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Abstract. Here are the notes I took for Dorian Goldfeld’s course on trace formulae offered
at Columbia University in Fall 2013 (MATH G6674: Topics in Number Theory). The course
was focussed on trace formulae and covered:
• Petersson Trace Formula
• Kuznetsov Trace Formula
• Theta Functions
• Degenerate Kuznetsov Trace Formula
• Jacquet’s Relative Trace Formula
• Selberg Trace Formula
• Arthur–Selberg Trace Formula
• Jacquet–Langlands Correspondence
• Beyond Endoscopy

with applications to classical problems in analytic number theory.
Due to my own lack of understanding of the materials, I have inevitably introduced

both mathematical and typographical errors in these notes. Please send corrections and
comments to phlee@math.columbia.edu.

Contents

1. Lecture 1 (September 10, 2013) 3
1.1. Introduction 3
1.2. Automorphic Forms in General 3
1.3. Petersson Trace Formula 4
2. Lecture 2 (September 12, 2013) 7
2.1. Petersson Trace Formula 7
2.2. Kuznetsov Trace Formula 10
3. Lecture 3 (September 17, 2013) 10
3.1. Maass Forms 11
3.2. Eisenstein Series 12
4. Lecture 4 (September 19, 2013) 13
4.1. Eisenstein Series 13
4.2. Selberg Spectral Decomposition 16
5. Lecture 5 (September 19, 2013) 17
5.1. Kuznetsov Trace Formula 17
6. Lecture 6 (September 26, 2013) 20
6.1. Takhtajan–Vinogradov Trace Formula 20

Last updated: September 6, 2014.
1

http://www.math.columbia.edu/~goldfeld/
mailto:phlee@math.columbia.edu


7. Lecture 7 (October 1, 2013) 23
7.1. Theta Functions 23
7.2. Symplectic Theta Functions 23
7.3. Theta Functions associated to Indefinite Quadratic Forms 24
7.4. The simplest Theta Functions 25
8. Lecture 8 (October 3, 2013) 26
8.1. Modular forms of weight 1

2
26

8.2. Proof of Theorem 8.3 27
9. Lecture 9 (October 8, 2013) 30
9.1. Adelic Poincaré series on GL(n) 30
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1. Lecture 1 (September 10, 2013)

1.1. Introduction. The notion of a trace formula arises from matrices. The trace of a
matrix is the sum of its diagonal entries, which is also the sum of its eigenvalues. If we are
in an infinite-dimensional space, there could be infinitely many eigenvalues so we have to
introduce a convergence factor

Tracef (T ) =
∑

f(λ).

This works well if we have countably many eigenvalues. If there are uncountably many, we
have to use an integral

Tracef (T ) =

∫
f(λ)dλ.

The Poisson Summation Formula says∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)

which can be thought of as a trace formula.
We will talk about the Petersson Trace Formula. Petersson is responsible for three major

things — the trace formula, the Weil–Petersson metric, and the Petersson inner product. I
will introduce the trace formula by first talking about automorphic forms in general.

1.2. Automorphic Forms in General. Let X be a topological space, and G be a topo-
logical group acting on X. For g ∈ G, x ∈ X, we often write gx instead of g ◦x ∈ X. We are
interested in discrete actions of G on X, i.e. the intersection B ∩ (gB) 6= ∅ for only finitely
many g ∈ G. We will study actions of arithmetic groups, which are discrete. From now on,
assume G acts discretely on X.
F : X → C is an automorphic function if

F (gx) = ψ(g, x)F (x)

for all g ∈ G, x ∈ X. (We will focus on complex-valued automorphic functions only.) ψ is
called the factor of automorphy. Usually we put further conditions on F , e.g. we may ask
that F is holomorphic or smooth, or that it satisfies certain differential equations. What
kind of factor of automorphy can we get?

Let g, g′ ∈ G. Then there are two ways to do F (g · g′x):

F ((g · g′) ◦ x) = F (g ◦ (g′ ◦ x)).

This implies certain conditions on ψ:

ψ(gg′, x)F (x) = ψ(g, g′x)F (g′x) = ψ(g, g′x)ψ(g′, x)F (x).

If F (x) 6= 0, this means that

ψ(gg′, x) = ψ(g, g′x)ψ(g′, x)

This is a 1-cocycle relation in the cohomology of groups.
Let us give an example of such an automorphic function. Let X = h := {x + iy : x ∈

R, y > 0} be the upper half plane, and G = SL(2,Z). If g =

(
a b
c d

)
and z ∈ h, then

gx = az+b
cx+d

is an action.
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Definition 1.1. j(g, z) := cz + d.

j satisfies the equation
j(gg′, z) = j(g, g′z) · j(g′, z).

We can now construct an example of an automorphic function.

Ek(z) =
∑

γ∈Γ∞\SL(2,Z)

1

j(γ, z)k

where Γ∞ =

{(
1 n
0 1

)
: n ∈ Z

}
. We have to mod out by Γ∞ because j

((
1 n
0 1

)
, z

)
= 1

and there would be infinitely many terms repeating. How do we know this sum is non-zero?
In fact,

Ek(z) =
∑
c,d

(c,d)=1

1

(cz + d)k
.

This is zero if k is odd, so we want k even, and k > 2 (for convergence). To see this is
non-zero, let z tend to i∞. Let us prove that it is automorphic. For α ∈ SL(2,Z), we have

j(γ, αz) =
j(γα, z)

j(α, z)

by the cocycle condition, and so

Ek(αz) =
∑
γ

1

j(γ, αz)k
= j(α, z)k

∑
γ

1

j(γα, z)k
= j(α, z)kEk(z).

1.3. Petersson Trace Formula. We will now write down the Petersson Trace Formula
explicitly. Let

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod N)

}
.

If χ : (Z/NZ)× ∈ C× is a Dirichlet character mod N , define χ̃ : Γ0(N)→ C× by

χ̃

((
a b
c d

))
:= χ(d).

Let Sk(Γ0(N), χ) be the set of holomorphic functions f : h→ C satisfying

f(γz) = χ̃(γ)j(γ, z)kf(z)

for all γ ∈ Γ0(N) and z ∈ h, and that f is cuspidal, i.e.

lim
y→∞

f(u+ iy) = 0

for all u ∈ Q.

Theorem 1.2 (Petersson–Hecke). dimSk(Γ0(N), χ) <∞.

The Petersson Trace Formula says

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈Sk

orthonormal basis

Af (m)Af (n) = δm,n +
1

(2πi)k

∑
c≡0(N)

Sχ(m,n, c)

c
Jk−1

(
4π
√
mn

c

)
for m,n ≥ 1. Let us now define the functions involved:
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• If f ∈ Sk, then f

((
1 1
0 1

)
z

)
= f(z) so there is an expansion

f(z) =
∞∑
m=1

Af (m)e2πimz

for some functions Af (m).
• Sχ is the Kloosterman sum

Sχ(m,n, c) =
c∑

a=1
(a,c)=1
a·a≡1(c)

χ(a)e2πiam+an
c .

• δm,n is the delta function

δm,n =

{
1 if m = n,

0 if m 6= n.

• Finally, Jk is the Bessel function

Jk(z) =
∞∑
l=0

(−1)l

l!Γ(l + k + 1)

(z
2

)2l+k

.

This is the simplest form of trace formula, and was generalized by Selberg, later by Jacquet
and Arthur. The Kloosterman sum Sχ(m,n, c) is associated with algebraic geometry. There
is a famous paper by Weil which counts the number of points on a curve mod p in terms of
Kloosterman sums. Weil’s estimate

Sχ(m,n, c)� c
1
2

+ε

is equivalent to the Riemann hypothesis for curves over finite fields. The Bessel functions
are certain matrix coefficients of automorphic representations. Selberg was the first to prove
that trace formulae are analogs on GL(2) of the Poisson summation formula.

We will now prove the Petersson Trace Formula.

Proof. The idea is to construct an automorphic function (Poincaré series) and then compute
it in two ways:

(1) using Fourier expansions;
(2) using spectral expansions.

The Poincaré series is

Pm(z, k, χ) :=
∑

γ∈Γ∞\Γ0(N)

χ̃(γ)j(γ, z)−ke2πimγz.

Since j is a cocycle, this is indeed an automorphic function:

Pm(αz, k, χ) = χ̃(α)j(α, z)kPm(z, k, χ)

for all α ∈ Γ0(N) and z ∈ h. It is not at all obvious that this function is not identically zero.
If you can prove this for a fixed m, I will get your paper published on the Annals. What is
known is that Pm is non-zero for many values of m.

(1) Fourier expansions
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By periodicity, we have

Pm(z, k, χ) =
∞∑
n=1

P̂m(n)e2πinz

where P̂m(n) is the n-th Fourier coefficient. The Fourier theorem implies

P̂m(n) = lim
y→0

∫ 1

0

Pm(x+ iy, k, χ)e−2πinxdx.

The integral is equal to ∫ 1

0

∑
c,d

c≡0(N)
(c,d)=1

χ(d)

(cz + d)k
e2πimaz+b

cz+d e−2πinxdx

(where

(
a b
c d

)
∈ Γ0(N) — given (c, d) = 1, we can pick such a and b).

The first step is to write d = lc + r where 1 ≤ r < c and (r, c) = 1. We know that

ad− bc = 1, so b = ad−1
c

= a(lc+r)−1
c

. This implies that az+ b = az+al+ ar−1
c

, so the integral
is equal to ∫ 1

0

∑
c≡0(N)

∑
l∈Z

c∑
r=1

(r,c)=1

χ(d)

(cz + lc+ r)k
e2πim

az+al+ar−1
c

cz+lc+r e−2πinxdx

=
∑

c≡0(N)

∑
l∈Z

c∑
r=1

(r,c)=1

χ(r)

∫ 1+l+ r
c

l+ r
c

1

(cz)k
e2πim

az− 1
c

cz e−2πin(x−l− r
c
)dx

=
∑

c≡0(N)

∑
l∈Z

c∑
r=1

(r,c)=1

χ(r)e
2πirn
c

|c|k

∫ 1+l+ r
c

l+ r
c

e2πim(a
c
− 1
c2z

)e−2πinx

zk
dx

=
∑

c≡0(N)

c∑
r=1

(r,c)=1

χ(r)e
2πirn
c

|c|k

∫ ∞
−∞

e2πim(a
c
− 1
c2z

)e−2πinx

zk
dx

=
∑

c≡0(N)

1

|c|k
c∑

r=1
(r,c)=1

χ(r)e2πi rn+rm
c

∫ ∞
−∞

e
− 2πim
|c|2z e−2πinx

zk
dx.

This is the first half of the calculation. We will do the spectral expansion next time.
Let us explain how we get the terms Af (m). Pick m,n ≥ 1, N ≥ 1, χ (mod N) and

k > 2. The Petersson inner product is given as follows: for F,G ∈ Sk,

〈F,G〉 =

∫
Γ0(N)\h

F (z) ·G(z)(Im z)k
dxdy

y2
.

Next time we will use the Fourier coefficients that we computed. �
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2. Lecture 2 (September 12, 2013)

2.1. Petersson Trace Formula. Last time we did the Petersson trace formula, and we will
finish the proof today. We will actually do it in a more general setting than last time. Recall
that we had level N , a character χ (mod N) and weight k. By level N we mean the subgroup
Γ0(N). By a character we mean χ : (Z/NZ)× → C×, which lifts to χ̃ : Γ0(N) → C× via

χ̃

((
a b
c d

))
:= χ(d). By weight k we mean the cocycle j(γ, z)k, where j(γ, z) = cz + d for

γ =

(
a b
c d

)
∈ Γ0(N).

There is a one-to-one correspondence between automorphic representations and cusp forms
on GL(2). There are two types of cusp forms:

• Holomorphic in z, which were completely developed by Hecke in the 1930’s. Recall
that they are holomorphic functions on h satisfying

f(γz) = χ̃(γ)j(γ, z)kf(z)

for all γ ∈ Γ0(N) and

lim
y→∞

f(u+ iy) = 0

for all u ∈ Q.
• Non-holomorphic in z, which were introduced by Maass in the 1940’s. Note that

holomorphic functions satisfy the differential equation

∂

∂z
F (z) = 0

where
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

For example, ∂
∂z
zm = 0. For the non-holomorphic cusp forms, we want them to

satisfy the differential equation

∆f = λf

where

∆ = y2

(
∂

∂z
· ∂
∂z

)
.

On the other side of the correspondence, we have adelic irreducible automorphic cuspidal
representations. The modern reference is Jacquet and Langlands’ book.

Holomorphic cusp forms correspond to discrete series representations, and non-holomorphic
cusp forms correspond to non-discrete representations. Automorphic representations are eas-
ier to generalize to higher rank groups. On the other hand, applications to number theory
all use the classical language.

What is the most general cocycle we can look at? We must have j(γ, z), but instead of
raising it to an integer power we can consider j(γ, z)c where c ∈ C. Most generally, consider
ψc(γ)j(γ, z)c. In Maass’ book, he considers c ∈ Q and lists all possibilities for ψc(γ). There
is an adelic theory for c = k

2
, k ∈ Z. This is the theory of metaplectic forms using a double

cover of GL(2). We will talk about the metaplectic groups when we do theta functions.
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Let us consider cocycles for half-integral weights. The level is required to be 4N . Consider

ψ(γ)j(γ, z)
k
2 , where ψ is the Shimura symbol

ψ

((
a b
c d

))
:=
( c
d

)
· ε−1
d

where εd =

{
1 if d ≡ 1 (mod 4),

i if d ≡ −1 (mod 4)
, and

(∗
d

)
is the quadratic Dirichlet character mod d.

Let us return to the Petersson Trace Formula (for level N , character χ and weight k) —
we allow half-integral weights, but then N has to be divisible by 4. Let Sk(Γ0(N), χ) be the
space of cusp forms. Then

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈Sk(Γ0(N),χ)

orthonormal basis

Af (m)Af (n) = δm,n +
1

(2πi)k

∑
c≡0(N)

Sχ(m,n, c)

c
Jk−1

(
4π
√
mn

c

)

Recall the Bessel function

Jk(z) =
∞∑
l=0

(−1)l

l!Γ(l + k + 1)

(z
2

)2l+k

.

Last time we introduced the Poincaré series and computed its Fourier coefficients.

Pm(z, k, χ) =
∑

γ∈Γ∞\Γ0(N)

χ̃(γ)j(γ, z)−ke2πimγz =
∞∑
n=1

P̂m(n)e2πinz

(If we want to include half-integral weights, then we insert the Shimura symbol ψ(γ) in the
sum.) We will not finish the computations from last time, but it turns out that

P̂m(n) = δm,n +
1

(2πi)k

∑
c≡0(N)

Sχ(m,n, c)

c
Jk−1

(
4π
√
mn

c

)
.

(The term δm,n comes from the special case when c = 0. Last time we only computed the
sum over c 6= 0.)

