | N;

(3) if 0 € Mo(4N, L, x), then x(n) = (n) (L) for all (n,4N) = 1.

This gives a very explicit basis. The simplest proof to this theorem is by Hecke operators,
which can be found in the appendix to the Serre-Stark paper by Deligne.
We are led to the interesting question: can any of the theta functions in Theorem be

cusp forms? The answer is yes.
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Definition 8.2. We say an even character x : (Z/NZ)* — C* is not totally even if in the
decomposition N = [[;_, pj*, x = [[;—; x,e, one of x,ei is not even, i.e. x,(—1) = —1.

Theorem 8.3. Let x : (Z/ANZ)* — C* be even. Then a basis for the cusp forms
S(To(4N), 1, x) is the set of theta functions

Z ¢ 27rzn tz

where
(1) v is an even character of conductor ry, and v is not totally even;
(2) rit| N;
(3) x(n) =¢(n) (L) for all (n,AN) = 1.

We can ask the question: what is the first (i.e. lowest level 4NV) theta function that is a cusp
form? It can be written down very explicitly. Let 4N = 576 = 242 and ¢y, : (Z/127)* — C*
be given by 112(1) = 112(11) = 1 and ¢12(5) = ¥12(7) = —1. Then the theta function is
given by

z) = Z ¢12(n)62”"2z _ o2miz _ 2midbz _ 2mid9z y 2mil2lz
n#0

Theorem implies we can twist by a character y (mod q) and get a cusp form

0(th12 - X, t2) = Z¢12 )e2minttz
n#0
of level 576tq* with character y. This will satisfy

o (vt 00 = (e (4) (s + o0t

for all (i Z) € I'y(4Ntq?). These are all the cusp forms of weight 2 5, S0 we can think of ¢

as the analog of the Ramanujan cusp form of weight 12.

I will give a complete proof of Theorem [8.3]

8.2. Proof of Theorem . Let f(z) € Mi(N, 3) (we will assume 4 | N throughout) have
Fourier expansion

f(Z) _ Za(l)e%il‘z.
1=0
For M > 1, let €y : Z/MZ — C* be a complex-valued periodic function with period M, i.e.
ev(z+ M) =epy(2).

Definition 8.4. The twist of f by €,/ is

(fxem)(z) = Za(l)€M<l>e2mlz_



We remark that 6 is not a twist of the classical theta function ) g2min’z by 9 — if it
were, the coefficient of €27** would have to be t15(n?) instead of 1h15(n). This makes an
important difference!

The finite Fourier transform is given by

_ 2miml

en(l)=— Z ev(m)e” "M

with inverse transform

(@)= > enlm)e 5.

meZ/MZ

I claim that we have

(Fraz =3 éulm)f <z+ %) .

meZ/MZ

This is very easy to prove; you should be able to do it mentally.

Proposition 8.5. Fiz M > 1, M | N. The following are equivalent:

(1) f vanishes at all cusps §;, where 1 <m < M and (m, M) = 1.
(2) For every ey : Z/MZ — C*, the function

¢f*€]M (S) = Z a(l)EM(l)lfs

=1

1s holomorphic at s = %

Let us recall what cusps are. Every cusp of I'y(IV) is of the form {; with M | N, (m, M) =
1. Two cusps {;, % are equivalent if and only if M = M’ and m = m’ (mod (M, %)) For

example, 0 and 1 are equivalent under ((1) 1)

Proof. We first prove this for M = 1. (1) is equivalent to the statement that f vanishes at
the cusp 0. (2) is equivalent to the statement that ¢(s) vanishes at the cusp 0, since ¢y is

just the standard Mellin transform of f.
0 —1
Leth:(N O).Then

9(2) = (flwn)(z) = N73(=iz) "3 f <_NL)
has a Fourier expansion
g(Z) — Z b(n)€27rinz'
n=0

The cusp 0 is equivalent to oo under wy, so (1) is equivalent to the statement that g(z)
vanishes at oo, i.e. b(0) = 0.
On the other hand, the functional equation relating ¢¢(s) and ¢4(3 — s) implies that (2)
is equivalent to saying (27) °I'(s)¢,4(s) is holomorphic at s = 0, i.e. ¢,(0) = 0.
So we have proved the Proposition when M = 1.
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Next assume M > 1. Apply the above ideas to f * ep; with N replaced by N - M? (it
is not hard to show f * €y, is automorphic of level NM?). Then conditions (1) and (2) are
equivalent to:

(3) For all €y, : Z/M7Z — C*, the modular form f x €, vanishes at the cusp 0.
(4) For all m € Z/MZ, the modular form f(z+ §;) vanishes at the cusp 0.

This finishes the proof. U
By this proposition, we have

Corollary 8.6. The following are equivalent:

(1) f is a cusp form.
(2) For all epr : Z/MZ — C*, the function ¢pe,,(s) =Y 1oy a(l)ear(1)I7* is holomorphic
at s = 3.
There is one last step in the proof — we need to use the condition of an even character
being not totally even. Finally, we have the following

Proposition 8.7. Let ¢ be an even character which is not totally even. Then 6(1, 2) is a
cusp form.

Proof. Let ey : Z/MZ — C*. We must show that

H(s) = ex(n?)(n)n~

n=1

is holomorphic at s = % But this function is equal to

H(s)= Y eu(me(m) > n™
meZ/MZ n=m (mod M)
n>1
Note that the function Z n~% has a simple pole at s = % with residue +. Thus

2 M
n=m (mod M)
n>1

H(s) has a simple pole at s = 1 with residue

1 2
= eulmu(m).

mEZ/MZ

We need to show that if ) is even but not totally even, then the residue is equal to 0.
We know that since 1 is not totally even, there exists a prime p | () such that the p-th
component of ¥ is an odd character. Write M = p*- M’ where (M’,p) = 1. Then
(Z/MZ)* = (Z/p"Z)* x (Z/M'Z)". (2)

Let x, € (Z/MZ)* whose first component in (2) is —1 and second component is +1. Since
x, is invertible, the sum ) = doesn’t change if m is replaced by x,m, so the sum in the
residue is equal to

> enl(zym)?) - w(zym) =Y en(mv(zym) = =Y exr(m?)y(m)
meZ/MZ

which implies it is 0. 0
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9. LECTURE 9 (OCTOBER 8, 2013)

9.1. Adelic Poincaré series on GL(n). I will talk about some recent joint work with
Michael Woodbury, where we look at Poincaré series from the adelic point of view. I will
also move from GL(2) to GL(n). Basically this is the relative trace formula for the unipotent
subgroup
1 % % x
1 % x

*
1

A lot of people have been studying the relative trace formula for the unitary group, but this
is really different. On the unitary group, there are clever tricks to get rid of the continuous
spectrum, but the continuous spectrum plays a crucial role for the unipotent group and
cannot be avoided.

To keep things simple we will work over the adele ring A = Ag over Q, but there is no
problem working over any number field. v will denote either oo or a prime p. Q, is the
completion of Q at v, i.e.

R if v = o0.

Q, = {Qp if v = p = prime,

We have the unipotent and diagonal subgroups

1 * *x %

Let us introduce the maximal compact subgroups

_ JGL(n,Z,) ifv=p,
v O,(R) if v = o0.

and put
K =]] K.

Let Z be the center of G = GL(n).

The Iwasawa decomposition is G = UT'K = TUK. For a proof, you can refer to my book.

For H C G, we want to construct functions f : Z(H)(A)H(Q)\H(A) — V, where
Z(H)(A) is the center of H with elements in A, and V = C* is some finite-dimensional
vector space over C. If k£ = 1, we are basically looking at weight 0; I will explain more on
that.

Every function of this type is invariant under the group Z(H)(A)H(Q), i.e.

flvg) = f(9)

for all v € H(Q), and
f(z9) = f(9)

30



for all z € Z(H)(A). If we just consider the case k = 1, then we have the Poincaré series,
but we want to construct something more general. We could also have a non-trivial central
character.

We will construct a Poincaré series as follows. Let V =[], Vi, and o, : K, = GL(V},) be
a finite-dimensional representation of K,. We assume o, is trivial except for finitely many
v. Put (0,V) =@, (0, V,). We will have a central character

X =Q)xw: G@Q\G(A) — C,

i.e. x is the character which extends the central character of the representation o.
We shall assume there exists an inner product ( , )y, on each V,,, and set

<7 >V:H<7 >Vv'

(2

Further we assume (o, V') is a unitary representation.
Now we need a character on the unipotent group U. Take a = (ay,as,- -+ ,a,_1) € Q"L
We want to define a character ¢, : U — C. Each u € U(A) locally looks like

1 Uy ,2
1 U273

Uy =

1 un—l,n

and we set

() = exp (—2mi(a1ur 2 + Gouas + -+ + Ap_1Un_1,)) ifv=p,
v exp (2mi(a1ur o + aguag + -+ + Gp_1Un_1,)) if v = oo.

It is easy to see that
Vo Uy - ) = () - 1y ()

and so 1, gives a character. We define
w = H wzr
By the Iwasawa decomposition G = UT K, we define v to satisfy

wv (uvTvKU) = wv (uv)

for all 7, € T, and &, € K,,.
Next we need a toric function on
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ty2
Definition 9.1 (Toric norm). For ¢, = : . , we define
0 tv,n
Hthtor,v = —
l} (dett,)r |
Note that ||zty||tore = [|tv||tore for all z in the center. Then we extend || ||tor,, With the
Iwasawa decomposition
||ut/€”tor,v = Hthor,v

for all u € U, and k € K,. Finally we define the full toric norm
|| lsor := H 1| {lsor,o-

We can now construct an Eisenstein series

E(g.s.0) = Y. x99l
e ZQU@\G(Q)

where s = (s1, 82, -+, $,) € C" with Re(s;) > 1, and

ol = TTT1

v =1

Si

tv,i
det(t, )
for the Iwasawa decomposition g = tux. We will not study the Eisenstein series; we just
want to construct the Poincaré series.