Now we will talk about how to get the left side. Let f1, f2, · · · , fr be an orthonormal basis
of Sk(Γ0(N), χ). Recall the Petersson Inner Product: for F,G ∈ Sk,

〈F,G〉 =

∫
Γ0(N)\h

F (z) ·G(z)yk
dxdy

y2

where z = x + iy. The differential
dxdy

y2
=

i

2

dz ∧ dz
(Im z)2

is invariant under z 7→ az + b

cz + d
for(

a b
c d

)
∈ SL(2,R), and so defines an invariant Haar measure on Γ0(N)\h. Thus

〈fi, fj〉 =

{
1 if i = j,

0 if i 6= j.
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This implies that for all F ∈ Sk, we have

F (z) =
r∑
j=1

〈F, fj〉fj(z).

Applying this to the Poincaré series,

Pm(z, χ) =
r∑
j=1

〈Pm(∗, χ), fj〉fj(z).

This is the spectral computation. We have

P̂m(n) =
r∑
j=1

〈Pm(∗, χ), fj〉Afj(n).

It remains to compute

〈Pm(∗, χ), fj〉 =

∫
Γ0(N)\h

Pm(z, χ)f(z)yk
dxdy

y2
.

Since f is a cusp form, it has a Fourier expansion f(z) =
∑∞

l=1Af (l)e
2πilz. The space

Γ0(N)\h is quite complicated — its fundamental domain can be obtained by choosing coset
representatives for Γ0(N)\Γ0(1). Let us continue with the computation

=

∫
Γ0(N)\h

∑
γ∈Γ∞\Γ0(N)

χ̃(γ)j(γ, z)−ke2πimγzf(z)(Im z)k
dxdy

y2

=
∑

γ∈Γ∞\Γ0(N)

∫
γ·(Γ0(N)\h)

χ̃(γ)j(γ, γ−1z)−ke2πimzf(γ−1z)(Im γ−1z)k
dxdy

y2
.

The cocycle condition implies

1 = j(γγ−1, z) = j(γ, γ−1z)j(γ−1, z)

and so

j(γ, γ−1z) =
1

j(γ−1, z)
.

Since f is modular, f(γ−1z) = χ̃(γ−1)j(γ−1, z)kf(z) and the above is equal to

=
∑

γ∈Γ∞\Γ0(N)

∫
γ·(Γ0(N)\h)

j(γ−1, z)ke2πimzj(γ−1, z)
k
f(z)(Im γ−1z)k

dxdy

y2

=
∑

γ∈Γ∞\Γ0(N)

∫
γ·(Γ0(N)\h)

e2πimzf(z)(Im z)k
dxdy

y2

since Im az+b
cz+d

= Im z
|cz+d|2 , which can be shown by a brute-force computation. The above

becomes

=

∫
Γ∞\h

e2πimxe−2πmyf(z)yk
dxdy

y2

=

∫ 1

x=0

∫ ∞
y=0

e−2πmyyke2πimx

∞∑
l=1

Af (l)e
−2πilxe−2πly dxdy

y2
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=Af (m)

∫ ∞
0

e−4πmyyk−1dy

y

=
Af (m)

(4πm)k−1
Γ(k − 1).

The factor
√
mn comes from renormalization, but we will not try to fix that now.

The Ramanujan–Petersson Conjecture says that if f ∈ Sk(Γ0(N), χ), then

|Af (n)| � n
k−1
2

+ε

This was proved by Deligne for f holomorphic. It is enough to prove

|Af (p)| ≤ 2p
k−1
2

for p prime. This can be thought of as the error term for counting points on an algebraic
variety mod p.

Using the trace formula, we get that

|Af (n)|2 �

∣∣∣∣∣∣
∑

c≡0(N)

Sχ(n, n, c)

c
Jk

(
4πn

c

)∣∣∣∣∣∣
but this gives a weaker bound than the Ramanujan–Petersson Conjecture. In the case of
half-integral weights, for which Deligne’s proof does not work, there is an exact formula by
Salié. The Salié sum looks like

c∑
a=1

(a,c)=1

(a
c

)
e

2πi(an+an)
c .

Kloosterman sums are recently generalized as Kloosterman sheaves by Ngô. There should
be a theory of Salié sums for metaplectic groups, but no one has done that yet.

This ends the discussion of the Petersson Trace Formula.

2.2. Kuznetsov Trace Formula. The Kuznetsov trace formula came out in around 1978.
I am skipping the Selberg trace formula (1950) for the moment. It was only after Selberg
that people realized what a trace formula was. Jacquet asked me lots of questions in 1979
about the Kuznetsov Trace Formula, and vastly generalized it in around 1979 or 1980 to the
Relative Trace Formula in the language of representation theory.

Again, we will be looking at level N , character χ mod N , and weight k. I will not put in
the Shimura symbol explicitly, but it also works for the half-integral weight case. The idea
is to develop the Petersson trace formula for non-holomorphic forms.

I want to first talk about cusps, but it is time.

3. Lecture 3 (September 17, 2013)

I’ve been doing work of Hecke and Petersson from the 1930’s. Now I want to move to
Maass (1940’s). Hecke and Petersson studied holomorphic modular forms. The Petersson
trace formula is one of the deepest formulas for the finite-dimensional space of modular
forms. Maass introduced non-holomorphic modular forms. We will briefly review Maass’
theory and then apply it.
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3.1. Maass Forms. Let Γ ⊂ SL(2,R) be a discrete subgroup. The example I’ll be looking
at is the congruence subgroup Γ = Γ0(N). On GL(2) (which has rank 1 as a Lie group), there
exist non-congruence discrete subgroups. Selberg conjectured that for higher rank groups,
the only discrete subgroups of finite index are congruence subgroups. This was proved by
Margulis.

A Maass form φ is

(1) a complex-valued function φ : h→ C;
(2) φ(γz) = φ(z) for all γ ∈ Γ;

(3) ∆φ = λφφ for some λφ ∈ R, where ∆ = −y2
(
∂2

∂x2
+ ∂2

∂y2

)
is the Laplacian;

(4) φ has moderate growth at the cusps of Γ.

Now we have to talk about cusps. A cusp is κ ∈ R ∪ {∞} such that1

κ =

(
a b
c d

)
∞ = lim

y→∞

aiy + b

ciy + d
=
a

c

for

(
a b
c d

)
∈ Γ. A cusp for a congruence subgroup must be a rational number, but for a

non-congruence subgroup, a cusp could be irrational. There are finitely many inequivalent
cusps.

Γ\h is not compact, so we compactify by adding in the cusps: Γ\h∗ where h∗ = h ∪
{i∞, κ1, κ2, · · · }. It requires some work to show this is a complex manifold. I think Shimura
was the first to write down the complete proof.

As long as we’re away from the cusps, φ is bounded by some constant. Let κ be a cusp.
Then there exists σ ∈ SL(2,R) such that σ∞ = κ. Let Γκ = {γ ∈ Γ : γκ = κ} be the
stabilizer of the cusp κ. It is always possible to choose σ such that σ−1Γκσ = Γ∞, which is
equivalent to Γκ = σΓ∞σ

−1.
Let’s look the function φ at a cusp. φ(σz) is periodic in z, i.e.

φ(σ(z + 1)) = φ(σz).

This is because

φ

(
σ

(
1 1
0 1

)
z

)
= φ

(
σ

(
1 1
0 1

)
σ−1σz

)
= φ(σz)

since

(
1 1
0 1

)
∈ Γ∞. Thus there is a Fourier expansion

φ(σz) =
∑
m∈Z

aφ(m, y)e2πimx.

We say φ has moderate growth at a cusp k if there exists a constant B > 0 such that
|φ(σz)| � yB as y →∞ (and x fixed). This implies that |aφ(m, y)| � yBe−cmy as y →∞ and
c > 0. Let’s explain how we get a bound like this. If the function is not an eigenfunction for
the Laplacian (i.e. we have an automorphic function, not automorphic form), this estimate
does not hold.

Since ∆ is invariant under SL(2,R), We have

∆φ(σz) = λφ · φ(σz),

1The correct definition is that κ be fixed by some parabolic element of Γ.
11



i.e.

∆φ(σz) = −y2

(
∂2

∂x2
+

∂2

∂y2

)∑
m

aφ(m, y)e2πimx

=
∑
m

−y2(a′′φ(m, y)e2πimx − 4π2m2aφ(m, y)e2πimx)

= λφ · φ(σz),

and hence
−y2(a′′φ(m, y)− 4π2m2aφ(m, y)) = λφaφ(m, y).

This is Whittaker’s differential equation, and there are two solutions, one with exponential
decay in y and one with exponential growth in y. Since φ has moderate growth, aφ(m, y)
must have exponential decay in y.

Now the question is, do Maass forms exist? The answer is yes, thanks to the Eisenstein
series. But then we can ask, do Maass cusp forms exist? A Maass cusp form is a Maass form
such that aφ(0, y) = 0 for all cusps κ.

The simplest discrete subgroup one can look at is SL(2,Z). In 1940, Maass actually
constructed cusp forms for Γ0(N) for certain N . In my book Automorphic Forms and
L-functions for the Group GL(n,R), I gave the construction. But Maass was unable to
construct it for SL(2,Z). in 1950, Selberg proved infinitely many Maass forms for Γ a
congruence subgroup of SL(2,Z) (in particular, for SL(2,Z)). Not only did he prove there
are infinitely many, but he could count how many there were. This was one of the first
applications of his trace formula.

The final question is, can Maass cusp forms exist for non-congruence subgroups? Around
1980 (at Selberg’s 60th birthday), Sarnak and Philips developed the theory of spectral defor-
mation, and conjectured that for the general non-congruence subgroup there are no Maass
cusp forms. This is now wide open.

3.2. Eisenstein Series. Let Γ ⊂ SL(2,R) be a discrete subgroup. We will denote z ∈ h
and s ∈ C. Define

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s =
∑

( ∗ ∗c d )∈Γ

ys

|cz + d|2s
.

This converges for Re(s) > 1 (using the fact that Γ is discrete). Note that

∆ys = −y2

(
∂2

∂x2
+

∂2

∂y2

)
ys = −y2 · s(s− 1)ys−2 = s(1− s)ys.

Since ∆z = ∆σz for all σ ∈ SL(2,R), we have

∆(Im γz)s = s(1− s)(Im γz)s

and so
∆E(z, s) = s(1− s)E(z, s).

By definition it is easy to see that E(γz, s) = E(z, s). The only question is whether E(z, s)
has moderate growth. Since it satisfies the Whittaker differential equation, it is of either
moderate or exponential growth.

Theorem 3.1. E(z, s) has moderate growth.
12



There are other Eisenstein series. Actually we can construct an Eisenstein series for each
cusp κ1, κ2, · · · , κr (a set of inequivalent cusps). Let κ be a cusp, and σ∞ = κ, σ−1Γκσ = Γ∞.
We define

Eκ(z, s) =
∑

γ∈Γκ\Γ

(Im(σ−1γz))s.

Then we claim that Eκ(αz, s) = Eκ(z, s) for all α ∈ Γ. Indeed, we have

Eκ(αz, s) =
∑

γ∈Γκ\Γ

(Im(σ−1γαz))s = Eκ(z, s).

Assume Γ has r inequivalent cusps κ1 = ∞, κ2, · · · , κr. Then there exist r different
Eisenstein seires E1(z, s), · · · , Er(z, s). Each Ei(z, s) has a Fourier expansion at the cusp κj

Ei(σjz, s) =
∑
m

Am,i,j(y, s)e
2πimx.

Theorem 3.2. Ei(z, s) has moderate growth for i = 1, 2, · · · , r.

We don’t have enough time to prove this now. Let me talk about the Selberg Spectral
Decomposition — every automorphic function of moderate growth on Γ\h can be written as
a linear combination of Maass cusp forms and integrals of Eisenstein series

r∑
i=1

∫ 1
2

+i∞

1
2
−i∞

(∗)Ei(z, s)ds

and sums of residues of Eisenstein series. This can be made very explicit. The Eisenstein
series at the different cusps all come into the picture. Thus Γ has:

• a discrete spectrum, given by “Maass cusp forms”;
• a continuous spectrum, given by Ei(z, s) for i = 1, 2 · · · , r; and
• a residual spectrum, given by Res

s=pole
Ei(z, s) for i = 1, 2, · · · , r.

4. Lecture 4 (September 19, 2013)

4.1. Eisenstein Series. Last time we were doing the Eisenstein series for Γ ⊂ SL(2,R),

where Γ is a discrete subgroup. For simplicity we assume that

(
1 1
0 1

)
. Let c1, c2, · · · , cr be

inequivalent cusps for Γ. For each cusp c, the stabilizer is Γc = {γ ∈ Γ : γc = c}. At each

cusp ci, we can pick σi ∈ SL(2,R) such that σici = ∞ and σ−1
i Γciσi = Γ∞ =

{(
1 ∗
0 1

)}
.

The Eisenstein series is
Ei(z, s) =

∑
γ∈Γc\Γ

Im(σ−1
i γz)s

which is convergent for Re(s) > 1. Each Ei(z, s) has a Fourier expansion at a cusp cj

Ei(σjz, s) =
∑
m∈Z

Aij(m, y, s)e
2πimx.

Very important is the constant term Aij(0, y, s).
For the case of GL(2), we can compute these Ai,j very explicitly, and they turn out to be

Bessel functions multiplied by certain divisor sums. Thus we can prove things every easily,
13



e.g. the functional equation and moderate growth, by explicit computations. If we go to
higher rank groups, then the explicit calculations break down. The only thing people can
compute explicitly in general is the constant term. That’s the problem Langlands gave to
Shahidi. Once we know the constant term and we know the function is an eigenfunction of a
differential operator, we can prove all the properties we want. The first proof was found by
Selberg. Langlands, in his book on L-functions, took Selberg’s proof and generalized it to all
reductive groups. Later Selberg found a second proof who only had one step (without first
finding the constant term). In the 1970’s and 80’s, Sarnak and Phillips were going through
that proof, but it didn’t seem to work for all cases.

Anyway, now we are going to prove everything using the expansion. We have the following
theorem, first proved by Kubota in his book Elementary theory of Eisenstein series. I think
the proof was known to Selberg, but he never wrote it up.

Theorem 4.1 (Kubota).

Aij(m, y, s) = δ0,my
s + y1−s

∑
c

 ∑
d (mod c)

( ∗ ∗c d )∈Γ∞\σ−1
i Γσj/Γ∞

1

|c|2s
e

2πimd
c


∫ ∞
−∞

e−2πimxy

(x2 + 1)s
dx.

The integral is a Whittaker function∫ ∞
−∞

e−2πixy

(x2 + 1)s
dx =

2πs|y|s− 1
2

Γ(s)
Ks− 1

2
(2π|y|)

where K is the Bessel function with exponential decay as |y| → ∞. When m = 0, there is a
simpler formula ∫ ∞

−∞

dx

(x2 + 1)s
=
√
π

Γ(s− 1
2
)

Γ(s)
.

Theorem 4.2. For any fixed s ∈ C, the Eisenstein series is of moderate growth if and only
if |Ei(z, s)| � yB (as y →∞) for some B = B(s) > 1.

Proof. Assume we have proved the Fourier expansion (Theorem 1). Then

|Aij(m, y, s)| � yRe(s)

for Re(s) > 1, because

|Aij(m, y, s)| � yRe(s) + y1−Re(s)
∑
c

c

|c|2 Re(s)
· yRe(s)− 1

2 |Ks− 1
2
(2π|m|y)|.

�

Next I want to talk about the functional equation of Eisenstein series. The individual
Eisenstein series do not have a functional equation. We have to define a vector of Eisenstein
series.

Definition 4.3. E(z, s) = (E1(z, s), E2(z, s), · · · , Er(z, s)).
14



Theorem 4.4 (Functional Equation (Selberg)).

E(z, s) = Φ(s)E(z, 1− s).
Here Φ(s) = (φij(s))i=1,··· ,r

j=1,··· ,r
is the Scattering Matrix, where

φij(s) :=
√
π

Γ(s− 1
2
)

Γ(s)

∞∑
c=1

1

|c|2s
∑

d (mod c)

( ∗ ∗c d )∈σ−1
i Γσj

1

is the Fourier coefficient of y1−s.

All the higher terms satisfy the functional equation because Ks(y) = K−s(y), so the only
problem is with the constant term. The key step in the proof is that Φ is a symmetric matrix.
We are looking at the kind of sums ∑

( ∗ ∗c d )∈σ−1
i Γσj

1,

i.e. we are counting the number of representations of

(
∗ ∗
c d

)
in distinct cosets of Γ∞\σ−1

i Γσj/Γ∞

for a fixed c. Now apply the map g 7→ g−1 where g ∈ Γ, and we can see that we get the
exact same counting. Thus Φ is symmetric

Φ(s) = tΦ(s)

and Φ is unitary at s = 1
2

+ it for t ∈ R.
Selberg’s second proof is really amazing — it doesn’t use this formula, but instead uses

Fredholm theory which is pure analysis.
We have established that the Eisenstein series has moderate growth for Re(s) > 1 and

satisfies a functional equation. Combining the two gives moderate growth in the region
Re(s) < 0, and by the maximum principle we get moderate growth in between.

All that remains to prove is the Fourier expansion. Last time I proved the Fourier ex-
pansion of non-holomorphic Poincaré series, which is elementary. Now we are going to give
essentially the same proof, in a group-theoretic setting.

We define the Poincaré series

Pm(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)se2πimγz.

When m = 0, this gives the Eisenstein series. We can do this for an arbitrary cusp, but let’s
just look at the cusp at ∞ for simplicity. It has a Fourier expansion

Pm(z, s) =
∑
n∈Z

P̂m(n, y, s)e2πinx

where

P̂m(n, y, s) =

∫ 1

0

Pm(z, s)e−2πinxdx

=

∫ 1

0

∑
γ∈Γ∞\Γ

(Im γz)se2πimγze−2πinxdx.

15



We need the Bruhat decomposition of Γ (which is only assumed to be a discrete subgroup).
There are basically two kinds of decompositions for discrete groups — double cosets or
conjugacy classes. The Bruhat decomposition is a double coset decomposition. Very roughly,
the Selberg trace formula involves conjugacy classes and the relative trace formula involves

double cosets. The identity coset is Γ∞

(
1 0
0 1

)
Γ∞ and the other coset is Γ∞

(
a b
c d

)
Γ∞ for

c 6= 0. We have

Γ =

(
Γ∞

(
1 0
0 1

)
Γ∞

)
∪
⋃
c6=0

(
Γ∞

(
a b
c d

)
Γ∞

)
where Γ∞

(
a b
c d

)
Γ∞ = Γ∞

(
a′ b′

c′ d′

)
Γ∞ if and only if c = c′ and d ≡ d′ (mod c). The

Bruhat decomposition is

Γ =

(
Γ∞

(
1 0
0 1

)
Γ∞

)
∪

⋃
( ∗ ∗c d )∈Γ

c6=0
d (mod c)

(
Γ∞

(
a b
c d

)
Γ∞

)
.

Now we can continue with the computation.

P̂m(n, y, s) =

∫ ∞
−∞

∑
γ∈Γ∞\Γ/Γ∞

(Im γz)se2πimγze−2πinxdx

= δ0,my
se−2πmy +

∫ ∞
−∞

∑
( ∗ ∗c d )∈Γ

c 6=0
d (mod c)

(Im γz)se2πimγze−2πimxdx

= δ0,my
se−2πmy +

∑
( ∗ ∗c d )∈Γ

c6=0
d (mod c)

∫ ∞
−∞

ys

((cx+ d)2 + c2y2)s
e2πimaz+b

cz+d e−2πinxdx.

For the Eisenstein series, m = 0. We substitute x 7→ x− d
c

and then x 7→ xy to get

P̂m(n, y, s) = δ0,my
se−2πmy +

∞∑
c=1

y1−s

c2s

∑
d (mod c)

( ∗ ∗c d )∈Γ

e
2πind
c

∫ ∞
−∞

e−2πinxy

(1 + x2)s
dx.

4.2. Selberg Spectral Decomposition. Let Γ ⊂ SL(2,R) be a discrete subgroup, c1, c2, · · · , cr ∈
R∪ {∞} be inequivalent cusps of Γ, and Ei(z, s) (i = 1, 2, · · · , r) be the Eisenstein series at
each cusp ci. Let ηj(z) (j = 1, 2, 3, · · · ) be a basis of Maass cusp forms for Γ. Let η0(z) be
the constant function.

As I mentioned last time, it is very hard to prove that Maass cusp forms exist. We only
expect them for congruence subgroups.

We have the space

L2(Γ\h) =

{
F : Γ\h→ C :

∫
Γ\h
|F (z)|2dxdy

y2
<∞

}
.
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The spectral decomposition says that if F ∈ L2(Γ\h), then

F (z) =
∞∑
j=1

〈F, ηj〉
ηj(z)

〈ηj, ηj〉
+

r∑
i=1

1

4πi

∫ 1
2

+i∞

1
2
−i∞
〈F,Ei(∗, s)〉Ei(z, s)ds+

l∑
k=1

〈F,Rk〉
Rk(z)

〈Rk, Rk〉

where Rk(z) is the residue at a pole of some Ei

Rk(z) = Res
s=s0

Ei(z, s).

This was first prove by Selberg, but I will not prove this. There is a nice exposition by
Müller.

For congruence subgroups, the only residual term comes from the constant function, so
we can rewrite this sum as

∞∑
j=0

〈F, ηj〉
ηj(z)

〈ηj, ηj〉
+

r∑
i=1

1

4πi

∫ 1
2

+i∞

1
2
−i∞
〈F,Ei(∗, s)〉Ei(z, s)ds.

In the case of GL(2) where we can compute Fourier expansions explicitly, the proof is very
easy. In my book I gave a proof for GL(3). The most general proof can be found in Arthur’s
article in the Corvallis proceedings.

5. Lecture 5 (September 19, 2013)

5.1. Kuznetsov Trace Formula. The Kuznetsov trace formula is a generalization of the
Petersson trace formula, except that it uses non-holomorphic functions. Take Γ = Γ0(N) ∈
SL(2,Z). We can work more generally but let’s stick to this case. We have the standard
Poincaré series

Pm(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)se2πimγz

and also the more general Poincaré series

Pm(z, p) =
∑

γ∈Γ∞\Γ

p(2πm Im(γz))e2πimγz,

where p : R → C satisfies |p(y)| � y1+ε as y → ∞. This condition ensures that the series
converges.

The KTF is obtained by computing

〈Pm(∗, p),Qn(∗, q)〉 =

∫
Γ\h
Pm(z, p)Qn(z, q)

dxdy

y2

in two different ways, where Qn(z, q) =
∑
q(2πn Im(γz))e2πinγz is another Poincaré series,

Let’s first do the spectral computation. Let ηj(z) (j = 1, 2, · · · ) be Maass forms for Γ0(N).
There is an expansion

ηj(z) =
∑
l 6=0

Aj(l)
√
yKitj(2π|l|y)e2πilx

where Aj are the arithmetic Fourier coefficients and Kitj is the Whittaker function.
We need to know that these Poincaré series are in L2. Let’s just assume p is chosen such

that Pm ∈ L2(Γ\h). In fact |p(y)| � y1+ε is enough, because there is a Fourier expansion

Pm(z, p) = yse−2πmy + higher terms
17



where the higher terms are very small, and the first term has decay in y →∞. It is easy to
see that at the cusp at infinity, the function is L2. We also have to check the other cusps,
but the Fourier expansions are similar, possibly without the first term.

Since Pm ∈ L2, it has a spectral expansion

Pm(z, p) =
∞∑
j=1

〈Pm, ηj〉
ηj(z)

〈ηj, ηj〉
+

r∑
k=1

1

4πi

∫ 1
2

+i∞

1
2
−i∞
〈Pm, Ek(∗, s)〉Ek(z, s)ds

(the only residue for Γ0(N) is the constant function, but that is orthogonal to the Eisenstein
series anyway). We have to compute these inner products explicitly, but we can already say

〈Pm,Qn〉 =
∞∑
j=1

〈Pm, ηj〉〈Qn, ηj〉
〈ηj, ηj〉

+
r∑

k=1

1

4πi

∫ 1
2

+i∞

1
2
−i∞
〈Pm, Ek(∗, s)〉〈Qn, Ek(∗, s)〉ds.

This is the key formula.
We need to compute the inner products

〈Pm, ηj〉 =

∫
Γ\h

∑
γ∈Γ∞\Γ0(N)

p(2πm Im γz)e2πimγz · ηj(z)
dxdy

y2

=

∫
Γ∞\h

p(2πmy)e2πimzηj(z)
dxdy

y2

=

∫ 1

x=0

∫ ∞
y=0

p(2πmy)e2πimxe−2πmy
∑
l 6=0

Aj(l)
√
yKitj(2π|l|y)e−2πilxdxdy

y2

(We know that the Bessel function satisfiesKit(y) = K−it(y) = Kit(y), which is the functional
equation of the GL(2) Whittaker function. In fact Aj(l) are real too because the Maass forms
are self-dual, but we don’t need to assume that.)

=

∫ ∞
0

p(2πmy)e−2πmyAj(m)
√
yKitj(2πmy)

dy

y2

=
Aj(m)√

2πm
·
∫ ∞

0

p(y)y−
1
2Kitj(y)

dy

y
.

Thus,

〈Pm,Qn〉 =
∞∑
j=1

Aj(m)Aj(n)

2π
√
mn〈ηj, ηj〉

p#(tj)·q#(tj)+
r∑

k=1

1

4πi

∫ 1
2

+i∞

1
2
−i∞

Ek(m, s)Ek(n, s)p
#(∗)q#(∗)ds

where

p#(t) =

∫ ∞
0

p(y)y−
1
2Kit(y)

dy

y

is the Whittaker transform of p.
Let’s work out the last term more precisely. Recall that we have

∆ηj =

(
1

4
+ t2

)
ηj

and
∆E(z, s) = s(1− s)E(z, s).

18



Substituting s = 1
2

+ it will give the second term.
In conclusion, we have obtained the spectral side of the KTF

〈Pm,Qn〉 =
∞∑
j=1

Aj(m)Aj(n)

2π
√
mn〈ηj, ηj〉

p#(tj)q#(tj)+
r∑

k=1

1

4π

∫ i∞

−i∞
Ek

(
m,

1

2
+ it

)
Ek

(
n,

1

2
+ it

)
p#(t)q#(t)dt.

Selberg was the first one to prove infinitely many Maass forms, using the Selberg trace
formula. At a conference 12 years ago I asked if we can use the Kuznetsov trace formula to
prove the same thing. The answer turned out to be yes.

Now we move to the geometric side of KTF. We evaluate 〈Pm,Qn〉 using the Fourier
expansion of Pm

Pm(z, p) =
∑

γ∈Γ∞\Γ

p(2πm Im(γz))e2πimγz =
∑
l∈Z

Bm(l, p, y)e2πilx

where B0(l, p, y) = p(2πily)e−2πly + · · · . Basically Bm(l, p, y) are related to Kloosterman
sums, which are related to algebraic geometry and explain why this is called the geometric
side.

We have

〈Pm,Qn〉 =

∫
Γ\h
Pm(z, p)Qn(z, q)

dxdy

y2

=

∫ 1

0

∫ ∞
0

p(2πmy)e2πimzQn(z, q)
dxdy

y2

=

∫ 1

0

∫ ∞
0

p(2πmy)e2πimxe−2πmy
∑
l

Bn(l, q, y)e−2πilxdx
dy

y2

=

∫ ∞
0

p(2πmy)e−2πmyBn(m, q, y)
dy

y2
.

Now we can write down the Kuznetsov trace formula
∞∑
j=1

Aj(m)Aj(n)p#(tj)q#(tj)

2π
√
mn〈ηj, ηj〉

+
1

4π

∫ ∞
−∞

r∑
k=1

Ek

(
m,

1

2
+ it

)
Ek

(
n,

1

2
+ it

)
p#(t)q#(t)dt

=

∫ ∞
0

p(2πmy)e−2πmyBn(m, q, y)
dy

y2

where Bn(m, q, y) is an infinite sum of S(m,n, c).
On GL(2), there are many applications of this formula. The first was by Deshouillers and

Iwaniec in 1980’s. Last time I mentioned that Sarnak and Phillips conjectured there are
no Maass forms for non-congruence subgroups. In order to prove this they needed certain
special values of L-functions to be non-zero. Deshouillers–Iwaniec used the KTF to prove
these values are non-zero infinitely often.

When Kuznetsov first came up with his trace formula, he thought it was so powerful that
he used it to prove four other major conjectures, including the Ramanujan and Lehmer
conjectures. These proofs even got published in some obscure Russian journals (Kuznetsov
was residing in Siberia), but I don’t think they were correct. Of course the trace formula was
correct. One application that was correct was concerned with the Linnik–Selberg conjecture.
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Conjecture 5.1 (Linnik–Selberg). For every ε > 0, we have
x∑
c=1

S(m,n, c)

c
� xε

as x→∞.

Kuznetsov proved this for ε = 1
6
, which is the best bound so far.

Another application of the KTF was a result of Sarnak–Luo–Iwaniec.

6. Lecture 6 (September 26, 2013)

6.1. Takhtajan–Vinogradov Trace Formula. Today we will talk about an interesting
application that is not well-known. The reference is The Gauss–Hasse hypothesis on real
quadratic fields with class number one by L. Takhtajan and A.I. Vinogradov, published in
Crelle’s Journal in 1982. This application has to do with the following conjecture of Gauss:

Conjecture 6.1 (Gauss, 1801). There are infinitely many real quadratic fields with class
number equal to 1.