To construct a Poincaré series, we introduce one more function H : GL(n,Ag) — V = C*.
We require

v

H(zutk) = o~ (k) H(t)
where z is central, u is unipotent, ¢ is toric and x is in the maximal compact. Thus H is
really a function on 7. Moreover, we require that H is factorizable, i.e.

H:HHU.

We can think of x as the analog of the weight of a modular form.

We now have the ingredients to define the Poincaré series. They were first defined in
a paper written by Bump, Friedberg and me in the early 1980’s, but we did it for totally
ramified extensions only. Glenn Stevens immediately generalized it.

Definition 9.2 (Poincaré Series (Stevens, 1980’s)).

Pryeo(9:8) = > X(v9)a(v9)HO9)79li0r-
1€Z(QU(QN\G(Q)
where s = (81,82, ,5,) € C" with Re(s;) > 1, and H is chosen such that this converges

absolutely (e.g. if H is compactly supported or absolutely bounded).

The Poincaré series satisfies the following properties:
o P(vg,s) = P(g,s) for all g € GL(n,Ag) and v € G(Q);
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o P(tk,s) = o ' (k)P(t,s) (analog of weight k& modular forms on GL(2));
e More generally, P(gzk,s) = x(z)o~ (k) P(g, s);
e If we choose H carefully (e.g. H compactly supported), then P(g,s) € L2

We want to obtain the trace formula by taking the inner product of two of these Poincaré
series, using the spectral decomposition and Fourier expansions. The Fourier expansion will
in particular show P(g,s) € L.

Let’s look at the Hilbert space £*(GL(n,Q)\ GL(n,Aq),o,x) consisting of all square-
integrable functions F : GL(n, Q)\ GL(n, Ag) — V = CF satisfying

F(gzr) = x(2)0 (k) F(g),

with inner product given by

(Fy, By = / T1(F (9). Bo(9))vado.
GL(n,Q)\ GL(n,AQ)

v

Remark. For all but finitely many v, we have £ = 1 and we can choose

(F1(9), F2(9))v, = Fi(g) - F2(9)-
Theorem 9.3. Let ¢ € L2(G(Q)\G(A),0,x) be an automorphic form whose Whittaker

function, defined to be
[ otugiatun
U@Q\U(A)

(Pigao(%,9),0) = [[ 1o

v

is factorizable as [ [, W, then

1s a product of toric integrals, where for F, : Q, — V,,

I(Fy Wy, 0) = / (o), Walto))va oty
Z(Qu\T(Qu)

We will prove this next time and compute the Fourier expansion.

10. LECTURE 10 (OCTOBER 10, 2013)

Unfortunately I was unable to attend the lecture.

11. LECTURE 11 (OCTOBER 17, 2013)
11.1. Adelic Poincaré series on GL(n). Recall that we are looking at GL(n,Ag). Each

a=(ay, - ,a,_1) € A" 1 defines a character on the unipotent group v, : U — C as follows.
For
1 Uy,2
1 Uz.3
u = ,
1 Up—1,n
1

we define 9, (u) = exp(£27i(a1 yu1 2 + -+ + Ano10Un-1,)) a0d Vg = [[ Va0
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The Poincaré series is

Pu(g,s) = > X(19)¢a(v9) H (Y9179 0r

Y€Z(Q)Un(Q)\ GL(n,Q)

n S;

ti\"

where s = (s1,+-+,8,) € C". For t = (ty,--- ,t,) € T, we set |[t|| = H (i> .
*
i=1
Last time we computed the Fourier expansion of the Poincaré series.

Theorem 11.1.

P,(gu, 8)iy(u)du = dp(a, b, wr)Ky(gy, $,a,b,w, T)
/U(Q)\U(A) Z Z H

weW reZ(Q\T(Q) v

: —1,,—1y
where §, — {1 if Yo p(wrur™w™t) = 1y, (u),

, K, is the Kloosterman integral
0 otherwise,

Ky(g,8,a,b,w,7) = / Xo(WTugy ) (WTugy) Hy(wTug,) || wrug, ||*du,
Uw(Q)
and U = U, - Uy, with U, = (w'Uw)NU, U, = (w™*Uw)NU.

In the 3 by 3 case, we have

Uw: ;Uw:

— % %
— %
_ o O

Today we will study the Kloosterman integrals at v = p.

Theorem 11.2.
Kp(t7 s, a, b7 w, T) = Z Z wam(tlU’tl )wbp(tu t ) <Ut1w7-tu Ii) P(tl) ’ ‘tl ’ ‘ior,p

L E€T(Zp)\T(Qp)  weU(Zp)\U(Qp)

W €Uw(Zp)\Uw(Qp)
ut] fwrtu! €GL(n,Zy)

Let me first assume this and show that it reduces to the usual Kloosterman sum in the
case of GL(2).

Let u(z) = ((1) 1) and t(y,y') = (g 5,) € T. We have the classical Kloosterman sum

i aac+b171
S(a,b,n) = Z ¢’ (=5 )
x€(Z/nZ)*
It satisfies the following well-known multiplicative property, which we will not prove.

Proposition 11.3.
S(a,b,mn) = S(am,bm,n) - S(am, b, m)

where (m,n) =1, n-m=1 (mod m) and m-m =1 (mod n).
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The Weyl group is W = { (

O =
)
~
VRS
=)
o =
N~
e
)
©)
=
(@]
=g
=
0=}
3
I
N
o
—
~
=
l¢)
g
<
©)

The key proposition is

1 teZ
Proposition 11.4. Suppose 7 =t(n,m) = n 0 and Hy(t) = it € Zy, Then
0 m 0 ift¢z,
01
K, (6,7’, a,b, (1 O) ,3) =
unless v,(n) = —v,(m) > 0, in which case
K <€ T,a,b (O 1) S) = S(_a(n*)—l bm* ’Up(n))
P y Ly M Y 1 0 ) - ) ,p

where n = n*p®"™ and m = m*pvr™).

Since H, is supported on Z, and o is trivial, the theorem gives

Ky = Z 1/;a’p(u(x))¢b7p(u(x/)).

z,2' €Zp\Qp
u(z)wru(z’)EGL(2,Zp)

If u(z)wru(a’) € GL(2,Z,), then v,(n) =l and —v,(m) > 0, so z = ap' and 2’ = d—ma—1.
Again we will not go through the details, but it is possible to prove the following
1 ift € Zy,

Proposition 11.5. Let 7 = " _1 | wheren € Z, o be trivial, and Hy(t) = ,
n 0 otherwise.

Then
HKp = S(a,b,n).

p
The proof uses the multiplicative property of the Kloosterman sums.

Proof of Theorem[11.9 Let us prove the formula for K, in general. Last time we showed
that

KP(Q? S, a, b: w, T) = / Xp(UTU/g)@/}(Lp(wTU,g)Hp(wTu/g) | |w7—u/g| |forwbap(u/)dul'

Uw(Qp)
Let g = zutk. Then it is easy to see that

Kp(zuth, ) = xp(2)np(u)o ™ (k) Kp(t, ).
Since the normalization is such that fU(Zp) du = 1, it follows that
K,(t,s,a,b,w,7) = / Xp (WU t)the p(wra't) o™ (k) Hy (wra't)| [wru't| [, 10 (u))du

U(Zp)\Uw(Qp)
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If we make the change of variables v/ +— tu/t~!, then this becomes
/ Xp(wrte ), , (wrty’ Yo~ (k) Hy (wrtu) | [wrtd| \for,pwbyp(tu’tfl)du’
U(Zp)\Uw(Qp)

= > Xp(WTtw Vo p(wrtn)o = (k) Hy(wrtd) |[wrtd | |50,y (tu't1).
uw' €U(Zp)\Uw(Qp)

Next we use the Iwasawa decomposition. If v’ € U,(Q,) and 7,t € Z,\T(Q,), then there
exists t; € Z,\T(Q,) such that

ut; 'wrty’ € GL(n, Z,).

Thus the sum is equal to

> S lwrtd o wrtd o () Hy(wrted) fwrtd ||, o (0 T)

€T (Zp)\T(Qp)  u€U(Zp)\U(Qp)
U €Vw (Zp)\Uw(Qp)
ut] fwrtw’ €GL(n,Zp)

_ ¥ 5 Xp(truty ot )i (truty o p (fruty 'wrtd)o, (k)

- . —1 ! -1 /|8 14+—1
ner@pnr@y) wevdmwi,) Tttt orte |, g (et )
W €U w (Zp)\Uw(Qp)

ut] fwrtu' €GL(n,Zyp)

= > > Vap(tiuty') - Pp(tut=1) o, (ut™ wrtn'k) Hy (1) |1 [For -
1 E€T(Zp)\T(Qp) ueU(Zp)\U(Qp)
U €V w (Zp)\Uw(Qp)
ut] fwrtu’ €GL(n,Zp)

There is an analogous theorem at the archimedean places:

Koo(ZUtka S, @, b> w, T) = Xoo(z)wb,oo (U) / Xoo (tl)wa,oo(u_l),’vbb,oo(tu/til)a(k)_l)HOO(tl) | |t1 | |for,oodul'

Uw(R)

On GL(n) where n > 3, the K, are hyper-Kloosterman sums of the type studied by
Deligne. Using the Riemann hypothesis for algebraic varieties over finite fields (proved by
Deligne), it is possible to get very sharp bounds for K. The first person to get these bounds
was M. Larsen, and they were included as the appendix of a paper I wrote with Bump and
Friedberg in which we worked out the archimedean case (Acta Arith., 1988).