I think this is the only conjecture in the Disquisitiones that remains unproved.
We will use the theta function

θ(z) =
∞∑

n=−∞

e2πin2z

which satisfies

θ

(
az + b

cz + d

)
= εd

(
d

c

)
(cz + d)

1
2 θ(z)

for

(
a b
c d

)
∈ Γ0(4),

(
d

c

)
is a real character mod c and εd =

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Consider the real quadratic field Q(
√
d), where d > 0. Takhtajan and Vinogradov consid-

ered the following inner product

〈P1(∗, s), θ(∗)θ(∗d) Im(∗)
1
2 〉 =

∫
Γ0(4)\h

P1(z, s)θ(z)θ(dz)y
1
2
dxdy

y2
. (1)

Note that θ(z)θ(dz)y
1
2 is invariant under the action of Γ0(4d2). Here

P1(z, s) =
∑

γ∈Γ∞\Γ0(4d2)

Im(γz)se2πiγz.

Let’s first do the geometric computation to compute (1) using Fourier expansions.

〈 , 〉 =

∫
Γ0(4d2)\h

∑
γ∈Γ∞\Γ0(4d2)

Im(γz)se2πiγz · (θ(z)θ(dz)y
1
2 )
dxdy

y2

=

∫
Γ∞\h

yse2πizθ(z)θ(dz)y
1
2
dxdy

y2

=

∫ 1

x=0

∫ ∞
y=0

e2πixe−2πy

(
∞∑

m=−∞

e−2πim2xe−2πm2y

)(
∞∑

n=−∞

e2πin2dxe−2πn2dy

)
ys−

1
2
dxdy

y
.
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Note that the x-integral gives m2 − dn2 = 1, which is Pell’s equation. Thus

〈 , 〉 =

∫ ∞
y=0

∑
m,n

m2−dn2=1

e−2πy(m2+dn2+1)ys−
1
2
dy

y

=
∑
m,n

m2−dn2=1

1

(2π(m2 + dn2 + 1))s−
1
2

Γ

(
s− 1

2

)
.

So we have proved:

Theorem 6.2.

〈P1(∗, s), θθd Im()
1
2 〉 =

Γ
(
s− 1

2

)
(2π)s−

1
2

∑
m2−dn2=1

1

(m2 + dn2 + 1)s−
1
2

.

We need the following old theorem about Pell’s equation.

Theorem 6.3 (Pell’s Equation). All solutions to Pell’s equation x2 − dy2 = 1 are of the
form (±x,±y) where

x+ y
√
d = (x0 + y0

√
d)k

for some k ≥ 0 and x0 + y0

√
d is a fundamental unit of Q(

√
d).

Thus N(x0 + y0

√
d) = x2

0 − y2
0d = 1. We usually call x0 + y0

√
d = εd. We have

ε−1
d =

1

x0 + y0

√
d

=
x0 − y0

√
d

x2
0 − y2

0d
= x0 − y0

√
d

and so

εd + ε−1
d = 2x0,

εkd + ε−kd = 2x.

Now we can express the inner product as

Γ(s− 1
2
)

(2π)s−
1
2

∑
m2−dn2=1

1

(m2 + dn2 + 1)s−
1
2

=
Γ(s− 1

2
)

πs−
1
2

(
1

4
+
∞∑
k=1

1

(εkd + ε−kd )2s−1

)
.

Let’s look at
∞∑
k=1

1

(εkd + ε−kd )2s−1
=
∞∑
k=1

1

ε
k(2s−1)
d

(1 + ε−2k
d )1−2s =

∞∑
k=1

(
ε

(1−2s)k
d +O

(
2s− 1

ε
(2s+1)k
d

))
,

i.e.
∞∑
k=1

1

(εkd + ε−kd )2s−1
=
∞∑
k=1

1

ε
k(2s−1)
d

+ h(s)

where h(s) is holomorphic for Re(s) > 0, and
∞∑
k=1

1

ε
k(2s−1)
d

=
1

1− ε2s−1
d

has a simple pole at s = 1
2

with residue equal to (∗) log εd.
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Theorem 6.4. The inner product 〈P1(∗, s), θθd Im()
1
2 〉 has a double pole at s = 1

2
with

residue (∗) log εd (a constant multiple of the regular of Q(
√
d)).

This is the geometric side of the trace formula. Now let’s look at the spectral side of the
Takhtajan-Vinogradov trace formula.

When we look at the spectral side only Maass forms with eigenvalues 1
4

will produce double

poles at s = 1
2
. What are special about these? They are the cohomological forms on GL(2);

in the theory of automorphic forms, only cohomological forms can be associated to Galois
representations.

Let η1(z), η2(z), · · · be a basis of Maass forms for Γ0(4d2). We have the expansions

ηj(z) =
∑
l 6=0

Aj(l)
√
yKitj(2π|l|y)e2πilx.

We will conisder the spectral expansion of P1(z, s)

P1(z, s) =
∞∑
j=1

〈P1(∗, s), ηj〉
ηj(z)

〈ηj, ηj〉
+

1

4πi

r∑
l=1

∫ 1
2

+i∞

1
2
−i∞
〈P1, El〉El(z, s)ds.

Then

〈Pj(∗, s), ηj〉 =

∫ 1

0

∫ ∞
0

yse2πizηj(z)
dxdy

y2

= Aj(1)

∫ ∞
0

yse−2πy√yKitj(2πy)
dy

y2
.

This integral can be found in the Russian book Table of Integrals, Series and Products, and
is equal to

Aj(1) · (∗) · Γ
(
s− 1

2
+ itj

2

)
Γ

(
s− 1

2
− itj

2

)
.

When does Γ
(
s− 1

2
+itj
2

)
Γ
(
s− 1

2
−itj
2

)
have a double pole at s = 1

2
? Only when tj = 0.

Remember that

∆ηj =

(
1

4
+ t2j

)
ηj,

so tj = 0 if and only if ηj has eigenvalue 1
4
.

On the other hand, the double pole contribution s = 1
2

from the Eisenstein series is 0.

We take residue of the double pole at s = 1
2

on both sides of the Takhtajan-Vinogradov
trace formula leading to identities of the following type. Let f1(z), f2(z), · · · , fn(z) be coho-
mological Maass forms with eigenvalue 1

4
for Γ0(4d2) (by cohomological I mean they are cusp

forms which are eigenforms for all the Hecke operators, and have eigenvalue 1
4
). Consider

the Dirichlet L-functions

L(s, χj) =
∞∑
m=1

χj(m)

ms
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associated with characters of the ideal class group of Q(
√
d). Let h be the class number of

Q(
√
d). Then

h−1∑
j=1

L(1, χj) =

√
dL(1, χd)

2

n∑
j=1

Afj(1)(∗)

where the left side is summed over the non-trivial characters, χd is the Dirichlet character
(so that ζQ(

√
d)(s) = ζ(s)L(s, χd)), and (∗) is some simple factor (but hard to define).

n should be equal to h, but Takhtajan and Vinogradov could only prove n ≥ h.
In all trace formulae I have seen, both sides involve infinite sums. I asked if there exists

a trace formula with a finite sum on the geometric side, and found one which I called the
degenerate trace formula. We will talk about this next time.

7. Lecture 7 (October 1, 2013)

7.1. Theta Functions. Today we will study theta functions as examples of automorphic
forms. In his paper Indefinite quadratische formen and funktionentheorie in Math. Ann.,
Siegel (1951, 1952) constructed theta functions, generalizing Maass’ earlier construction. He
proved things like

θ

(
az + b

cz + d

)
= εψ

(
a b
c d

)
(cz + d)

1
2 θ(z)

where ε is some 8-th root of unity. The problem of solving for ε explicitly was solved by Stark
(1982) in On the transformation formula for the symplectic theta functions and applications
in J. Fac. Sci. Tokyo, but this was only for the symplectic case. If you look at the binary
quadratic form ax2 + bxy + cy2 (whose discriminant is D = b2 − 4ac), D < 0 is the positive
definite case, with ax2 + bxy + cy2 always positive. We can ask how often ax2 + bxy + cy2

equals a fixed integer, which happens finitely many times. But this may be infinitely often
in the indefinite case D > 0.

For the simple theta function
∑
e2πin2z, Shimura was able to compute the 8-th root of

unity. Stark asked his student Friedberg to compute this for theta functions for indefinite
forms, and the result was published in On theta functions associated to indefinite quadratic
forms in J. Number Theory. I’m not going to give proofs but I will just give a review of
these papers.

Let’s begin with the symplectic theta functions.

7.2. Symplectic Theta Functions. Let Spn(R) be the symplectic group consisting of 2n×

2n matrices M =

(
A B
C D

)
satisfying the identity

tMJM = J =

(
0 −In
In 0

)
where In is the n×n identity matrix. Hecke and Maass developed the theory of automorphic
forms on the upper half plane. Siegel generalized this to higher dimensions.

The Siegel upper half plane hn is the set of n× n symmetric matrices Z with Im(Z) > 0.
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The discrete subgroup Γ(n) is defined to be Spn(Z), which acts on the Siegel upper half

plane: for M =

(
A B
C D

)
∈ Γ(n) and Z ∈ hn, the action is given by

MZ = (AZ +B)(CZ +D)−1.

Now we will construct the theta function. We need a special subgroup (even in GL(2), we

need to get to level 4 to get theta functions). We define the theta subgroup Γ
(n)
θ ⊂ Γ(n) to

be the set of all

(
A B
C D

)
∈ Γ(n)(Z) such that AtB and CtD have even diagonal entries.

Definition 7.1 (Siegel Theta). Let u, v be column vectors in Cn. Let Z ∈ hn. We define

θ

(
Z,

(
u
v

))
:=
∑
m∈Zn

e2πi[t(m+v)Z(m+v)−2tmu−tvu].

We have the following

Theorem 7.2 (Eichler). For M =

(
A B
C D

)
∈ Γ

(n)
θ ,

θ

(
MZ,M

(
u
v

))
= χ(M)(det(CZ +D))

1
2 θ

(
Z,

(
u
v

))
for some χ(M) an 8-th root of unity.

χ was determined by Stark. The formula for χ is very complicated. It was quite a technical
feat to get that 8-th root of unity.

The fact that θ is automorphic basically comes from the Poisson summation formula.

7.3. Theta Functions associated to Indefinite Quadratic Forms. The main problem
with the indefinite case is that we cannot write down a series like above, since the expression
does not converge. Siegel showed that indefinite forms are connected to certain definite
forms, via “majorants”.

Let K be a totally real algebraic number field of degree r1, OK be the ring of integers of
K, δK be the different, and DK be the discriminant of K. For α ∈ K, let α(1), α(2), · · · , α(r1)

be the conjugates. We put Γ = SL2(OK). For an integral ideal m, let

Γ0(m) =

{
M =

(
α β
γ δ

)
: M ∈ Γ, γ ∈ m

}
.

The upper half plane is hr1 , which is just r1 copies of the standard h = {x+iy : x ∈ R, y > 0}.

Let z = (z1, z2, · · · , zr1) ∈ hr1 . The action of M =

(
α β
γ δ

)
on hr1 is given by

M ◦ z := (M (1) ◦ z1,M
(2) ◦ z2, · · · ,M (r1) ◦ zr1)

where M (j) =

(
α(j) β(j)

γ(j) δ(j)

)
and

M (j) ◦ zj = (α(j)zj + β(j))(γ(j)zj + δ(j))−1

is the usual GL(2)-action.
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Let Q be a symmetric n× n matrix defining the quadratic form

Q[x] := txQx

for x ∈ Rn. If Q has entries in OK and diagonal entries divisible by 2, we say Q is of level
N ∈ OK if

• NQ−1 has entries in OK , and 2 divides the diagonal entries of NQ−1;
• for M ∈ OK , N | M whenever MQ−1 has entries in OK and 2 divides the diagonal

entries in MQ−1.

Definition 7.3 (Signature). Q(j) has signature (p, q) for j = 1, 2, · · · , r if there exists Lj ∈
GL(n,R) such that

Q(j) = tLj

(
Ip
−Iq

)
Lj.

We have now set up generalizations of congruence subgroups of level N . The problem is
that this is an indefinite quadratic form, so we cannot construct a theta function in the usual
way. We will first construct a symplectic theta function.

Definition 7.4 (Siegel’s Majorant). Let Q be a symmetric n× n matrix of signature (p, q).
Let Rj = tLj · Lj. Then Rj is a majorant for Q(j) if tRj = Rj > 0 and

RjQ
(j)−1

Rj = Q(j).

Example 7.5. Let Q =

(
Ip
−Iq

)
. Then R = Ip+q is a majorant.

Majorants always exist but may not be unique, which gives lots of trouble.
Now I can define Siegel’s theta function (indefinite case).
Let Q be an n× n symmetric matrix with entries in OK such that 2 divides all diagonal

entries and Q is of level N ∈ OK . Assume Q has signature (p, q). Let (u1, · · · , ur1) and
(v1, · · · , vr1) be in Cr1 . Let J ∈ OK be an integral ideal. Let z = (z1, · · · , zr1) ∈ hr1 , where
zj = xj + iyj. Then we define the theta function

θQ

(
z,

(
u
v

))
=

(
r1∏
j=1

yj

) q
2 ∑
λ∈Jn

eπi[
∑r1
j=1Q

(j)(λ(j)+vj)xj+iRj(λ
(j)+vj)yj−2tλ(j)Q(j)u−tvjQ(j)uj ].

Remarkably it can be shown that θQ

(
z,

(
u
v

))
is a symplectic theta function. Friedberg

determined the 8-th root of unity for this theta function in his thesis.
Theta functions have been generalized to the adelic setting.
Theta functions and modular forms of half integral weight are not covered by the Langlands

program. It may be possible to use ideas from Mumford’s book Tata Lectures on Theta to
give a geometric interpretation of majorants.

7.4. The simplest Theta Functions. These will be weight 1
2

modular forms for Γ0(4N).
We are looking for holomorphic functions

f

(
az + b

cz + d

)
= χ

(
a b
c d

)
(cz + d)

1
2f(z)
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for

(
a b
c d

)
∈ Γ0(N) and χ

(
a b
c d

)
some 8-th root of unity.

We can ask:

• Can we find a basis for the space? What is the dimension?
• Can theta functions be cusp forms?

The answers to all these questions were solved by Serre-Stark (1976). It is a surprising
fact that theta functions can be cusp forms! The Ramanujan conjecture says that if f(z) =∑
ane

2πinz is a holomorphic cusp form of integral weight, then |an| � n
k−1
2

+ε. Here, the
Ramanujan conjecture fails for θ but it holds “on average” by Piatetski-Shapiro. One of the
goals of the Langlands conjectures is to prove the Ramanjan conjecture, which is another
reason for why there isn’t a Langlands conjecture for half-integral weights.

Next time I will talk about the Serre–Stark paper.

8. Lecture 8 (October 3, 2013)

8.1. Modular forms of weight 1
2
. Today I will discuss the Serre-Stark paper “Modular

forms of weight 1
2
” in Lecture Notes in Mathematics 627, Modular forms of one variable VI

(1976). I will not prove everything, but only the more important results.

Let γ =

(
a b
c d

)
∈ Γ0(4N) and j(γ, z) = εd

(
d
c

)
(cz + d)

1
2 be the weight 1

2
cocycle, where(

d
c

)
is the quadratic symbol. We define the action

(f |γ)(z) := j(γ, z)−1f(γz).

Let χ : (Z/4NZ)× → C× be a Dirichlet character. We let M0(4N, 1
2
, χ) be the space of

weight 1
2

modular forms for Γ0(4N) with character χ, i.e. functions satisfying

(f |γ)(z) = χ(d)f(z).

Let M1(4N, 1
2
) =

⊕
χ (mod 4N) M0(4N, 1

2
, χ). If f ∈ M1, then (f |γ)(z) = f(z) for all γ ∈

Γ1(4N) =

{(
a b
c d

)
≡
(

1 0
0 1

)
(mod 4N)

}
. (It is because of this relation that we just

need to study Γ0 instead of Γ1.)
The first theorem of Serre–Stark is as follows:

Theorem 8.1. A basis for M1(4N, 1
2
) is given by the theta functions

θ(ψ, tz) =
∑
n∈Z

ψ(n)e2πin2tz

where

(1) ψ : (Z/4NZ)× → C× is an even character of conductor rψ;
(2) r2

ψt | N ;

(3) if θ ∈M0(4N, 1
2
, χ), then χ(n) = ψ(n)

(
t
n

)
for all (n, 4N) = 1.

This gives a very explicit basis. The simplest proof to this theorem is by Hecke operators,
which can be found in the appendix to the Serre–Stark paper by Deligne.

We are led to the interesting question: can any of the theta functions in Theorem 8.1 be
cusp forms? The answer is yes.

26



Definition 8.2. We say an even character χ : (Z/NZ)× → C× is not totally even if in the
decomposition N =

∏r
i=1 p

ei
i , χ =

∏r
i=1 χpeii , one of χpeii is not even, i.e. χpeii (−1) = −1.

Theorem 8.3. Let χ : (Z/4NZ)× → C× be even. Then a basis for the cusp forms
S(Γ0(4N), 1

2
, χ) is the set of theta functions

θ(ψ, tz) =
∑
n

ψ(n)e2πin2tz

where

(1) ψ is an even character of conductor rψ and ψ is not totally even;
(2) r2

ψt | N ;

(3) χ(n) = ψ(n)
(
t
n

)
for all (n, 4N) = 1.

We can ask the question: what is the first (i.e. lowest level 4N) theta function that is a cusp
form? It can be written down very explicitly. Let 4N = 576 = 242 and ψ12 : (Z/12Z)× → C×
be given by ψ12(1) = ψ12(11) = 1 and ψ12(5) = ψ12(7) = −1. Then the theta function is
given by

θ(ψ, z) =
∑
n6=0

ψ12(n)e2πin2z = e2πiz − e2πi·25z − e2πi·49z + e2πi·121z + · · · .

Theorem 8.1 implies we can twist by a character χ (mod q) and get a cusp form

θ(ψ12 · χ, tz) =
∑
n6=0

ψ12(n)χ2(n)e2πin2tz

of level 576tq2 with character χ. This will satisfy

θ

(
ψ12 · χ2, t · az + b

cz + d

)
= χ(d)εd

(
d

c

)
(cz + d)

1
2 θ(ψ12χ

2, tz)

for all

(
a b
c d

)
∈ Γ0(4Ntq2). These are all the cusp forms of weight 1

2
, so we can think of θ

as the analog of the Ramanujan cusp form of weight 12.
I will give a complete proof of Theorem 8.3.

8.2. Proof of Theorem 8.3. Let f(z) ∈M1(N, 1
2
) (we will assume 4 | N throughout) have

Fourier expansion

f(z) =
∞∑
l=0

a(l)e2πilz.

For M ≥ 1, let εM : Z/MZ→ C× be a complex-valued periodic function with period M , i.e.
εM(z +M) = εM(z).

Definition 8.4. The twist of f by εM is

(f ∗ εM)(z) :=
∞∑
l=0

a(l)εM(l)e2πilz.
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We remark that θ is not a twist of the classical theta function
∑
e2πin2z by ψ12 — if it

were, the coefficient of e2πin2z would have to be ψ12(n2) instead of ψ12(n). This makes an
important difference!

The finite Fourier transform is given by

ε̂M(l) =
1

M

∑
m∈Z/MZ

εM(m)e−
2πiml
M

with inverse transform

εM(l) =
∑

m∈Z/MZ

ε̂M(m)e
2πiml
M .

I claim that we have

(f ∗ εM)(z) =
∑

m∈Z/MZ

ε̂M(m)f
(
z +

m

M

)
.

This is very easy to prove; you should be able to do it mentally.

Proposition 8.5. Fix M ≥ 1, M | N . The following are equivalent:

(1) f vanishes at all cusps m
M

, where 1 ≤ m ≤M and (m,M) = 1.
(2) For every εM : Z/MZ→ C×, the function

φf∗εM (s) :=
∞∑
l=1

a(l)εM(l)l−s

is holomorphic at s = 1
2
.

Let us recall what cusps are. Every cusp of Γ0(N) is of the form m
M

with M | N , (m,M) =

1. Two cusps m
M
, m

′

M ′
are equivalent if and only if M = M ′ and m ≡ m′ (mod

(
M, N

M

)
). For

example, 0 and 1 are equivalent under

(
1 1
0 1

)
.

Proof. We first prove this for M = 1. (1) is equivalent to the statement that f vanishes at
the cusp 0. (2) is equivalent to the statement that φf (s) vanishes at the cusp 0, since φf is
just the standard Mellin transform of f .

Let wN =

(
0 −1
N 0

)
. Then

g(z) := (f |wN)(z) = N−
1
4 (−iz)−

1
2f

(
− 1

Nz

)
has a Fourier expansion

g(z) =
∞∑
n=0

b(n)e2πinz.

The cusp 0 is equivalent to ∞ under wN , so (1) is equivalent to the statement that g(z)
vanishes at ∞, i.e. b(0) = 0.

On the other hand, the functional equation relating φf (s) and φg(
1
2
− s) implies that (2)

is equivalent to saying (2π)−sΓ(s)φg(s) is holomorphic at s = 0, i.e. φg(0) = 0.
So we have proved the Proposition when M = 1.
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Next assume M > 1. Apply the above ideas to f ∗ εM with N replaced by N ·M2 (it
is not hard to show f ∗ εM is automorphic of level NM2). Then conditions (1) and (2) are
equivalent to:

(3) For all εM : Z/MZ→ C×, the modular form f ∗ εM vanishes at the cusp 0.
(4) For all m ∈ Z/MZ, the modular form f(z + m

M
) vanishes at the cusp 0.

This finishes the proof. �

By this proposition, we have

Corollary 8.6. The following are equivalent:

(1) f is a cusp form.
(2) For all εM : Z/MZ→ C×, the function φf∗εM (s) =

∑∞
l=1 a(l)εM(l)l−s is holomorphic

at s = 1
2
.

There is one last step in the proof — we need to use the condition of an even character
being not totally even. Finally, we have the following

Proposition 8.7. Let ψ be an even character which is not totally even. Then θ(ψ, z) is a
cusp form.

Proof. Let εM : Z/MZ→ C×. We must show that

H(s) =
∞∑
n=1

εM(n2)ψ(n)n−2s

is holomorphic at s = 1
2
. But this function is equal to

H(s) =
∑

m∈Z/MZ

εM(m2)ψ(m)
∑

n≡m (mod M)
n≥1

n−2s.

Note that the function
∑

n≡m (mod M)
n≥1

n−2s has a simple pole at s = 1
2

with residue 1
M

. Thus

H(s) has a simple pole at s = 1
2

with residue

1

M

∑
m∈Z/MZ

εM(m2)ψ(m).

We need to show that if ψ is even but not totally even, then the residue is equal to 0.
We know that since ψ is not totally even, there exists a prime p | r(ψ) such that the p-th

component of ψ is an odd character. Write M = pa ·M ′ where (M ′, p) = 1. Then

(Z/MZ)× = (Z/paZ)× × (Z/M ′Z)×. (2)

Let xp ∈ (Z/MZ)× whose first component in (2) is −1 and second component is +1. Since
xp is invertible, the sum

∑
m doesn’t change if m is replaced by xpm, so the sum in the

residue is equal to∑
m∈Z/MZ

εM((xpm)2) · ψ(xpm) =
∑

εM(m2)ψ(xpm) = −
∑

εM(m2)ψ(m)

which implies it is 0. �
29



9. Lecture 9 (October 8, 2013)

9.1. Adelic Poincaré series on GL(n). I will talk about some recent joint work with
Michael Woodbury, where we look at Poincaré series from the adelic point of view. I will
also move from GL(2) to GL(n). Basically this is the relative trace formula for the unipotent
subgroup 

1 ∗ ∗ ∗
1 ∗ ∗

. . . ∗
1

 .

A lot of people have been studying the relative trace formula for the unitary group, but this
is really different. On the unitary group, there are clever tricks to get rid of the continuous
spectrum, but the continuous spectrum plays a crucial role for the unipotent group and
cannot be avoided.

To keep things simple we will work over the adele ring A = AQ over Q, but there is no
problem working over any number field. v will denote either ∞ or a prime p. Qv is the
completion of Q at v, i.e.

Qv =

{
Qp if v = p = prime,

R if v =∞.
We have the unipotent and diagonal subgroups

U =


1 ∗ ∗ ∗

1 ∗ ∗
. . . ∗

1

 , T =


∗
∗
∗
∗

 .

Let us introduce the maximal compact subgroups

Kv =

{
GL(n,Zp) if v = p,

On(R) if v =∞.

and put

K =
∏
v

Kv.

Let Z be the center of G = GL(n).
The Iwasawa decomposition is G = UTK = TUK. For a proof, you can refer to my book.
For H ⊂ G, we want to construct functions f : Z(H)(A)H(Q)\H(A) → V , where

Z(H)(A) is the center of H with elements in A, and V ∼= Ck is some finite-dimensional
vector space over C. If k = 1, we are basically looking at weight 0; I will explain more on
that.

Every function of this type is invariant under the group Z(H)(A)H(Q), i.e.

f(γg) = f(g)

for all γ ∈ H(Q), and

f(zg) = f(g)
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for all z ∈ Z(H)(A). If we just consider the case k = 1, then we have the Poincaré series,
but we want to construct something more general. We could also have a non-trivial central
character.

We will construct a Poincaré series as follows. Let V =
∏

v Vv, and σv : Kv → GL(Vv) be
a finite-dimensional representation of Kv. We assume σv is trivial except for finitely many
v. Put (σ, V ) =

⊗
v(σv, Vv). We will have a central character

χ =
⊗
v

χv : G(Q)\G(A)→ C×,

i.e. χ is the character which extends the central character of the representation σ.
We shall assume there exists an inner product 〈 , 〉Vv on each Vv, and set

〈 , 〉V =
∏
v

〈 , 〉Vv .

Further we assume (σ, V ) is a unitary representation.
Now we need a character on the unipotent group U . Take a = (a1, a2, · · · , an−1) ∈ Qn−1.

We want to define a character ψa : U → C. Each u ∈ U(A) locally looks like

uv =


1 u1,2

1 u2,3

. . .
. . .

1 un−1,n

1


and we set

ψv(uv) =

{
exp (−2πi(a1u1,2 + a2u2,3 + · · ·+ an−1un−1,n)) if v = p,

exp (2πi(a1u1,2 + a2u2,3 + · · ·+ an−1un−1,n)) if v =∞.

It is easy to see that

ψv(uv · u′v) = ψv(uv) · ψv(u′v)
and so ψv gives a character. We define

ψ =
∏
v

ψv.

By the Iwasawa decomposition G = UTK, we define ψ to satisfy

ψv(uvτvκv) = ψv(uv)

for all τv ∈ Tv and κv ∈ Kv.
Next we need a toric function on

T =



t1 0

t2
. . .

0 tn


 .
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Definition 9.1 (Toric norm). For tv =


tv,1 0

tv,2
. . .

0 tv,n

, we define

||tv||tor,v =
n∏
i=1

∣∣∣∣∣ tv,i

(det tv)
1
n

∣∣∣∣∣
v

.

Note that ||ztv||tor,v = ||tv||tor,v for all z in the center. Then we extend || ||tor,v with the
Iwasawa decomposition

||utκ||tor,v := ||t||tor,v

for all u ∈ Uv and κ ∈ Kv. Finally we define the full toric norm

|| ||tor :=
∏
v

|| ||tor,v.

We can now construct an Eisenstein series

E(g, s, χ) =
∑

γ∈Z(Q)U(Q)\G(Q)

χ(γg)||γg||stor,

where s = (s1, s2, · · · , sn) ∈ Cn with Re(si)� 1, and

||g||stor =
∏
v

n∏
i=1

∣∣∣∣∣ tv,i

det(tv)
1
n

∣∣∣∣∣
si

v

for the Iwasawa decomposition g = tuκ. We will not study the Eisenstein series; we just
want to construct the Poincaré series.

To construct a Poincaré series, we introduce one more function H : GL(n,AQ)→ V ∼= Ck.
We require

H(zutκ) = σ−1(κ)H(t)

where z is central, u is unipotent, t is toric and κ is in the maximal compact. Thus H is
really a function on T . Moreover, we require that H is factorizable, i.e.

H =
∏
v

Hv.

We can think of κ as the analog of the weight of a modular form.
We now have the ingredients to define the Poincaré series. They were first defined in

a paper written by Bump, Friedberg and me in the early 1980’s, but we did it for totally
ramified extensions only. Glenn Stevens immediately generalized it.

Definition 9.2 (Poincaré Series (Stevens, 1980’s)).

PH,ψa,σ(g, s) :=
∑

γ∈Z(Q)U(Q)\G(Q)

χ(γg)ψa(γg)H(γg)||γg||stor,

where s = (s1, s2, · · · , sn) ∈ Cn with Re(si) � 1, and H is chosen such that this converges
absolutely (e.g. if H is compactly supported or absolutely bounded).

The Poincaré series satisfies the following properties:

• P (γg, s) = P (g, s) for all g ∈ GL(n,AQ) and γ ∈ G(Q);
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• P (tκ, s) = σ−1(κ)P (t, s) (analog of weight k modular forms on GL(2));
• More generally, P (gzk, s) = χ(z)σ−1(κ)P (g, s);
• If we choose H carefully (e.g. H compactly supported), then P (g, s) ∈ L2.

We want to obtain the trace formula by taking the inner product of two of these Poincaré
series, using the spectral decomposition and Fourier expansions. The Fourier expansion will
in particular show P (g, s) ∈ L2.

Let’s look at the Hilbert space L2(GL(n,Q)\GL(n,AQ), σ, χ) consisting of all square-
integrable functions F : GL(n,Q)\GL(n,AQ)→ V ∼= Ck satisfying

F (gzκ) = χ(z)σ−1(κ)F (g),

with inner product given by

〈F1, F2〉 =

∫
GL(n,Q)\GL(n,AQ)

∏
v

〈F1(g), F2(g)〉Vvdg.

Remark. For all but finitely many v, we have k = 1 and we can choose

〈F1(g), F2(g)〉Vv = F1(g) · F2(g).