Next time I will do the relative trace formula. On one side, we have these Kloosterman
integrals. On the other side, there is some spectral information.

12. LECTURE 12 (OCTOBER 22, 2013)

Unfortunately I was unable to attend the lecture.

13. LECTURE 13 (OCTOBER 24, 2013)

13.1. Selberg—Arthur Trace Formula. Today I will talk about the Selberg—Arthur trace
formula. We will first do it for GL(2) by classical methods (using the upper half plane

model), and then I will move on to adelic representations.
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Let me first give an overview. Let GG be a reductive group acting on a topological space
X. We assume that X has further properties so that we can do integration on this space.
We are looking at

LAG\X) = {f X = C: / |f(z)?dz < oo}
a
which we assume to be a Hilbert space, with inner product given by

(F\,Fy) = /G . Fy () Fy(z)da

\X

for Fy, Fy € L2(G\X).

We want to use spectral theory, i.e. the study of eigenfunctions of certain operators. The
natural choice is to use differential operators, but they are usually unbounded. Selberg’s
idea was to consider integral operators. Let k : X x X — C be a kernel function, satisfying:

o k(gx,gy) = k(z,y) for all g € G, x,y € X;
o [ Jx |k(z,y)Pdady < oo (Hilbert-Schmidt property).
Let us assume there is such a function. Then we get an integral operator.

Definition 13.1 (Integral operator with kernel k(x,y)). Let f € £L2(G\X). We define the
integral operator

Kf(y) = /G RN

We just need to prove one thing:
Proposition 13.2. Kf(gy) = K f(y) for all g € G.
Proof. This is very easy. Since k(z, gy) = k(¢ 'z, g7 gy) = k(g x,y), we have

K flgy) = / ke, gy) f (x)de = / k(g o, y) f(x)dr = / ke, ) f(g2)de = kf(y)

G\X G\X G\X
where we made the change of variables x — gz. Here dx is assumed to be an invariant
measure. U

Because of the Hilbert-Schmidt property, we can deduce that K : £2(G\X) — L?(G\X)
is a bounded integral operator. So by the spectral theorem, there exists an orthonormal
basis fi, fo, -+ of L2(G\X) where K f; = \;f; for the eigenvalues \; € C.

If k(z,y) = k(y,x) for all z,y € X, then K will be a self-adjoint operator and the
eigenvalues \; are real. This is because

(K fi, fi) = K fi(z) fi(z)dx

G\X

- /G\X (/G\X k(y,a:)fi(y)dy) fi(z)dx
B /G\X /G\X k(z,y) fi(y) fi(x)dzdy

= i k(xz,y)f;(x)dxd
/G\Xf<y>/;\x (v, ) () dady




= fi() K fi(y)dy

G\X

Thus )\z<f7,a f7,> = )\_z<f7,a f7,> and so )\Z c R.
The trace formula is obtained by integrating k(x,y) on the diagonal

/ k(x,z)dz
G\X

and computing this in two ways: (1) spectral theory; (2) using the geometry of G\ X. We
cannot do (2) yet because this depends on the space X, but the spectral theory computation
is general.

We have the basis fi, fo, - € L2(G\X) with Kf; = \;f;. Consider k(x,y) with y = yo
fixed. As a function of =, k(z,yo) € L£*(G\X). By the spectral theorem, k(z,yy) has a

spectral expansion in x:
o0

k(z:,yo) = Z( (* yO) f1>fz< )

i=1
There is no continuous spectrum because the operator is bounded. Since

k(e y0), f2) = / k(s yo) @)z = X - Toloo),

G\X

we get the identity

= Zsz(ﬁ)f ()
i=1
Thus
k(x,z)dx = )\ fil@) fi(x)de =) N
which is the trace.

There is a beautiful book Bounded Integral Operators on L£* Spaces by Halmos and Sunder
which discusses these in general. Selberg’s idea was to apply this to the group GL(2). Now
we will do the simplest case — the Selberg trace formula for I' = SL(2,Z). In this case we
don’t have to worry about cusps. It is important to understand what is going on in this

simplest case first before jumping to the adelic generalizations.

Let ¢ : R — RT satisfy ¢(t) < @iy for some fixed constant ¢ > 0.

Definition 13.3 (Selberg’s kernel function). Let z = z + iy, 2/ = 2’ +iy’ € h with 2,2’ € R

and y,y" > 0. Then
2
ko(z, 2 ::¢<|Z | )
s(2,7) m

(1) |zyz ® is almost the hyperbolic distance between z, 2/,

Remark.

(2) ky(z,2') is symmetric: ky(z,2") = ky(2, 2) = ko(#, 2).
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Proposition 13.4. For all g € SL(2,R), we have
ko(gz, g2") = kg(z,2").

Proof. Let g = (CCL Z) Then ky(gz, g2') is equal to

’ 2
s |5 — & — s [(az +b)(cz' +d) = (a2’ +D)(cz +d)[*\ s |z = 2']?
<y><y’>_ vy’ a yy' )
|cz+d|? |cz’ +d|?
Note we need the fact that ad — be = 1 here. ]
Definition 13.5. K,(z,2’) Zk¢ vz, 2') Z/%(z,’yz/).
vel yel’

Then K, determines an integral operator on £L*(T'\b). For f € £*(T'\h), we define
Kyf(z) := Ky(z,2') f(2)dZ.
'\b

Remark. Without that property ¢(t) <
absolutely.

W, the series defining K, will not converge

We want to compute the trace of K. Formally,

Trace Ky = Ky(z, z)dz.
'\

But there is a big problem — K, is not Hilbert-Schmidt and we get co. Selberg knows how
to fix it in this case and we will follow his notes on the trace formula. This problem is even
more serious for GL(n). Arthur found a fix and it is extremely complicated.

Formally,

Now we will give Selberg’s solution to the convergence problems. He defines two modifi-
cations to K.

(1) Kf(z,z'): Ky(z,2") Zk¢zz+m

mMEZL

(2) Ky(z,2') = Ky(z,2') — /0 Ky(z, 2 +t)dt.
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Selberg proves that Kf is Hilbert—Schmidt. He also proves |Kf — I?;| is small, which

implies [A(; is Hilbert—Schmidt. Then he works with [?;
Let £3(T"\h) be the space of cusp forms for I'. Then f € L2(T'\b) if and only if f € £2(T'\bh)

and the constant term in the Fourier expansion is fol f(z+t)dt = 0.
Proposition 13.6. If f € L2(T\), then K,f € L2(T\h).
Proof.

Kof() = / (K¢(z, ) — / Ky t)dt) £V
We can check that F\b 0

/01 lf(vd,f(z +u)du = /01 /F\h (K¢(z +u,z') — /01 Koz +u, 2 + t)dt) f(Z)dz'du = 0.
U

We can now compute the trace

Trace[?; = I?qg(z, z)dz.
'\

Let f € L2(T\b) be an eigenfunction of A = —y? <BB—; + g—;) with Af = Af. Selberg
proves that f must also be an eigenfunction of IA(;:

Kof = h(\)f.

h is called the Selberg transform. Then we have

Trace If(vqs = Z h(\).
y

Next time I will prove that l?; is Hilbert—Schmidt and show that A is a combination of
the Abel transform and the Fourier transform. There is an explicit formula of h by Selberg,
which makes his trace formula very powerful.

14. LECTURE 14 (OCTOBER 29, 2013)

Unfortunately I was unable to attend the lecture.

15. LECTURE 15 (OCTOBER 31, 2013)
15.1. Selberg Trace Formula. We started out with a test function of the type ¢(t) <

m for ¢t > 0, and considered
z— 2|2
k (Z’ 2/) = ¢ <‘ )
’ vy’

which satisfies ky(v2,72") = ky(2, ') for all v € SL(2,R). We set
Ky(z,2') = Z ko(vz, 2).

~€Tr=SL(2,Z)
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The Selberg transform, which was also discovered by Harish-Chandra in a different form, is
Kyf(z) = Ky(z,2') f(2)dZ.
'\b
We have the following

Theorem 15.1. If Af = \f, then Kysf = hy(\)f where

ho(A f/ Hrb(t — 24 47—

:ﬁ/omm)

Proof. Let w = re” be in polar coordinates. Assume f(w) is radially symmetric, i.e.
f(re®) = f(r) for all r € [0,27), so f is a function of r only. If Af = \f is regular,
i.e. has a power series in r, then up to a constant, f is unique. This follows from the theory
of differential equations. Since A is a second order differential operator, there are only two
solutions. If we write

dt

and

f(w)zrc(1+a1r+a2r2+--~),

1 o (2f Tdf\
Af_—z(l—r)(wjtrdr)—)\f.

The other solution is (logr)f(r) which is not regular.