Theorem 9.3. Let φ ∈ L2(G(Q)\G(A), σ, χ) be an automorphic form whose Whittaker
function, defined to be ∫

U(Q)\U(A)

φ(ug)ψa(u)du,

is factorizable as
∏

vWv, then

〈PH,ψa,σ(∗, s), φ〉 =
∏
v

Iv

is a product of toric integrals, where for Fv : Qv → Vv,

I(Fv,Wv, v) =

∫
Z(Qv)\T (Qv)

〈Fv(tv),Wv(tv)〉Vv ||tv||stor,vdtv

We will prove this next time and compute the Fourier expansion.

10. Lecture 10 (October 10, 2013)

Unfortunately I was unable to attend the lecture.

11. Lecture 11 (October 17, 2013)

11.1. Adelic Poincaré series on GL(n). Recall that we are looking at GL(n,AQ). Each
a = (a1, · · · , an−1) ∈ An−1 defines a character on the unipotent group ψa : U → C as follows.
For

u =


1 u1,2

1 u2,3

. . .
. . .

1 un−1,n

1

 ,

we define ψa,v(u) = exp(±2πi(a1,vu1,2 + · · ·+ an−1,vun−1,n)) and ψa =
∏
ψa,v.
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The Poincaré series is

Pa(g, s) =
∑

γ∈Z(Q)Un(Q)\GL(n,Q)

χ(γg)ψa(γg)H(γg)||γg||stor

where s = (s1, · · · , sn) ∈ Cn. For t = (t1, · · · , tn) ∈ T , we set ||t|| =
n∏
i=1

(
ti
∗

)si
.

Last time we computed the Fourier expansion of the Poincaré series.

Theorem 11.1.∫
U(Q)\U(A)

Pa(gu, s)ψb(u)du =
∑
w∈W

∑
τ∈Z(Q)\T (Q)

∏
v

δv(a, b, wτ)Kv(gv, s, a, b, w, τ)

where δv =

{
1 if ψa,v(wτuτ

−1w−1) = ψb,v(u),

0 otherwise,
Kv is the Kloosterman integral

Kv(gv, s, a, b, w, τ) =

∫
Uw(Q)

χv(wτugv)ψa,v(wτugv)Hv(wτugv)||wτugv||sdu,

and U = Uw · Uw, with Uw = (w−1Uw) ∩ U , Uw = (w−1tUw) ∩ U .

In the 3 by 3 case, we have

Uw =

1 0 ∗
1 ∗

1

 , Uw =

1 ∗ 0
1 0

1

 .

Today we will study the Kloosterman integrals at v = p.

Theorem 11.2.

Kp(t, s, a, b, w, τ) =
∑

t1∈T (Zp)\T (Qp)

∑
u∈U(Zp)\U(Qp)

u′∈Uw(Zp)\Uw(Qp)

ut−1
1 wτtu′∈GL(n,Zp)

ψa,p(t1ut
−1
1 )ψb,p(tu

′t−1)σ−1
p (ut1wτtu

′κ)Hp(t1)||t1||stor,p

Let me first assume this and show that it reduces to the usual Kloosterman sum in the
case of GL(2).

Let u(x) =

(
1 x
0 1

)
and t(y, y′) =

(
y 0
0 y′

)
∈ T . We have the classical Kloosterman sum

S(a, b, n) =
∑

x∈(Z/nZ)×

e
2πi
(
ax+bx−1

n

)
.

It satisfies the following well-known multiplicative property, which we will not prove.

Proposition 11.3.

S(a, b,mn) = S(am, bm, n) · S(an, bn,m)

where (m,n) = 1, n · n ≡ 1 (mod m) and m ·m ≡ 1 (mod n).
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The Weyl group is W =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
. Denoting e =

(
1 0
0 1

)
, we have

U( 1 0
0 1 ) = U, U( 1 0

0 1 ) = {e},

U( 0 1
1 0 ) = {e}, U( 0 1

1 0 ) = U.

The key proposition is

Proposition 11.4. Suppose τ = t(n,m) =

(
n 0
0 m

)
and Hp(t) =

{
1 if t ∈ Zp,
0 if t /∈ Zp.

Then

Kp

(
e, τ, a, b,

(
0 1
1 0

)
, s

)
= 0

unless vp(n) = −vp(m) ≥ 0, in which case

Kp

(
e, τ, a, b,

(
0 1
1 0

)
, s

)
= S(−a(n∗)−1, bm∗, pvp(n))

where n = n∗pvp(n) and m = m∗pvp(m).

Since Hp is supported on Zp and σ is trivial, the theorem gives

Kp =
∑

x,x′∈Zp\Qp
u(x)wτu(x′)∈GL(2,Zp)

ψa,p(u(x))ψb,p(u(x′)).

If u(x)wτu(x′) ∈ GL(2,Zp), then vp(n) = l and −vp(m) ≥ 0, so x = αpl and x′ = d−mα−1.
Again we will not go through the details, but it is possible to prove the following

Proposition 11.5. Let τ =

(
n

n−1

)
where n ∈ Z, σ be trivial, and Hp(t) =

{
1 if t ∈ Zp,
0 otherwise.

Then ∏
p

Kp = S(a, b, n).

The proof uses the multiplicative property of the Kloosterman sums.

Proof of Theorem 11.2. Let us prove the formula for Kp in general. Last time we showed
that

Kp(g, s, a, b, w, τ) =

∫
Uw(Qp)

χp(uτu
′g)ψa,p(wτu

′g)Hp(wτu
′g)||wτu′g||storψb,p(u

′)du′.

Let g = zutk. Then it is easy to see that

Kp(zutk, · · · ) = χp(z)ψb,p(u)σ−1(k)Kp(t, · · · ).

Since the normalization is such that
∫
U(Zp)

du = 1, it follows that

Kp(t, s, a, b, w, τ) =

∫
U(Zp)\Uw(Qp)

χp(wτu
′t)ψa,p(wτu

′t)σ−1(k)Hp(wτu
′t)||wτu′t||stor,pψb,p(u

′)du′.
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If we make the change of variables u′ 7→ tu′t−1, then this becomes∫
U(Zp)\Uw(Qp)

χp(wτtu
′)ψa,p(wτtu

′)σ−1(k)Hp(wτtu
′)||wτtu′||stor,pψb,p(tu

′t−1)du′

=
∑

u′∈U(Zp)\Uw(Qp)

χp(wτtu
′)ψa,p(wτtu

′)σ−1(k)Hp(wτtu
′)||wτtu′||stor,pψb,p(tu

′t−1).

Next we use the Iwasawa decomposition. If u′ ∈ U s(Qp) and τ, t ∈ Zp\T (Qp), then there
exists t1 ∈ Zp\T (Qp) such that

ut−1
1 wτtu′ ∈ GL(n,Zp).

Thus the sum is equal to∑
t1∈T (Zp)\T (Qp)

∑
u∈U(Zp)\U(Qp)

u′∈Uw(Zp)\Uw(Qp)

ut−1
1 wτtu′∈GL(n,Zp)

χp(wτtu
′)ψa,p(wτtu

′)σ−1
p (k)Hp(wτtu

′)||wτtu′||stor,pψb,p(tu
′t−1)

=
∑

t1∈T (Zp)\T (Qp)

∑
u∈U(Zp)\U(Qp)

u′∈Uw(Zp)\Uw(Qp)

ut−1
1 wτtu′∈GL(n,Zp)

χp(t1ut
−1
1 wτtu′)ψa,p(t1ut

−1
1 )ψa,p(t1ut

−1
1 wτtu′)σ−1

p (k)

·Hp(t1ut
−1
1 wτtu′)||t1ut−1

1 wτtu′||stor,pψb,p(tu
′t−1)

=
∑

t1∈T (Zp)\T (Qp)

∑
u∈U(Zp)\U(Qp)

u′∈Uw(Zp)\Uw(Qp)

ut−1
1 wτtu′∈GL(n,Zp)

ψa,p(t1ut
−1
1 ) · ψb,p(tut−1)σ−1

p (ut−1wτtu′k)Hp(t1)||t1||stor,p.

�

There is an analogous theorem at the archimedean places:

K∞(zutk, s, a, b, w, τ) = χ∞(z)ψb,∞(u)

∫
Uw(R)

χ∞(t1)ψa,∞(u−1)ψb,∞(tu′t−1)σ(k−1)H∞(t1)||t1||stor,∞du
′.

On GL(n) where n ≥ 3, the Kp are hyper-Kloosterman sums of the type studied by
Deligne. Using the Riemann hypothesis for algebraic varieties over finite fields (proved by
Deligne), it is possible to get very sharp bounds for Kp. The first person to get these bounds
was M. Larsen, and they were included as the appendix of a paper I wrote with Bump and
Friedberg in which we worked out the archimedean case (Acta Arith., 1988).

Next time I will do the relative trace formula. On one side, we have these Kloosterman
integrals. On the other side, there is some spectral information.

12. Lecture 12 (October 22, 2013)

Unfortunately I was unable to attend the lecture.

13. Lecture 13 (October 24, 2013)

13.1. Selberg–Arthur Trace Formula. Today I will talk about the Selberg–Arthur trace
formula. We will first do it for GL(2) by classical methods (using the upper half plane
model), and then I will move on to adelic representations.
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Let me first give an overview. Let G be a reductive group acting on a topological space
X. We assume that X has further properties so that we can do integration on this space.
We are looking at

L2(G\X) =

{
f : X → C :

∫
G\X
|f(x)|2dx <∞

}
which we assume to be a Hilbert space, with inner product given by

〈F1, F2〉 =

∫
G\X

F1(x)F2(x)dx

for F1, F2 ∈ L2(G\X).
We want to use spectral theory, i.e. the study of eigenfunctions of certain operators. The

natural choice is to use differential operators, but they are usually unbounded. Selberg’s
idea was to consider integral operators. Let k : X ×X → C be a kernel function, satisfying:

• k(gx, gy) = k(x, y) for all g ∈ G, x, y ∈ X;
•
∫
X

∫
X
|k(x, y)|2dxdy <∞ (Hilbert–Schmidt property).

Let us assume there is such a function. Then we get an integral operator.

Definition 13.1 (Integral operator with kernel k(x, y)). Let f ∈ L2(G\X). We define the
integral operator

Kf(y) :=

∫
G\X

k(x, y)f(x)dx.

We just need to prove one thing:

Proposition 13.2. Kf(gy) = Kf(y) for all g ∈ G.

Proof. This is very easy. Since k(x, gy) = k(g−1x, g−1gy) = k(g−1x, y), we have

Kf(gy) =

∫
G\X

k(x, gy)f(x)dx =

∫
G\X

k(g−1x, y)f(x)dx =

∫
G\X

k(x, y)f(gx)dx = kf(y)

where we made the change of variables x 7→ gx. Here dx is assumed to be an invariant
measure. �

Because of the Hilbert–Schmidt property, we can deduce that K : L2(G\X)→ L2(G\X)
is a bounded integral operator. So by the spectral theorem, there exists an orthonormal
basis f1, f2, · · · of L2(G\X) where Kfi = λifi for the eigenvalues λi ∈ C.

If k(x, y) = k(y, x) for all x, y ∈ X, then K will be a self-adjoint operator and the
eigenvalues λi are real. This is because

〈Kfi, fi〉 =

∫
G\X

Kfi(x)fi(x)dx

=

∫
G\X

(∫
G\X

k(y, x)fi(y)dy

)
fi(x)dx

=

∫
G\X

∫
G\X

k(x, y)fi(y)fi(x)dxdy

=

∫
G\X

fi(y)

∫
G\X

k(x, y)fi(x)dxdy
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=

∫
G\X

fi(y)Kfi(y)dy

= 〈fi, Kfi〉.

Thus λi〈fi, fi〉 = λi〈fi, fi〉 and so λi ∈ R.
The trace formula is obtained by integrating k(x, y) on the diagonal∫

G\X
k(x, x)dx

and computing this in two ways: (1) spectral theory; (2) using the geometry of G\X. We
cannot do (2) yet because this depends on the space X, but the spectral theory computation
is general.

We have the basis f1, f2, · · · ∈ L2(G\X) with Kfi = λifi. Consider k(x, y) with y = y0

fixed. As a function of x, k(x, y0) ∈ L2(G\X). By the spectral theorem, k(x, y0) has a
spectral expansion in x:

k(x, y0) =
∞∑
i=1

〈k(∗, y0), fi〉fi(x).

There is no continuous spectrum because the operator is bounded. Since

〈k(∗, y0), fi〉 =

∫
G\X

k(x, y0)fi(x)dx = λi · fi(y0),

we get the identity

k(x, y) =
∞∑
i=1

λifi(x)fi(y).

Thus ∫
G\X

k(x, x)dx =
∞∑
i=1

λi

∫
G\X

fi(x)fi(x)dx =
∞∑
i=1

λi

which is the trace.
There is a beautiful book Bounded Integral Operators on L2 Spaces by Halmos and Sunder

which discusses these in general. Selberg’s idea was to apply this to the group GL(2). Now
we will do the simplest case — the Selberg trace formula for Γ = SL(2,Z). In this case we
don’t have to worry about cusps. It is important to understand what is going on in this
simplest case first before jumping to the adelic generalizations.

Let φ : R→ R+ satisfy φ(t) ≤ c0
(2+|t|)1+ε for some fixed constant c0 > 0.

Definition 13.3 (Selberg’s kernel function). Let z = x+ iy, z′ = x′ + iy′ ∈ h with x, x′ ∈ R
and y, y′ > 0. Then

kφ(z, z′) := φ

(
|z − z′|2

yy′

)
.

Remark.

(1) |z−z
′|2

yy′
is almost the hyperbolic distance between z, z′.

(2) kφ(z, z′) is symmetric: kφ(z, z′) = kφ(z′, z) = kφ(z′, z).
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Proposition 13.4. For all g ∈ SL(2,R), we have

kφ(gz, gz′) = kφ(z, z′).

Proof. Let g =

(
a b
c d

)
. Then kφ(gz, gz′) is equal to

φ

 ∣∣az+b
cz+d
− az′+b

cz′+d

∣∣2(
y

|cz+d|2

)(
y′

|cz′+d|2

)
 = φ

(
|(az + b)(cz′ + d)− (az′ + b)(cz + d)|2

yy′

)
= φ

(
|z − z′|2

yy′

)
.

Note we need the fact that ad− bc = 1 here. �

Definition 13.5. Kφ(z, z′) =
∑
γ∈Γ

kφ(γz, z′) =
∑
γ∈Γ

kφ(z, γz′).

Then Kφ determines an integral operator on L2(Γ\h). For f ∈ L2(Γ\h), we define

Kφf(z) :=

∫
Γ\h

Kφ(z, z′)f(z′)dz′.

Remark. Without that property φ(t) ≤ c0
(2+|t|)1+ε , the series defining Kφ will not converge

absolutely.

We want to compute the trace of Kφ. Formally,

TraceKφ =

∫
Γ\h

Kφ(z, z)dz.

But there is a big problem — Kφ is not Hilbert–Schmidt and we get ∞. Selberg knows how
to fix it in this case and we will follow his notes on the trace formula. This problem is even
more serious for GL(n). Arthur found a fix and it is extremely complicated.

Formally,

Kφf(z) =

∫
Γ\h

Kφ(z, z′)f(z)dz′

=

∫
Γ\h

∑
γ∈Γ

kφ(z, γz′)f(z′)dz′

=
∑
γ∈Γ

∫
γ(Γ\h)

kφ(z, z′)f(z′)dz′

=

∫
h

kφ(z, z′)f(z′)dz′.

Now we will give Selberg’s solution to the convergence problems. He defines two modifi-
cations to Kφ.

(1) K#
φ (z, z′) := Kφ(z, z′)−

∑
m∈Z

kφ(z, z′ +m);

(2) K̃φ(z, z′) := Kφ(z, z′)−
∫ 1

0

Kφ(z, z′ + t)dt.
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Selberg proves that K#
φ is Hilbert–Schmidt. He also proves |K#

φ − K̃φ| is small, which

implies K̃φ is Hilbert–Schmidt. Then he works with K̃φ.
Let L2

0(Γ\h) be the space of cusp forms for Γ. Then f ∈ L2
0(Γ\h) if and only if f ∈ L2(Γ\h)

and the constant term in the Fourier expansion is
∫ 1

0
f(z + t)dt = 0.

Proposition 13.6. If f ∈ L2
0(Γ\h), then K̃φf ∈ L2

0(Γ\h).

Proof.

K̃φf(z) =

∫
Γ\h

(
Kφ(z, z′)−

∫ 1

0

Kφ(z, z′ + t)dt

)
f(z′)dz′.

We can check that∫ 1

0

K̃φf(z + u)du =

∫ 1

0

∫
Γ\h

(
Kφ(z + u, z′)−

∫ 1

0

Kφ(z + u, z′ + t)dt

)
f(z′)dz′du = 0.

�

We can now compute the trace

Trace K̃φ =

∫
Γ\h

K̃φ(z, z)dz.

Let f ∈ L2
0(Γ\h) be an eigenfunction of ∆ = −y2

(
∂2

∂x2
+ ∂2

∂y2

)
with ∆f = λf . Selberg

proves that f must also be an eigenfunction of K̃φ:

K̃φf = h(λ)f.

h is called the Selberg transform. Then we have

Trace K̃φ =
∑
λ

h(λ).

Next time I will prove that K̃φ is Hilbert–Schmidt and show that h is a combination of
the Abel transform and the Fourier transform. There is an explicit formula of h by Selberg,
which makes his trace formula very powerful.

14. Lecture 14 (October 29, 2013)

Unfortunately I was unable to attend the lecture.

15. Lecture 15 (October 31, 2013)

15.1. Selberg Trace Formula. We started out with a test function of the type φ(t) �
1

|2+t|1+ε for t ≥ 0, and considered

kφ(z, z′) = φ

(
|z − z′|2

yy′

)
which satisfies kφ(γz, γz′) = kφ(z, z′) for all γ ∈ SL(2,R). We set

Kφ(z, z′) =
∑

γ∈Γ=SL(2,Z)

kφ(γz, z′).
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The Selberg transform, which was also discovered by Harish-Chandra in a different form, is

Kφf(z) :=

∫
Γ\h

Kφ(z, z′)f(z′)dz′.

We have the following

Theorem 15.1. If ∆f = λf , then Kφf = hφ(λ)f where

hφ(λ) =
1√
2

∫ ∞
0

tirΦ(t− 2 + t−1)
dt

t

and

Φ(x) =
√

2

∫ ∞
0

φ(y)
dy√
y − x

.

Proof. Let w = reiθ be in polar coordinates. Assume f(w) is radially symmetric, i.e.
f(reiθ) = f(r) for all r ∈ [0, 2π), so f is a function of r only. If ∆f = λf is regular,
i.e. has a power series in r, then up to a constant, f is unique. This follows from the theory
of differential equations. Since ∆ is a second order differential operator, there are only two
solutions. If we write

f(w) = rc(1 + a1r + a2r
2 + · · · ),

then

∆f = −1

4
(1− r2)

(
d2f

dr2
+

1

r

df

dr

)
= λf.

The other solution is (log r)f(r) which is not regular.
Consider

Kφf(z) =

∫∫
h

φ

(
|z − z′|2

yy′1

)
f(z1)

dx1dy1

y2
1

.

We want to show that this equals hφ(λ)f(z) for some unique function hφ. Consider the map
h → U = {w = reiθ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} given by a linear fractional transformation
z1 7→ az1+b

cz1+d
which sends z 7→ 0. In other words, we want∫∫

U

φ

(
4|w|2

1− |w|2

)
f ∗(w)d∗w

?
= hφ(λ)f ∗(0)

where f ∗(w) = f(z1). Note that φ
(

4|w|2
1−|w|2

)
is radially symmetric, so the above is equivalent

to ∫ 1

r=0

φ

(
4|w|2

1− |w|2

)∫ 2π

θ=0

f ∗(w)dθrdr
?
= hφ(λ)f ∗(0)

where f#(w) :=
∫ 2π

θ=0
f ∗(w)dθ is radially symmetric. Thus we want∫∫

U

φ

(
4|w|2

1− |w|2

)
f#(w)dw

?
= hφ(λ)f#(0),

so hφ(λ) is uniquely determined.
To explicitly compute Kφf , we choose f(z) = ys with λ = s(1− s). �
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Now we want to compute the geometric side of the trace formula. Formally we have

TrKφ =

∫∫
D
Kφ(z, z)dz =

∫∫
D

∑
γ∈Γ

kφ(z, γz)dz

where D = Γ\h. The idea is to break the sum into conjugacy classes. For τ ∈ Γ, define the
conjugacy class [τ ] := {ατα−1 : α ∈ Γ} and the centralizer Γτ := {σ : στ = τσ}. Then

TrKφ =

∫∫
D

∑
[τ ]

∑
γ∈Γτ\ Γ

kφ(z, γτγ−1z)dz

=
∑
[τ ]

∑
γ∈Γτ\Γ

∫∫
D
kφ(γz, τγz)dz

=
∑
[τ ]

∑
γ∈Γτ\Γ

∫∫
γD
kφ(z, τz)dz

=
∑
[τ ]

∫∫
Γτ\h

kφ(z, τz)dz.

Here O(τ) :=
∫∫

Γτ\h kφ(z, τz)dz is called the orbital integral.

For τ ∈ SL2(Z), there are three classifications:

• If Trace(τ) = 2 and τ 6=
(

1 0
0 1

)
, then τ is parabolic.

• If Trace(τ) > 2, then τ is hyperbolic.
• If Trace(τ) < 2, then τ is elliptic.

The orbital integrals are completely different in each of the above three cases. For the
hyperbolic and elliptic cases, the orbital integral converges absolutely. In the parabolic case,
the orbital integral blows up and we need to subtract by a multiple of the Eisenstein series.

First we compute the identity orbital integral:

O

((
1 0
0 1

))
=

∫∫
Γ\h

φ

(
|z − ( 1 0

0 1 ) z|2

y2

)
dz = φ(0) · Vol(Γ\h) =

3

π
φ(0).

Next let us look at the hyperbolic orbital integral. Let P be a hyperbolic element in
SL(2,Z) (we denote by P because hyperbolic elements are analogous to primes!). Then

there exists γ ∈ SL(2,R) such that γPγ−1 =

(
a 0
0 a−1

)
with a > 1, and

Tr(P ) = Tr(γPγ−1) = a+ a−1 > 2.

Selberg defines the norm NP = a2, so we have

Tr(P ) = NP
1
2 +NP−

1
2 .

Now P hyperbolic implies P l hyperbolic for l = 0, 1, 2, · · · . Let P0 generate an infinite
cyclic group of hyperbolic elements, and P = P l

0 for some l ≥ 1. The centralizer of P is
ΓP = {P l

0 : l ∈ Z}. We need to compute ΓP\h. Note that

γP0γ
−1z =

(
a 0
0 a−1

)
z = a2z = NPz.
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The fundamental domain of ΓP\h is the horizontal strip {z ∈ C : Im z ∈ [1, NP0]}. The
orbital integral is thus

O(P ) =

∫∫
ΓP \h

kφ(z, Pz)dz

=

∫ NP0

y=1

∫ ∞
x=−∞

φ

(
|z − Pz|2

y2NP

)
dxdy

y2

=

∫ NP0

1

∫ ∞
−∞

φ

(
(NP

1
2 +NP−

1
2 )2

(
1 +

x2

y2

))
dxdy

y2

= logNP0

∫ ∞
−∞

φ((NP
1
2 +NP−

1
2 )2(x2 + 1))dx.

This is an Abel transform, which turns into the Selberg transform after we apply an inverse
Fourier transform. We are not going to do the details, but the final formula is

O(P ) =
logNP

NP
1
2 −NP− 1

2

hφ(logNP ).

The other two types of orbital integrals are more complicated, and the Selberg trace
formula is

Tr K̃φ = φ(0) Vol(Γ\h)+
∑
[P ]

logNP

NP
1
2 −NP− 1

2

hφ(logNP )+
∑

elliptic

(∗)+

( ∑
parabolic

(∗)−
∫

Eisenstein series

)
,

where Tr K̃φ =
∑
hφ(λi) is the spectral side, and the right hand side is the geometric side.

Note that Kφ has to be replaced by K̃φ here because we are subtracting the Eisenstein series.
Assume Γ ⊂ SL(2,R) is cocompact (i.e. Γ\h is compact) with no elliptic elements. Then

the trace formula is very simple:

TrKφ =
∞∑
i=1

hφ(λi) = φ(0) Vol(Γ\h) +
∑
[P ]

logNP

NP
1
2 −NP− 1

2

hφ(logNP ).

This is the case Selberg discusses first in his Tata paper. Selberg stated his results and only
released his proofs after others gave more complicated proofs.

The presence of log is suggestive of the explicit formula of the prime number theorem,
which we recall now. If we integrate both sides of

−ζ
′

ζ
(s) =

∑
p

∞∑
k=1

log p

pks
.

against some test function H(s), we get

1

2πi

∫ 1+i∞

1−i∞
−ζ
′

ζ

(
1

2
+ s

)
H(s)ds =

∑
p

∞∑
k=1

log p

pk/2
· 1

2πi

∫ 1+i∞

1−i∞
e−(log p)ksH(s)ds.

The explicit formula is an identity relating this and the zeros of ζ:∑
p

∞∑
k=1

H̃(k log p) =
∑
p

ζ( 1
2

+p)=0

(· · · ).
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Selberg asked if it is possible to construct a zeta function Z(s) using hyperbolic elements

P ∈ Γ such that when you compute
∫

Z′

Z
(s)h(s)ds you get Tr K̃φ. The answer is YES! The

zeros of Z(s) are 1
2

+ iν where 1
4

+ ν2 is the eigenvalue of ∆, i.e. there exists a Maass form

f : L2(Γ\h) → C such that ∆f =
(

1
4

+ ν2
)
f . This implies that the Riemann hypothesis

holds for Z(s), but this is slightly different from the classical case in that Z(s) is known to
have Siegel zeros, i.e. zeros close to 1.

Langlands once said the Selberg zeta function doesn’t exist for him. They are not con-
nected to automorphic forms!

16. Lecture 16 (November 7, 2013)

16.1. Selberg Trace Formula. I’m going to review the Selberg transform, using Sel-
berg’s original notations. We have a function f ∈ L2(Γ\h) with ∆f = λf where ∆ =

−y2
(
∂2

∂x2
+ ∂2

∂y2

)
, and Kφf = h(λ)f for

Kφf(z) =

∫
Γ\h

Kφ(z, z′)f(z′)dz′

which is the Selberg transform. The Abel transform is

Φ(w) =

∫ ∞
−∞

φ(x2 + w)dx =

∫ ∞
−∞

φ(t)√
t− w

dt.

Selberg introduces the functions

g(u) := Φ(eu + e−u − 2)

and

h(r) :=

∫ ∞
0

g(u)eirudu.

Let us state the Selberg trace formula for co-compact groups Γ. Suppose there is an
orthonormal basis of Maass forms for Γ satisfying ∆ηj =

(
1
4

+ r2
j

)
ηj and ηj(γz) = ηj(z) for

all γ ∈ Γ. There are no Eisenstein series! Last time I computed the Selberg trace formula,
but let me make it more explicit using this basis. The trace is

∞∑
j=1

h(rj) =

∫
Γ\h

Kφ(z, z)
dxdy

y2

= Vol(Γ\h)φ(0) +
∑

primitive hyperbolic
classes [P0]

∞∑
l=1

∫ ∞
−∞

∫ P 2
0

1

φ

(
(P 2l

0 − 1)(x2 + y2)

P 2l
0 y

2

)
dxdy

y2

assuming there are no elliptic elements.
The identity term can be written as

φ(0) = − 1

π

∫ ∞
0

Φ′(w)√
w
dw = − 1

π

∫ ∞
0

g′(u)

e
u
2 − e−u2

du =
1

2π2

∫ ∞
0

∫ ∞
0

rh(r)
sin(ru)

e
u
2 − e−u2

dudr

because h is the Fourier transform of g. Similarly, we can get rid of the φ in the sum over
hyperbolic terms and express it in terms of g and h. Thus we get the trace formula for
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co-compact groups

∞∑
j=1

h(rj) = Vol(Γ\h) · 1

4π

∫ ∞
−∞

r
eπr − e−πr

eπr + e−πr
h(r)dr +

∑
[P0]

∞∑
l=1

log(NP0)

(NP0)
l
2 − (NP0)−

l
2

g(l logNP0).

Selberg asked whether we can construct a zeta function for which the trace formula is the
analogue of the explicit formula, which we now review. We have

−ζ
′

ζ
(s) =

∑
p

∞∑
l=1

log p

pls
.

Then

1

2πi

∫ 1
2

+ε+i∞

1
2

+ε−i∞
−ζ
′

ζ

(
1

2
+ s

)
H̃(s)ds =

∑
p

∞∑
l=1

log p

p
l
2

· 1

2πi

∫
( 1
2

+ε)
p−lsH̃(s)ds =

∑
p

∞∑
l=1

log p

p
l
2

H(pl),

where the Mellin transform is

H̃(s) =

∫ ∞
0

ysH(y)
dy

y

and the inverse Mellin transform is

H(y) =
1

2πi

∫
y−sH̃(s)ds.

Let us compare this with the trace formula. Consider the completed Riemann zeta function
π−

s
2 Γ
(
s
2

)
ζ(s) under s 7→ 1− s. The functional equation gives

−π
2

+
1

2

Γ′

Γ

(s
2

)
+
ζ ′

ζ
(s) =

π

2
− 1

2

Γ′

Γ

(
1− s

2

)
− ζ ′

ζ
(1− s),

i.e.