Consider
|z — z'|2) dxydy,
K z .
o/ (2) //¢( )T

We want to show that this equals hg(\) f(2) for some unique function h,. Consider the map
h - U ={w = re 0<r<10<6< 27} given by a linear fractional transformation
21 = 21t which sends z — 0. In other words, we want

//UQ6 (1%5\2) f*(w)d"w = hy(N)f(0)

where f*(w) = f(z1). Note that ¢ (fﬂﬂ;) is radially symmetric, so the above is equivalent

then

to
1 4 2 27
/ é <—|w| 2) F*(w)dfrdr = hy(\)f*(0)
r=0 1 — fw| 0=0
where f#(w) 1= 92:0 f*(w)d is radially symmetric. Thus we want

// <14_|u|)|2 )f#<w>dwéh¢<w#<o>,

so hg(A) is uniquely determined.
To explicitly compute K, f, we choose f(z) = y® with A = s(1 — s). O
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Now we want to compute the geometric side of the trace formula. Formally we have

Tr K, ://DKd,(z,z)dz: //Dzrk¢(z,”yz)dz

where D = T'\h. The idea is to break the sum into conjugacy classes. For 7 € T", define the
conjugacy class [7] ;== {aTra™ : @ € '} and the centralizer I'; := {0 : 07 = 70}. Then

TrK¢://DZ > kylzyry Tt 2)dz

[r] ~el'7\ T

:Z Z //Dk(z,(fyz,rfyz)dz

[7] 7er-Ar

=>" > //w@,(z,m)dz

[r] v€T-\I
= Z// ky(z, 72)dz.

Here O(7) = [[. \, ko(z, 72)dz is called the orbital integral.
For 7 € SLy(Z), there are three classifications:

o If Trace(r) =2 and 7 # ((1) [1)), then 7 is parabolic.

e If Trace(r) > 2, then 7 is hyperbolic.
o If Trace(7) < 2, then 7 is elliptic.

The orbital integrals are completely different in each of the above three cases. For the
hyperbolic and elliptic cases, the orbital integral converges absolutely. In the parabolic case,
the orbital integral blows up and we need to subtract by a multiple of the Eisenstein series.

First we compute the identity orbital integral:

o((6 1)) = J[ o (FE) d= oo votrvs) = 2oc0),

Next let us look at the hyperbolic orbital integral. Let P be a hyperbolic element in
SL(2,Z) (we denote by P because hyperbolic elements are analogous to primes!). Then

there exists v € SL(2,R) such that yPy~! = (8 aol) with a > 1, and

Tr(P) = Tr(yPy ) =a+a ' > 2.
Selberg defines the norm NP = a?, so we have
Tr(P) = NPz + NP 2.

Now P hyperbolic implies P’ hyperbolic for [ = 0,1,2,---. Let P, generate an infinite
cyclic group of hyperbolic elements, and P = P} for some [ > 1. The centralizer of P is
Lp={Pl:1€Z} Weneed to compute I'p\bh. Note that

YPyy 1z = (g a(_]1> z=a’2= NPz

42



The fundamental domain of I'p\b is the horizontal strip {z € C : Imz € [1, NFy]}. The
orbital integral is thus

= // k¢(z, Pz)dz
I'p\bh
/NPO/ (|z — PZP) dzdy
— - 2N P yz
NPy , , 2\\ dxd
:/ / ¢((NP2+NP‘2)2 <1+x—2)>#
1 —00 y y

= log NPO/ (NP2 + NP~ 2)%(2* + 1)) da.

This is an Abel transform, which turns into the Selberg transform after we apply an inverse
Fourier transform. We are not going to do the details, but the final formula is

log NP
e hy(log NP).
NPz — NP2
The other two types of orbital integrals are more complicated, and the Selberg trace
formula is

O(P) =

NP2

[P] B elliptic

Tr[A(;, = ¢(0) Vol(I'\b) +Z logNP hg(log NP)+ Z (*)—l—( Z (%) — /Eisenstein series

parabolic

where Trl?:ﬁ = Y he(N;) is the spectral side, and the right hand side is the geometric side.

Note that K, has to be replaced by K, here because we are subtracting the Eisenstein series.
Assume I' C SL(2,R) is cocompact (i.e. I'\h is compact) with no elliptic elements. Then
the trace formula is very simple:

Tr i, = ha(A) = 6(0) Vol(T\b) + 5

i=1 [P]

DENE ) (1og NP)
NPz — NP~z
This is the case Selberg discusses first in his Tata paper. Selberg stated his results and only
released his proofs after others gave more complicated proofs.

The presence of log is suggestive of the explicit formula of the prime number theorem,
which we recall now. If we integrate both sides of

-y

p k=1

against some test function H(s), we get
1 1+i00 C/ logp 1+i0c0
L 5 s)ds = —(logp)ks [1( 5\ ds.
s e oo SR g [

The explicit formula is an identity relating this and the zeros of (:

SO Hklogp) = S (o).

p k=1 ) p
¢(5+p)=0
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Selberg asked if it is possible to construct a zeta function Z ( ) using hyperbolic elements
P € T such that when you compute f "(s)h(s)ds you get Tr K,. The answer is YES! The
zeros of Z(s) are 5 + iv where  + % is the eigenvalue of A, i.e. there exists a Maass form
f: LYXT\h) — C such that A f = (3 +v?) f. This implies that the Riemann hypothesis
holds for Z(s), but this is slightly different from the classical case in that Z(s) is known to
have Siegel zeros, i.e. zeros close to 1.

Langlands once said the Selberg zeta function doesn’t exist for him. They are not con-
nected to automorphic forms!

16. LECTURE 16 (NOVEMBER 7, 2013)

16.1. Selberg Trace Formula. I'm going to review the Selberg transform, using Sel-
berg’s original notations. We have a function f € L£2(T'\h) with Af = \f where A =

(& + &), and Kyf = h(\)f for

Ky f(2) = " Ky(z,2) f(2')d’

which is the Selberg transform. The Abel transform is

:/_Z¢(x2+w)dx:/_: f(f)wdt.

Selberg introduces the functions

and
h(r) ::/ g(u)e ™ du.
0

Let us state the Selberg trace formula for co-compact groups I'. Suppose there is an
orthonormal basis of Maass forms for I' satisfying An; = (1 + 7“]2) n; and n;(vz) = n;(z) for
all v € I'. There are no Eisenstein series! Last time I computed the Selberg trace formula,
but let me make it more explicit using this basis. The trace is

St = [ Kater2)
CGUCCRD SIS Y N A ! o (Mgt ) oy

primitive hyperbolic I=1 y Y
classes [P]

assuming there are no elliptic elements.
The identity term can be written as

¢<O) N _% ~/OOO q)\//(rl_’lj) dw = _% /OOO 629/—( e % 27T2 / / GSQIH— € )2 dudr

because h is the Fourier transform of g. Similarly, we can get rid of the ¢ in the sum over

hyperbolic terms and express it in terms of g and h. Thus we get the trace formula for
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co-compact groups

1 [ e " log(N Fy)
h( (T r)d llog NP,
Z (rj) = Vol(I'\b) - 7T/OO7’6W+€M “L[;; (NB): — (NP lg( og NFp).

Selberg asked whether we can construct a zeta function for which the trace formula is the
analogue of the explicit formula, which we now review. We have

;Zlogp'

Then

1 .
1 ghetico o logp 1 - = logp I
ori . C (2 ) s)ds = ZZ ami Ju, o P s = 2.2 HE).

3 e—ioco p =1 p2

where the Mellin transform is
~ < dy
e = [ vHw?
0
and the inverse Mellin transform is

1) = 5 [ H(s)ds

271

Let us compare this with the trace formula. Consider the completed Riemann zeta function
n—al (%) ¢(s) under s — 1 — s. The functional equation gives

m 11V /s ¢, . 7 1" [(1-s ¢’
_§+§F<§>+E(S)_§_§F( 5 )‘Z“‘s)’

¢’ ¢ 1 (T (5+s\ I'(3—s
GG (F (5) v (55):

Shifting the line of integration and picking up the residues, we get

QLM‘ (1+) i‘l (2 +S) His)ds = H ( ) Z o 27”/( ;e)_% <%+S> H(s)ds.

(+a)0

1.e.

Substituting the above into this and simplifying, the final identity is

“logp . ., ~<1> ~ 1 I
2 Hp)Y=H|=) - Ho)+— [ =
Zp:; p% 2 Z 2me ) T

«
C(%+a)=0

1.e.

Zﬁ(a)_g[(_):_gzzbgp 271m FF

This looks similar to the Selberg trace formula, so the question is whether we can construct

an Fuler product so that when we take its logarithmic derivative, we get the explicit formula.
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Deﬁnition 16.1 (Selberg Ze‘a FunCliOl’l).
>
-l)s l
Py <

Recall a hyperbolic element can always be diagonalized

0
P -1 —_ P - )

and we define the norm to be NP = p?. If we compute [ Z(s), we should get the trace
formula. To do this we need a lemma.

Z’ log NF,
Z(G+) -yt

Py = 1NP — NP,

Lemma 16.2.

Proof.

g(S) = %(log Z(s)) = % SN log(1 — NPy

Py 1=0
el NPy~
= ;0 ; lOg NPO—l — Npofsfl
=> i log NPy - NPy *™ty " Npyms—
Py =0 m2>0

log N F,
- Z Z s Om(s—l) ’

P me1 V" = NFy
U

Now we make a special choice of H so that everything is nice. We will follow Hejhal’s
book. Let
1 1 B — a?
h(r) = — =
r2 —|-Oé2 r2 _|_52 (,,42 —{—Oz2)(7“2 _|_52)

where «, 3 € C with § < Re(a) < Re(f). Note h(r) = (). Then
1

— —pow) _ ~ B
g(u) 5 ¢ 256 :
If we plug these into the trace formula,
1 = logNPF, log NP, 1
20 5 - NPZO‘_ BZZ : -5 NPP
py =1 NF; —NPO pr =1 NPy — NP, 0

= 1 1 Vol(T'\) / 1 1
— — - — tanh dr.
— (rf-—l—oﬂ rj2-+ﬁ2> 4w \raz 2y (rr)dr

J:
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Next choose a = s — % and §+— b — % By the lemma,

S \IE U 70OV SO S S Y S
2s—12Z7 2) 26-1Z7 2 p= 24 (s—3)?2 r24(8-3)? dm | 2+ (s —3)*

=1

Note that the RHS is invariant under s — 1 — s, and it has poles at s = % + ¢r;. Thus the
logarithmic derivative 27/ has simple poles at s = % +r; and no other poles. If Z has a pole,
then Z7/ has a simple pole there with negative residue, but the residue from the RHS is never
negative, so we know Z has no poles.

This is how we prove the analytic continuation, functional equation and the zeros and
poles of the Selberg zeta function.

Theorem 16.3. The Selberg zeta function Z(s) = [ p, T[,2(1 - NPy 7Y is an entire func-
tion of s € C which satisfies
(1) Z(s) has trivial zeros at s = —l = —1,—2,—3,--- with multiplicity (29 — 1)(20 + 1).
(2) s =0 is a zero of multiplicity 2g — 1 and s = 1 is a zero of multiplicity 1.

2)
(3) The non-trivial zeros are at s = 5 £ ir;, where 4+ r? is an eigenvalue of A.
1
)

(4) (Functional Equation) Z(s) = Z(1 — s) exp (Vol(F\h)/ ’ rtanh(wr)dr) :
0
The proof can be found in Hejhal’s book.
Let me make some remarks:
(1) Z(s) satisfies the Riemann hypothesis because A is a self-adjoint operator on £L2(T'\h),
which implies the eigenvalues i + 7“]2- are real.
(2) For £L2(T'\h) with I a congruence subgroup of SL(2,7Z), we have a spectral gap

1 3
Ni==+ri>_—.
i1 16
Selberg conjectured that \; > }L, which implies all trivial zeros lie on the real axis
and there are no exceptional zeros.

Every hyperbolic matrix P has two fixed points » and —r on the real axis, and the length
of the closed geodesic between r and —r is equal to N P. We have the prime geodesic theorem

> logNP~z
NP<zx
as x € oo. Since we have the Riemann hypothesis in this case, Selberg showed
Z log NP ~ x + @(x%+€).
NP<Lzx

We don’t get an exponent of % because there is one big difference between the Riemann and
Selberg zeta functions. We say an entire function f(s) has Hadamard order r if

H(s) < eI

for all s € C. The Riemann zeta function ((s) has Hadamard order 1, and the Selberg zeta
function Z(s) has Hadamard order 2. For ((s), the Hadamard order comes from I'(s + 1) =

sI'(s). When this first came out, the question was what this weird integral in the functional
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equation of Z(s) is. The answer was found by Marie-France Vignéras — it is the Barnes
double gamma function G(s) which satisfies

G(s+1) =T(s)G(s).

This gives a Hadamard order 2.

Let me mention two generalizations of the Selberg zeta function. The Thara zeta function
is the p-adic version of the Selberg zeta function. The Ruelle zeta function is constructed
using dynamical systems.

We only know the Selberg zeta function for GL(2). It is an open problem whether there
exists a Selberg zeta function of higher rank.

Next time we will start the adelic version of the Selberg trace formula.

17. LECTURE 17 (NOVEMBER 12, 2013)

17.1. Selberg Trace Formula (General Case). We have spent a lot of time on Selberg’s
original version of his trace formula, so now we will jump to the most general case. The
actual trace formula will be very simple in the end, except that nothing converges. We will
first set up the notations, and then deal with convergence issues.

Let F' be an algebraic number field and K/F be a finite extension. Let G be an algebraic
group, e.g. GL(2), and Gk be the base change over F. The only difference between G and
G is that for G(R) we may only consider rings that contain K.

Definition 17.1 (Algebraic torus). A torus T over a field F' is an algebraic group over F
such that after base change, T = GL(1)* for some positive integer k.

Here GL(1) is the multiplicative group in algebraic geometry defined by ab = 1.
Definition 17.2 (Split torus). A torus Tr over F is split if Tr = GL(1).
Definition 17.3 (Anisotropic torus). A torus 7" is anisotropic if Hom(7", GL(1)) = {0}.
Let us give some examples.

Example 17.4.
(1) GL(1) is a split torus.
(2) Let SO(2) = {g € SL(2) : g ' =tg} 2 {2 +y* =1:x,y € F}. Then SO(2,R) is
anisotropic and SO(2,C) = GL(1) via a = x + iy and b = = — iy.
A torus T has two pieces of structure:
(1) Base change T7;
(2) Galois descent needed to recover polynomial equations defining 7" as an algebraic
group.
The next thing we need is a reductive group.

Definition 17.5 (Reductive group). A reductive group G is an algebraic group satisfying
G C GL(n) and G ='G.

Definition 17.6 (Split reductive group). A reductive group is split if it contains a maximal
torus which is split.

I can now list the examples of split reductive groups.
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Example 17.7.
e General linear groups: A, =SL(n+1) ={g € GL(n+1) : det(g9) = 1};
e Odd orthogonal groups: B, = SO(2n + 1) = {g € GL(2n + 1) : "gQopt1 =

0 0 1
Q2nt1,det(g) = 1}, where Qopp1 = |0 Q21 0 ;
1 0 0

e Symplectic groups: C,, = Sp(2n);
e Even special orthogonal groups: D,, = SO(2n).

We will now move to the Selberg trace formula for all these groups. Let G be a reductive
group, F' be a number field, A be the adele ring over F, and w : F*\A* — C* be a Hecke
character. We have the infinite-dimensional vector space:

V= LAGF\G(A)) == {f : f(y29) = w " (2)f(g) for all g € G(A), = € Z(A),y € G(F)}

where £? just means that the integral of the absolute value of f is bounded. We can think
of V' as the space of automorphic forms.

We have a representation 7 : G(A) — GL(V) defined by right action, ie. if f €
L2(G(F)\G(A)) and h € G(A), then we define

m(h)f(g) == f(gh).
Using m, we construct an operation V' — V as follows.
Definition 17.8. Let ¢ : G — C be a function satisfying ¢(zg) = w™'(2)¢(g) for z € Z(G)

and g € G, which is compactly supported modulo Z(G(A)). We define 7(¢) : V. — V as
follows:

w0)i= [ olwymty)dy
G(A)
As an example, let us compute

m(0)f(g) = /G " o(y)m(y)f(g)dg = /G " o(y) f(gy)dy

which implies
() f(29) = w™H(2)7m(9) f(9)
and
m(¢)f(vg) = 7(¢)f(9)
for all v € G(F).

To do the Selberg trace formula, we have to analyze m(¢) further. We compute for f €
L2(G(F)\G(A)),

(o) f(x) = o(y) f(zy)dy

G(A)

= oz "y) f(y)dy

G(A)

) /y-Z(A)G(F)\G(A)
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= oz~ vy) f(y)dy.
/Z(A)G(F)\G() > o) f(y)dy

A vEG(F)
Here we see Selberg’s kernel function
Ko(z,y)= > oz yy).
YEG(F)

But there is a big problem — this integral may not converge! We need to modify Ky(x,y)
into the truncated kernel K:f(:v,y). This is the most difficult part and I will talk about it
next time. If K, is Hilbert—Schmidst, i.e.

/ / Ky )P
Z(A)G(F)\GA) JZ(A)G(F)\G(A)

then we can do a spectral expansion for Ky. This will not be true, but we will have

/ / KL )
Z(A)G(FNG(A) J Z(A)G(F)\G(A)

Now I want to talk about the geometric side. The trace is obtained by

Trace = / Ky(z,z)d.
Z(A)G(F)\G(A)

Let’s assume for the moment that this converges. Then we can rewrite it as

Trace—/ Z o(z yx)dx
ZIGENGA)  Eairy

/Z Z Z (x ' yry o) de

(A)G(FN\G(A) conjugacy y€G\[7]
classes [7]

G- x 'ra)dx.
; (F)\G.(4)) /G o 217)

The computation is exactly like before for GL(2). Here [, \G(a) ¢(x~trx)dr are called the

orbital integrals.
Assuming ¢ is factorizable, i.e. ¢ =[], ¢,, we have

¢(x ' ra)dr = / (z, 7y, )da
/GT\G(A) H Gor\Go

which is a product of local orbital mtegrals. The Whole problem is to compute these local
orbital integrals, which give us the geometric side of the trace formula.

Remark. In their book, Jacquet and Langlands computed the trace formula for two different
reductive groups and got matching orbital integrals. The functoriality conjecture, which I
won’t state precisely, basically says that if you take an automorphic form and some tensor
product, you get an automorphic form on a different group. For example, if you have a
GL(2)-automorphic form and take the symmetric square lift, Jacquet and Gelbart proved
that it gives an automorphic form on GL(3). The problem is stable conjugacy.

Suppose K is an algebraic number field.
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Lemma 17.9. If A, B € GL,,(K) are conjugate over K, i.e.

B =qyAy™"
for some v € GL,,(K), then there exists o € GL(n, K) such that
B = aAa™".

But this lemma may break down if G is not GL,.

Example 17.10. For G = SL(2,R), (? —01> and (_01 (1)) are conjugate by ((1) é) or

(é _0@) but not conjugate by an element of SL(2,R).

Definition 17.11 (Stably conjugate). A, B € G(K) are stably conjugate if they are conjugate
over G(K).

To match orbital integrals in different groups, it is necessary to write the trace formula
in terms of stable conjugacy classes. Langlands and Shelstad conjectured the fundamental
lemma which gave explicit comparisons for stable orbital integrals, finally proved by Ngo.

Let me conclude by doing the simplest version of the general case. Let G be a finite
group, V' = C" be a finite-dimensional complex vector space and 7 : G — GL(V) be a
representation. We have the group algebra

ClG]:={¢:G—C}
which is an algebra with convolution
¢1 % P2(g) = Z ¢1(91)d2(92)-
9192=9g

Example 17.12. We have the trivial representation m,, and the regular representation
Treg given by

Treg(R)(g) = ¢(gh).

The Selberg trace formula breaks G into conjugacy classes
lg] = {c7 g0 : 0 € G}.

The class functions are defined to be Class|G] :={¢ : G — C : ¢(cgo™') = ¢(g) for all 0,9 €
G}. There is an inner product on class functions

(91, ¢2) == ’_(1;| Z ¢1(9)¢2—(m'

geG
Let x, = Tr(w(g)) be the character associated to .
|G| if g =1d,

Example 17.13. Xuiv(g) = 1 and Xreg(g) = {() otherwise

Definition 17.14.

L(g) = {1 if g € [h],

0 otherwise.
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Then we have

(Lppays Lna)) = { G|

The elements 1j,) form a basis for class functions.

The trace formula is
> m(m)xa =Y Tr(n(g)) - 1y
i 9]

where m(7;) is the multiplicity of m; in 7. This is just the spectral theorem. To get the
Selberg trace formula, we consider I' C G. Let 7 : I' — GL(W) be a representation, where
W = C! is a finite-dimensional complex vector space. We induce 7 to a representation

Tina = Ind¥ (1) : G — GL(V) by
Vis{f:9=>W:flvg) =7(0)f(g) forall y €T, g € G}
and
mina(h) f(9) := [f(gh)-
Definition 17.15 (Selberg kernel).
Ky(z,y) =Y ¢z yy)
vyel
where z,y € T'\G.

We have
Xina(®) = Y _VOUTN\G,) Y éla'ya)
] el \G
where 7 r o ¢(v~'yx) is the orbital integral.
If we work everything out, we get the Selberg trace formula for finite groups

D VoD N\G)I(0) = Y. mixil9)

conjugacy irreducible
classes [v] representations ¢;

where m; is the multiplicity. This turns out to be equivalent to Frobenius reciprocity.
Next time I will to explain how to do the truncation of the kernel function for GL(2). I
will follow the exposition in Gelbart’s book.

18. LECTURE 18 (NOVEMBER 14, 2013)

Unfortunately I was unable to attend the lecture.

19. LECTURE 19 (NOVEMBER 19, 2013)

19.1. Beyond Endoscopy. Beyond Endoscopy is the title of a famous paper by Langlands,
which is available on the TAS website. Shortly after the paper was published, Sarnak wrote
the letter Comments on Robert Langlands’ Lecture “Endoscopy and Beyond”, which is also
available online and has been very influential. Everything I say in the next few lectures will
be motivated by Sarnak’s letter.

Let me give a rough outline of what Beyond Endoscopy means. The motivation is Lang-

lands’ functoriality conjectures. Rather than defining these conjectures in general, which
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requires a huge amount of notations, let me give an example which is still unsolved. Let
7 be an automorphic representation on GL(n, Q). Associated to m we have an L-function
L(s, ), which will have an Euler product that looks like

D=TI (1~ =)

p =1

where o, ;(7) € C. The key point is that there are n factors at each prime. We have the
Ramanujan conjecture: |a,;(m)| < 1 (usually equal to 1, but 0 when there is ramification).
Let’s take the tensor product
-1
o ap7zk: (ﬂ-) )
- )

“11 1I (1_ Qi (T0) -

p 1<iy, - ,ig<n p

We could do other kinds of operations than tensor products, e.g. symmetric powers

L(s,sym*(m) =] ] (1 i () p ap,ik(ﬂ))—l‘

p 1<7,1< <’LkSTL

We have the special case of Langlands functoriality

Conjecture 19.1.
(1) L(s,7") is automorphic on GL(n*).

(2) L(s,Sym"(n)) is automorphic on GL (("Jr:*l)).

Let me review the known results.

(1) D. Ramakrishnan: if 7 is on GL(2), then 7 ® 7 is automorphic on GL(4).

(2) Jacquet-Gelbart: if 7 is on GL(2), then L(s,Sym” (7)) is automorphic on GL(3).
Kim-Shahidi: if 7 is on GL(2), then L(s,Sym* ) is automorphic for k¥ = 2,3, 4.
They have some partial results for £ = 5.

There seems to be a real barrier going beyond these results. Langlands proposed a method
to try to prove these kinds of conjectures using the trace formula. The basic idea is that we
want to compare the trace formulae on two different groups and get some kind of matching. I
should say that Ngo’s method of proving the fundamental lemma does not help with proving
these conjectures. All the known results use the converse theorem. Remarkably, Kim—Shahidi
used the exceptional Lie groups to get their results, so it doesn’t go any further. Langlands
proposed a completely different method. Venkatesh, Herman and Altug have reproved some
of the above results using Beyond Endoscopy methods.

The first step is to get analytic continuation of things like L(s,7*) and L(s, Sym*(r)) and
location of poles. This seems hopeless at the moment for a single 7, but Langlands suggested
trying to do it for

Zh L(s, Sym*(r))

where h is a test function of rapid decay and A, is the Laplace eigenvalue of 7, called the
spectral parameter. The key idea is that we can construct S(h) using the trace formula. In

2 k—1
Here ("7 7") = Do1<iy <o <ig<n Lt
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the trace formula we have the kernel function

=> hf)- f(9)f(g)
f

which gives

Tr = / K(g.9) = 3 h(f)

In order to get L(s, Sym”(r)), we need the Hecke operators T},. Let
Tof =an)f

where a(n) is the n-th Fourier coefficient. Let’s say f € Space(w) generates the space. Then

L(s,m) =Y (T.f)-n~

n

The idea is to apply TF, roughly of the form % (dependent on k), and get

/ =3 h(m)L(s, Sym*(r).

By modifying the trace formula, we can get the sum S(h) on the spectral side. The idea is
to compare the trace formula on GL(n) using [ T*K(g,g) = > h(7)L(s, Sym* (7)) with the

trace formula on GL (("+I]j_1)), and try to find some matching.

Definition 19.2. A smaller or simpler group G’ is endoscopic to G if the representations of
G' describe the internal structure of the representations of G.

In this case the trace formula for G and G’ can be compared.

Langlands suggested using poles of L(s,Sym* ) and considering some matching of the
form

Trace = Z h(m ResL (s,Sym"(n)) = Z h(m*)ResL(s, 7).
7 on GL(n) 7* on GL(M) e

In Sarnak’s letter to Langlands, he first talks about Andy Booker’s paper A test for
wdentifying Fourier coefficients of automorphic forms and application to Kloosterman sums.
Basically he gives a numerical test for modularity.

Katz made the following conjecture in his book Ezponential Sums and Differential Equa-
tions.

Conjecture 19.3 (Katz). Let

S(m’ n7 C) = Z 627{'@'.9””‘—:0—671

aa=1 (mod c)
be the Kloosterman sum. Then

(s 1)

2s
p p p

(which is convergent on Re(s) > 1) is the L-function of a Maass form for T'o(N) for some
N >1.
54



Remark. In 1999, Chai and Li proved Katz’s conjecture for function fields.

Booker numerically tested Katz’s conjecture and it came out very negative. Sarnak’s idea

was to combine Booker’s test and Langlands’ ideas.

Theorem 19.4 (Booker). L(s, Kl) cannot be the L-function of a holomorphic modular form

on Ty(N).

Proof. If it is associated to a holomorphic form, then the Fourier coefficients all lie in a fixed
number field K/Q. Suppose that for fixed m, n, all S(m,n,p) € K. Pick p > 3 not dividing

N. Then
On the other hand,

where (@) is the quadratic symbol. This series has at most =

impossible because the minimal polynomial for ¢, is 1 +x + - -- 2P~ 1.

Let us talk about Booker’s numerical test for checking modularity. Let

flz+1y) = Zaf n)\/yKi, (2m|nly)e* ™
n#0

be a Maass form for I'g(/V). The associated L-function is
I ()
<S> f) — Z :

ns
n=1

It satisfies a functional equation. If we define

M f) = 0 (SRS (SR g

7-‘-8
where € = 0 or —1 depending on whether f is even or odd, then
Als. f) = +A(1 = s, f).
Choose F(z) = z%e™*.
.- - n
Definition 19.5. Sy y = Z:l Ar(n)F (?>
(n?]\?):l

We have Sy y ~ >

n<Y

terms but this is
O

Ap(n)F (3). If Ap(n) are randomly chosen, we expect Sy,y =~ VY.

However, Booker shows that modularity implies Sy x is much smaller than VY. I can now

state the precise theorem.
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Theorem 19.6 (Booker). Assume f is a Maass form for T'o(N) with eigenvalue A. Then

N NO+3)\? 1
p|N
PHN

Corollary 19.7. If Katz’s conjecture is true, then N(X+ 3) > (18.3) - 10°.

I should mention that Venkatesh—Booker—Strombergsson numerically computed the first
1000 Maass forms for SL(2,Z) (for each of these Maass forms, they computed the first 100
Fourier coefficients to 1000 decimal places). These Fourier coefficients seem to be irrational
and transcendental.

Next time I will show how to use this kind of numerical modularity test in combination
with Langlands’ ideas, as suggested by Sarnak.

20. LECTURE 20 (NOVEMBER 21, 2013)
20.1. Booker’s Theorems. We will give a proof of the theorem by Booker. Let

flx+iy) = ZAf n)\/yKi, (27 |nly)e*™ "
n#0

be a Maass newform on I'o(N) with Laplace elgenvalue + + 1% We have the L-function

L(s, )= 3 0

nS
which satisfies the functional equation

A(s, f) = (ﬂ)sr (ES) () e = A0 - s )

where

1 if f is even,
€ =
—1 if f is odd.

We define

SyN = Z Ag(n) <%)26_;.

(n,N)=1

Theorem 20.1 (Booker). We have

S N(2+243))
YN<H1—|—p ( 4 )

42.88Y
p|N
ZJ[N
This implies that for Y — oo,
SY,N 1
On the other hand, if A(n) are random, we expect
Sy,n
=0
e _ o)
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as Y — 00. So this gives a numerical test for modularity.
The proof uses standard methods in analytic number theory.

Proof. We have the test function h(z) = z%e~®, which is equal to

1 24100
h(z) = %/2 T(s + 2)a*ds

—100

by Mellin inversion, because

h(s) = / a:2e_””x8d—$ =T(s+2).
0

This implies that

Syv= > A ()
(n,N)=1

1 24100 Y s
= A " r 2)(— ) d
> g [ e (5) @
(n,N)=1

—1400

1 2+i00 o .
=5 ) Te+2L6n ] (1 p7 ) veds
pIN
PN
3 . 1—2s . .
1 —5+ico ) \/N r (175456+7,l/) r (17526711/) o
=+ — o [(s+2)Y ( - ) T () T (2w) L(1—s,f) MHN (1 +p z) ds

PN
where we used the functional equation, and shifted the line of integration because the L-
function of a cusp form is holomorphic.
Recall Stirling’s formula: for s = o + it where ¢ is a fixed real number, we have

Do+ it) ~ c|t|" 2e 5

as |t| — oo, where ¢ is a constant. This implies that in the integral above, I'(s + 2) has
exponential decay as |t| — oo, and

F (l—s—;e—i—zju) F (l—s—gle—iu)
[ (59T (52)

has polynomial decay in |t|. If we compute the constants carefully we will get Booker’s
theorem

S 2

— S CN, fY .

VY

In the appendix, Booker proves the following

Theorem 20.2 (Booker). Suppose 0 < «, < m are arbitrary real numbers (angles) for
primes p < P where P — oo. Then there exists ¢ > 0 such that for all € > 0, there exists a
Maass cusp newform f of level 1 such that Af = \f with
cp2 log(1+1)
A\ < elogP’ 3
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whose Fourier coefficients Af(p) = 2cosB, (0 <0, < m) satisfy
160, — | <€
for allp < P.

This implies we cannot disprove Katz’s conjecture by numerical calculations! However,
if we know that the coefficients are algebraic (e.g. modular forms), once we know they are
close enough we can prove things by numerical computations.

The proof of this theorem uses the trace formula. I think it will be interesting to generalize
this theorem adelically.

20.2. Selberg Trace Formula for Holomorphic Forms. Let us talk about the Selberg
trace formula for holomorphic forms. An interesting proof for I' = SL(2,Z) was found by
Zagier in 1975, and it was generalized to level N by H. Cohen and Oesterlé.

For z,z € b, we will construct a kernel h(z,z’") which is assumed to be a holomorphic
form of weight k in both z and 2’ independently. We define the convolution

fxh(z / f(z)h(z, —z)(Imz) dzgy_

Zagier chooses the kernel function to be

—k
o —k —k az + b
hn(2,2") = Z (cz2' +dz' +az+0b)™" = Z (cz +d) <z' + - n d) ;

ad—bc=m ad—bc=m

which converges absolutely for £ > 4. This kernel function simplifies Selberg’s original proof
of his trace formula, but only works when there is a holomorphic structure.

k
27

Theorem 20.3 (Zagier). Define C), = ﬁ)k), and let Sy be the space of holomorphic
weight k cusp forms for SL(2,7Z).
e The function C 'm*h,,(z, 2') satisfies
fohin(2) = Com™ (T, f)(2)
where T,, : S — Sk is the Hecke operator, i.e. C’k_lmkflhm(z,z’) is the kernel for

T
o Let fi,-+-, [, be an eigenbasis of Sy with Ty, f; = a'(m)f;. Then the trace of T, is
equal to
U mh=1 / dxdy
Tr(T'(m)) = a'(m) = B (2, —Z)(Im 2)* )
(());()Ckr\h( )()y2
Proof. We want to prove
mh! — . fi2) i)
—hn(2,7) = a'(m) =2
o m ) = 2 T
This is the spectral expansion into a basis fi,--- , f, of S;. This would then imply
mh1 dxdy ,
h(z, —%)(Im 2)* =Y a'(m).
o G DS
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When m =1, vy = (Z Z) € SL(2,7Z). Then the convolution is
bk pdxdy
fxhi(2) = > (=2 +72) " f(y2)(Imyz) "
r

\b \esL(2,2)

=2 o oy — STk 2 dd

/O /_oo(x iy —2') " f(z +iy)y"  dedy
< 2mi s ,

:2/0 (k—l)!f(k Y (2iy + 2')dy

= Crf(#).

So we have proved the theorem when m = 1. We can easily generalize it to m > 1. U

We now state the

Theorem 20.4 (Selberg trace formula of T}, for holomorphic forms of weight & for SL(2,7Z)).
We have

Te(T(m)) = —% S Pult, m)H(4m — 1) —% S min(d, d')"

t=—00 dd'=m
Here
k=1 _ —k—1
Py(tym) = F——L
pP—p
where p+p=t and p-p=m, and
0 ifn <0,
H(n) = —% ifn =0,

class number = #{ax® + bxy + cy* : b* — dac = —n} if n >0,

where we have to count forms equivalent to x* + y* (resp. x* + xy + y*) with multiplicity %
(resp. 3).
Zagier gives the following table:

n 0
H(n) | —3%

Example 20.5. Let k = 4. There are no cusp forms of weight 4 for SL(2,Z), so Tr(7,,) = 0.
On the other hand,
> (P—m)H(4m—t*) = —5H(20)—8H (19)—2H (16)+8H (11)+22H (4) = —10—8—3+8+11 = —2

t=—00

78|11
1111

15
2

ol— Qo

I

—_
o i )

Y min(d,d)* =1°+1° = 2.

In fact, when k = 2,4, 6, 8,10, Tr(7,,) = 0 so we get an identity between class numbers and
divisor sums. But those relations were discovered previously by Kronecker. When £ > 12,

the trace involves cusp forms and the formula becomes more interesting.
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Proof (Sketch). We have

mk=1 y* dxdy
Tr(T = — .
r(T(m)) Ch /F\h Z (c|z]2 +dz — az — b)k 4?2

ad—bc=m

Zagier writes Tr(T'(m)) = > > _ I(m,t) where

’ Ce Jrvw 57 (clzlP+dz —az—b)F 32

a+d=t

Then he proves that
—%Pkgf,zm)H(4m —t%) ift? —4m <0,

1 %mT — %mk% if 2 —4m =0,
§I(m, )+ 1(m, =t) = —% <|t2_u>k1 if 2 —4m = u?,u > 0,
0 otherwise
by elementary counting. This implies the trace formula. O

21. LECTURE 21 (NOVEMBER 26, 2013)

21.1. Jacquet—Langlands Correspondence. Today I will talk about the Jacquet-Langlands
correspondence. In 1970 Jacquet and Langlands published their book Automorphic Forms
on GL(2). Ninety percent of that book was already known by work of the Russians —
the notion of automorphic representations was due to Gelfand, and even the tensor product
theorem was basically proved by Piatetski-Shapiro. Jacquet—Langlands gave new proofs,
which weren’t very surprising except when they gave the correspondence at the end of their
book. The idea was to compare two different groups and obtain a matching. That was what
inspired Langlands to make his conjecture in the end.

Let me first talk about quaternion algebras. Fix integers ¢, > 1 which are co-prime and
square-free.

Definition 21.1 (Quaternion algebra). D|r,q] := {x¢ + x1J1 + 22 Jo + x3J3 : T, X1, T2, T3 €
Q}, where Jy, Jy, J3 are quaternions satisfying

Ji=q. Jy =, Js = —rq,
JiJy = —=Jo i, ds = —J3 i, Jads = —J3ds,
Jidy =Js,  Jods = —rJy, J3Jp = —qls.
Example 21.2. When r = ¢ = —1, we get Hamilton’s quaternions.
Definition 21.3 (Conjugate). If v = zo+x1J1+x2Jo+23J3, then T = xg— 21 J; — 29y —x3J5.
Definition 21.4 (Norm). N(x) =z -7 = 23 — qz} — ra3 + rqa3.
Definition 21.5 (Trace). Tr(z) = z + 7.
We can realize the quaternion algebra D|q, 7| as a matrix group inside M (2x2, Q(,/q, /7))

by
1 0
1.—>(0 1),
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Eo

V)

(%)

J2|—>(
i (Lm0

In general, this can be described by the following formula.

EREEEY

Definition 21.6.

O(xo + 1)1 + 22J3 + 1303) = (\/ng(ozvj—xlﬂt\g/?/ﬁ_j) \/Zfz_j;i?’/_\q/a)) .

Then ¢ : D[g,r] = M'(2 x 2,Q(\/T, V1)) € M(2x2,Q(y/r,\/q)) is an algebra homomor-
phism.

Definition 21.7. A subring O C D]g, r] is called an order if 1 € O and, in addition, O is a
free Z-module of rank 4.

Definition 21.8. Let O be an order of D[g,r]. Then we define
disc(O) = det(Tr[¢;, &)

where {¢;} is a Z-basis for O.

Definition 21.9. Let O be an order of D|q,r|. We define I'n C SL(2,R) to be the set
{¢(z) 12 € O,N(x) = 1}.

This will turn out to be a discrete subgroup. This was studied intensely by Eichler, who
proved the following

Theorem 21.10 (Eichler). Assume D = Dlq,r] is a division algebra (i.e. for all a,b €
D — {0}, there exists a unique x € D such that a = bx and a unique y € D such that
ay = b.) Let O C Dlq,r] be an order. Let h = {x +iy : x € R,y > 0} be the upper half
plane. Then T'p is a finitely generated Fuchsian group where Vol(I'p\h) < oo and T'p\b is
compact.

In other words, there are no cusps! Hecke had intensely studied modular forms for I'g(N),
and Eichler was trying to generalize the theory to (quaternion) groups whose quotients are
compact. Jacquet and Langlands were aware of this, and they started to look at the trace
formula for these groups. Recall that when the quotient is compact, the trace formula has
no continuous spectrum and is very simple.

Now I can state the “naive” version of the Jacquet-Langlands correspondence. Let D[q, 7]
be a division algebra over Q. Let O be an order of D[g, r]. To each Maass form ¢ € L2(To\b)
satisfying

Ap = Ao
where A = —y? (88—; + 59—;2> is the Laplacian, there exists an integer N > 1 and a Maass

form ® € L2(To(N)\h) where AD = \D.
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This is worked out in Hejhal’s book, following Eichler who proved some special cases of
this. It is remarkable that there is such a correspondence, since the groups ['» have compact
quotient and the theory of Hecke operators is very different from usual.

Jacquet-Langlands worked out the trace formulae on £2(T'p\bh) and L*(To(N)\h) and
looked for matching. This led to Langlands’ functoriality conjectures, endoscopy and beyond
endoscopy. The proof was local and involved the “non-principal series”.

Let me now talk about the more general case.

Definition 21.11 (Essentially square-integrable local representations). Let F, be a local
field. An irreducible admissible representation of GL(2, F,) is essentially square-integrable
if it is a twist of a local representation which is not a principal series.

Theorem 21.12 (Jacquet-Langlands for GL(2)). Put G = GL(2) and G’ the unit group of
a quaternion algebra D over a field F'. There is a one-to-one correspondence

Automorphic representations of G which
{Automorphic representations of G'} +— < are essentially square-integrable at every p .
place where D ramifies

Further, if ' is an automorphic representation of G' and 7 is the corresponding automorphic
representation of G, then m, is completely determined by =, where ©" ramifies at v.

This is essentially proved by the trace formula.

Let v be a place of F and F, be its local field. Then there exists a unique quaternion
algebra over F), which is a division ring. Let K be an extension of F'. Then Dgx = D ®p K
is again a quaternion algebra over K.

Definition 21.13. We say K splits D if D — M (2 x 2, K).
Definition 21.14. (Ramified) D is ramified at v if F;, splits D. Otherwise it is unramified.

In the Jacquet—Langlands correspondence, the left hand side is really co-compact finite-
dimensional representations with no parabolic conjugacy classes, but the right hand side has
infinite-dimensional automorphic representations with parabolic conjugacy classes. This is
something even the Russians didn’t expect. Langlands was so struck by this correspondence
that he kept thinking about this and was led to his entire program.

In their proof of the correspondence, Jacquet and Langlands show that if an irreducible
automorphic representation of GL(2) has a supercuspidal local representation, then the con-
tribution of the continuous spectrum to the trace formula is zero for suitable test functions.
This idea was generalized by Deligne-Kazhdan leading to the simple trace formula (no con-
tinuous spectrum contribution).

22. LECTURE 22 (DECEMBER 5, 2013)

22.1. Whittaker Transforms. Today I will talk about the Whittaker functions on GL(n,R)

at the archimedean place oco.
62



Let b be the generalized upper half plane defined by
( 1 Ui Ynot )

b =qry = Y= Y11 i € R,y >0

1 n
1 1

\ /

When n = 2, this is the classical upper half plane. SL(n,Z) acts on h™ by left multiplication,
and we have the Iwasawa decomposition

GL(n,R)/(SO(n,R) x R*) = p™.
We are interested in functions ¢ € L2(T'\h"), where I' C SL(n,Z) is a congruence subgroup,
satisfying:
o ¢(vz) = ¢(z) for all y € I" and z € "

. |6(2)[Pd” 2z < oo;
b~ . . . . .
e Do = Ap¢ for all invariant differential operators D in the center of the universal

enveloping algebra, where Ap € C.

Such a function ¢ is called an automorphic form.

1 * %
Let U,, = L , and Yoy, o, + Uy = C* be the character defined by
1
1 Ui,2
1 UQ,g
w _ 627ri(m1U172+“'+mn—1un—l,n)
mi, Mp—1 .
1 Un—1,n
1
We define the (mq, -+, m,_1)-th Fourier coefficient of ¢ to be
1 1
R ) / o / P(uz)Vmy e m— (u)du
0 0
1 Uy4
where u = and du = [[du;;. Then ¢, ... m, , satisfies the following proper-
1

. / (Bongse s (2) P2 < 00

® Doy m s = ADPmy, m,,_, for all invariant differential operators D;
® Oy 1 (W2) = Uiy oo (W) Pry o, (2) for all u € U, (R) and z € b,

Definition 22.1. A Whittaker function for I' acting on h™ is a function W : h» — C
satisfying:
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[ W <o

(2) DW = ApW for all invariant differential operators D;
(3) W(uz) = Ymy . .m,_, (w)W(z) for all u € U,(R) and z € h™.

Condition (2) is a second-order differential equation, so there are two solutions, but only
one of them will be in £2] i.e. condition (1). Thus the Whittaker function is unique if it
exists.

Theorem 22.2 (Shalika, Multiplicity one). Fiz a character ¥, ... m, . There exists (up to
a constant multiple) a unique Whittaker function W satisfying (1), (2) and (3).

The proof of this is quite difficult. Diaconu and I found a simple proof for GL(3). Our
idea was to take the Mellin transform of this Whittaker function.

Multiplicity one is important because it gives a unique Fourier coefficient at every place,
which can then be used to construct L-functions.

We state the following theorem for I' = SL(n,Z) and n > 3 only. There is a more
complicated statement for general congruence subgroups.

Theorem 22.3 (Piatetski-Shapiro-Shalika). Let ¢ € L*(I'\h") be an automorphic form.
Let W (z) be a fizred Whittaker function associated to i ... 1 for I' acting on b™. Then

$(2) = Z i i Z A(ml,---,mn_l)W(M(7 1)z>

~EU,—1(Z)\ SL(n—1,Z) m1=1 Mp—2=1myp_1#0
where M =.

A proof of this can be found in my book Automorphic Forms and L-functions for the
Group GL(n,R). An adelic proof is given in Cogdell’s notes, and details are given in my
book with Hundley.

When m = 2, the first sum does not appear and the expansion is

(=) =Y A(m)W (mz)

m#0

I

where z = 0 1
Now we talk about Jacquet’s Whittaker functions, which he constructed in his thesis for

the p-adic places but the construction also works at the archimedean places. The key point

I) and W (z) = \/yKi, (2my)e*™ is the K-Bessel function.

is that Iy, .., _,(2) == yi'ys? - -y, (where sy, -, s,.1 € C) is always an eigenfunction of
all invariant differential operators D. For example, when n = 2, we have

0? 0?
D= (g * o)

Dy® = s(1 — s)y°.

and

If we simply define

W= [ 6/4 o



then this does not converge! But assuming it does, we have formally

W= [ /‘UW ot
[ / i

—wul
for uy € U,, and z € h™.

Definition 22.4. Let s = (s1,--+,8,_1). Define

/ / (wouz) D) du

1 Ujj
where wg = LU= and du = [] duy;.
1 1

Putting in the long element wqy of the Weyl group guarantees convergence.

Example 22.5 (n = 2). Let z = (0 1) Then

WS(Z) = / I ((_01 (1)> uz) e~ 2miue 1,
- o 0 1 Yy r+v —2mive
(G 0) (3 7))
> ) ’ —2mive
_ Yy d
/_oo(<x+v>2+y2> v

is essentially the K-Bessel function /y K (y)e*™, which converges absolutely for Re(s) > 1.

It turns out that if we use other elements of the Weyl group, we get the degenerate
Whittaker functions.

Definition 22.6 (Jacquet’s Whittaker function). Fix n > 2. Let v = (vy, -+ ,1,1) € C*L.
Define

n—1n—1

SNICE

i=1 j=1

1] ifi+5<n v ;— 1
where z = zy € b and b;; = — 7 Let v = b T We
yebh ! {(n —1i)(n —j) otherwise. Th ; 2

define
+ [
SigE—— JR e
7r2+”1k Un(R)

7=1 j<k<n—1
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Writing v; = % +it;, we set t = (t1,- -+ ,tn_1).

1 Y1 Yn—1
1 2. Yt Yn—2
ij
For z = zy = . , we define d*z =

1 U1

d*x - d*y, where
dXZB = HdZEZ]

n—1

and
k=1 Yk
Definition 22.7 (Whittaker transform). Let f : R7' — C. We define the Whittaker
transform
o= [ oWy )
Rn—l

+

where t = (1, ,tn_1).

Theorem 22.8 (Kontorovich-Goldfeld, Whittaker transform inversion formula). Let f :
Rfl — C be smooth of compact support and f7# : Rf’:l — C be as in @ Then

1 dt
fy) = == FHOW-irly) T
Tt Jgn ngk’;élgn I( 5 )
where a; are defined by
k(n . k) n—Fk o n—1
5 T2 =2
1=1 k=1
and
n—1
Ny — — Z .
k=1
dt : .
Here is the Plancherel measure for GL(n), whose existence was proved

[Li<pricn D(55)
by Harish-Chandra for all reductive Lie groups.
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