−ζ
′

ζ

(
1

2
+ s

)
=
ζ ′

ζ

(
1

2
− s
)
− π +

1

2

(
Γ′

Γ

( 1
2

+ s

2

)
+

Γ′

Γ

( 1
2
− s
2

))
.

Shifting the line of integration and picking up the residues, we get

1

2πi

∫
( 1
2

+ε)
−ζ
′

ζ

(
1

2
+ s

)
H̃(s)ds = H̃

(
1

2

)
−

∑
α

ζ( 1
2

+α)=0

H̃(α)+
1

2πi

∫
(− 1

2
−ε)
−ζ
′

ζ

(
1

2
+ s

)
H̃(s)ds.

Substituting the above into this and simplifying, the final identity is

2
∑
p

∞∑
l=1

log p

p
l
2

H(pl) = H̃

(
1

2

)
−

∑
α

ζ( 1
2

+α)=0

H̃(α) +
1

2πi

∫
Γ′

Γ
· · ·

i.e. ∑
H̃(α)− H̃

(
1

2

)
= −2

∑
p

∑
l

log p

p
l
2

H(pl) +
1

2πi

∫
Γ′

Γ
· · · .

This looks similar to the Selberg trace formula, so the question is whether we can construct
an Euler product so that when we take its logarithmic derivative, we get the explicit formula.
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Definition 16.1 (Selberg Zeta Function).

Z(s) :=
∏
P0

∞∏
l=0

(
1− 1

NP s+l
0

)
.

Recall a hyperbolic element can always be diagonalized

γPγ−1 =

(
ρ 0
0 ρ−1

)
and we define the norm to be NP = ρ2. If we compute

∫
Z′

Z
(s), we should get the trace

formula. To do this we need a lemma.

Lemma 16.2.

Z ′

Z

(
1

2
+ s

)
=
∑
P0

∞∑
l=1

logNP0

NP
l(s+ 1

2
)

0 −NP−l(s+
1
2

)

0

.

Proof.

Z ′

Z
(s) =

d

ds
(logZ(s)) =

d

ds

∑
P0

∞∑
l=0

log(1−NP−s−k0 )

=
∑
P0

∞∑
l=0

logNP0
NP−s−l0

1−NP−s−l0

=
∑
P0

∞∑
l=0

logNP0 ·NP−s−l0

∑
m≥0

NP−ms−ml0

=
∑
P0

∑
m≥1

logNP0

NPms
0 −NPm(s−1)

0

.

�

Now we make a special choice of H so that everything is nice. We will follow Hejhal’s
book. Let

h(r) =
1

r2 + α2
− 1

r2 + β2
=

β2 − α2

(r2 + α2)(r2 + β2)

where α, β ∈ C with 1
2
< Re(α) < Re(β). Note h(r) = Θ( 1

r4
). Then

g(u) =
1

2α
e−α(u) − 1

2β
e−β(u).

If we plug these into the trace formula,

1

2α

∑
P0

∞∑
l=1

logNP0

NP
l
2

0 −NP
− l

2
0

· 1

NP lα
0

− 1

2β

∑
P0

∞∑
l=1

logNP0

NP
l
2

0 −NP
− l

2
0

· 1

NP lβ
0

=
∞∑
j=0

(
1

r2
j + α2

− 1

r2
j + β2

)
− Vol(Γ\γ)

4π

∫ ∞
−∞

r

(
1

r2 + α2
− 1

r2 + β2

)
tanh(πr)dr.
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Next choose α = s− 1
2

and β 7→ b− 1
2
. By the lemma,

1

2s− 1

Z ′

Z

(
s− 1

2

)
− 1

2β − 1

Z ′

Z

(
β − 1

2

)
=
∞∑
j=1

(
1

r2
j + (s− 1

2
)2
− 1

r2
j + (β − 1

2
)2

)
−Vol

4π

∫
dr

r2 + (s− 1
2
)2
.

Note that the RHS is invariant under s 7→ 1 − s, and it has poles at s = 1
2
± irj. Thus the

logarithmic derivative Z′

Z
has simple poles at s = 1

2
+ irj and no other poles. If Z has a pole,

then Z′

Z
has a simple pole there with negative residue, but the residue from the RHS is never

negative, so we know Z has no poles.
This is how we prove the analytic continuation, functional equation and the zeros and

poles of the Selberg zeta function.

Theorem 16.3. The Selberg zeta function Z(s) =
∏

P0

∏∞
l=0(1−NP−s−l0 ) is an entire func-

tion of s ∈ C which satisfies

(1) Z(s) has trivial zeros at s = −l = −1,−2,−3, · · · with multiplicity (2g − 1)(2l + 1).
(2) s = 0 is a zero of multiplicity 2g − 1 and s = 1 is a zero of multiplicity 1.
(3) The non-trivial zeros are at s = 1

2
± irj, where 1

4
+ r2

j is an eigenvalue of ∆.

(4) (Functional Equation) Z(s) = Z(1− s) exp

(
Vol(Γ\h)

∫ s− 1
2

0

r tanh(πr)dr

)
.

The proof can be found in Hejhal’s book.
Let me make some remarks:

(1) Z(s) satisfies the Riemann hypothesis because ∆ is a self-adjoint operator on L2(Γ\h),
which implies the eigenvalues 1

4
+ r2

j are real.

(2) For L2(Γ\h) with Γ a congruence subgroup of SL(2,Z), we have a spectral gap

λj =
1

4
+ r2

j >
3

16
.

Selberg conjectured that λj ≥ 1
4
, which implies all trivial zeros lie on the real axis

and there are no exceptional zeros.

Every hyperbolic matrix P has two fixed points r and −r on the real axis, and the length
of the closed geodesic between r and −r is equal to NP . We have the prime geodesic theorem∑

NP≤x

logNP ∼ x

as x ∈ ∞. Since we have the Riemann hypothesis in this case, Selberg showed∑
NP≤x

logNP ∼ x+ Θ(x
3
4

+ε).

We don’t get an exponent of 1
2

because there is one big difference between the Riemann and
Selberg zeta functions. We say an entire function f(s) has Hadamard order r if

H(s)� e|s|
r

for all s ∈ C. The Riemann zeta function ζ(s) has Hadamard order 1, and the Selberg zeta
function Z(s) has Hadamard order 2. For ζ(s), the Hadamard order comes from Γ(s+ 1) =
sΓ(s). When this first came out, the question was what this weird integral in the functional
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equation of Z(s) is. The answer was found by Marie-France Vignéras — it is the Barnes
double gamma function G(s) which satisfies

G(s+ 1) = Γ(s)G(s).

This gives a Hadamard order 2.
Let me mention two generalizations of the Selberg zeta function. The Ihara zeta function

is the p-adic version of the Selberg zeta function. The Ruelle zeta function is constructed
using dynamical systems.

We only know the Selberg zeta function for GL(2). It is an open problem whether there
exists a Selberg zeta function of higher rank.

Next time we will start the adelic version of the Selberg trace formula.

17. Lecture 17 (November 12, 2013)

17.1. Selberg Trace Formula (General Case). We have spent a lot of time on Selberg’s
original version of his trace formula, so now we will jump to the most general case. The
actual trace formula will be very simple in the end, except that nothing converges. We will
first set up the notations, and then deal with convergence issues.

Let F be an algebraic number field and K/F be a finite extension. Let G be an algebraic
group, e.g. GL(2), and GK be the base change over F . The only difference between G and
GK is that for G(R) we may only consider rings that contain K.

Definition 17.1 (Algebraic torus). A torus T over a field F is an algebraic group over F
such that after base change, TF

∼= GL(1)k for some positive integer k.

Here GL(1) is the multiplicative group in algebraic geometry defined by ab = 1.

Definition 17.2 (Split torus). A torus TF over F is split if TF ∼= GL(1)k.

Definition 17.3 (Anisotropic torus). A torus T is anisotropic if Hom(T,GL(1)) = {0}.

Let us give some examples.

Example 17.4.

(1) GL(1) is a split torus.
(2) Let SO(2) = {g ∈ SL(2) : g−1 = tg} ∼= {x2 + y2 = 1 : x, y ∈ F}. Then SO(2,R) is

anisotropic and SO(2,C) ∼= GL(1) via a = x+ iy and b = x− iy.

A torus TF has two pieces of structure:

(1) Base change TF ;
(2) Galois descent needed to recover polynomial equations defining T as an algebraic

group.

The next thing we need is a reductive group.

Definition 17.5 (Reductive group). A reductive group G is an algebraic group satisfying
G ⊂ GL(n) and G = tG.

Definition 17.6 (Split reductive group). A reductive group is split if it contains a maximal
torus which is split.

I can now list the examples of split reductive groups.
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Example 17.7.

• General linear groups: An = SL(n+ 1) = {g ∈ GL(n+ 1) : det(g) = 1};
• Odd orthogonal groups: Bn = SO(2n + 1) = {g ∈ GL(2n + 1) : tgQ2n+1 =

Q2n+1, det(g) = 1}, where Q2n+1 =

0 0 1
0 Q2n−1 0
1 0 0

;

• Symplectic groups: Cn = Sp(2n);
• Even special orthogonal groups: Dn = SO(2n).

We will now move to the Selberg trace formula for all these groups. Let G be a reductive
group, F be a number field, A be the adele ring over F , and ω : F×\A× → C× be a Hecke
character. We have the infinite-dimensional vector space:

V := L2(G(F )\G(A)) := {f : f(γzg) = ω−1(z)f(g) for all g ∈ G(A), z ∈ Z(A), γ ∈ G(F )}
where L2 just means that the integral of the absolute value of f is bounded. We can think
of V as the space of automorphic forms.

We have a representation π : G(A) → GL(V ) defined by right action, i.e. if f ∈
L2(G(F )\G(A)) and h ∈ G(A), then we define

π(h)f(g) := f(gh).

Using π, we construct an operation V → V as follows.

Definition 17.8. Let φ : G→ C be a function satisfying φ(zg) = ω−1(z)φ(g) for z ∈ Z(G)
and g ∈ G, which is compactly supported modulo Z(G(A)). We define π(φ) : V → V as
follows:

π(φ) :=

∫
G(A)

φ(y)π(y)dy.

As an example, let us compute

π(φ)f(g) =

∫
G(A)

φ(y)π(y)f(g)dg =

∫
G(A)

φ(y)f(gy)dy

which implies

π(φ)f(zg) = ω−1(z)π(φ)f(g)

and

π(φ)f(γg) = π(φ)f(g)

for all γ ∈ G(F ).
To do the Selberg trace formula, we have to analyze π(φ) further. We compute for f ∈
L2(G(F )\G(A)),

π(φ)f(x) =

∫
G(A)

φ(y)f(xy)dy

=

∫
G(A)

φ(x−1y)f(y)dy

=
∑

γ∈G(F )

∫
γ·Z(A)G(F )\G(A)

φ(x−1y)f(y)dy
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=

∫
·Z(A)G(F )\G(A)

∑
γ∈G(F )

φ(x−1γy)f(y)dy.

Here we see Selberg’s kernel function

Kφ(x, y) =
∑

γ∈G(F )

φ(x−1γy).

But there is a big problem — this integral may not converge! We need to modify Kφ(x, y)
into the truncated kernel KT

φ (x, y). This is the most difficult part and I will talk about it
next time. If Kφ is Hilbert–Schmidt, i.e.∫

Z(A)G(F )\G(A)

∫
Z(A)G(F )\G(A)

|Kφ(x, y)|2 <∞,

then we can do a spectral expansion for Kφ. This will not be true, but we will have∫
Z(A)G(F )\G(A)

∫
Z(A)G(F )\G(A)

|KT
φ (x, y)|2 <∞.

Now I want to talk about the geometric side. The trace is obtained by

Trace =

∫
Z(A)G(F )\G(A)

Kφ(x, x)dx.

Let’s assume for the moment that this converges. Then we can rewrite it as

Trace =

∫
Z(A)G(F )\G(A)

∑
γ∈G(F )

φ(x−1γx)dx

=

∫
Z(A)G(F )\G(A)

∑
conjugacy
classes [τ ]

∑
γ∈Gτ\[τ ]

φ(x−1γτγ−1x)dx

=
∑
[τ ]

Vol(Z(A)Gτ (F )\Gτ (A))

∫
Gτ\G(A)

φ(x−1τx)dx.

The computation is exactly like before for GL(2). Here
∫
Gτ\G(A)

φ(x−1τx)dx are called the

orbital integrals.
Assuming φ is factorizable, i.e. φ =

∏
v φv, we have∫

Gτ\G(A)

φ(x−1τx)dx =
∏
v

∫
Gv,τ\Gv(A)

φv(x
−1
v τvxv)dx

which is a product of local orbital integrals. The whole problem is to compute these local
orbital integrals, which give us the geometric side of the trace formula.

Remark. In their book, Jacquet and Langlands computed the trace formula for two different
reductive groups and got matching orbital integrals. The functoriality conjecture, which I
won’t state precisely, basically says that if you take an automorphic form and some tensor
product, you get an automorphic form on a different group. For example, if you have a
GL(2)-automorphic form and take the symmetric square lift, Jacquet and Gelbart proved
that it gives an automorphic form on GL(3). The problem is stable conjugacy.

Suppose K is an algebraic number field.
50



Lemma 17.9. If A,B ∈ GLn(K) are conjugate over K, i.e.

B = γAγ−1

for some γ ∈ GLn(K), then there exists α ∈ GL(n,K) such that

B = αAα−1.

But this lemma may break down if G is not GLn.

Example 17.10. For G = SL(2,R),

(
0 −1
1 0

)
and

(
0 1
−1 0

)
are conjugate by

(
0 1
1 0

)
or(

i 0
0 −i

)
but not conjugate by an element of SL(2,R).

Definition 17.11 (Stably conjugate). A,B ∈ G(K) are stably conjugate if they are conjugate
over G(K).

To match orbital integrals in different groups, it is necessary to write the trace formula
in terms of stable conjugacy classes. Langlands and Shelstad conjectured the fundamental
lemma which gave explicit comparisons for stable orbital integrals, finally proved by Ngô.

Let me conclude by doing the simplest version of the general case. Let G be a finite
group, V ∼= Cr be a finite-dimensional complex vector space and π : G → GL(V ) be a
representation. We have the group algebra

C[G] := {φ : G→ C}
which is an algebra with convolution

φ1 ∗ φ2(g) =
∑
g1g2=g

φ1(g1)φ2(g2).

Example 17.12. We have the trivial representation πtriv, and the regular representation
πreg given by

πreg(h)φ(g) = φ(gh).

The Selberg trace formula breaks G into conjugacy classes

[g] = {σ−1gσ : σ ∈ G}.
The class functions are defined to be Class[G] := {φ : G→ C : φ(σgσ−1) = φ(g) for all σ, g ∈
G}. There is an inner product on class functions

〈φ1, φ2〉 :=
1

|G|
∑
g∈G

φ1(g)φ2(g).

Let χπ = Tr(π(g)) be the character associated to π.

Example 17.13. χtriv(g) = 1 and χreg(g) =

{
|G| if g = Id,

0 otherwise.

Definition 17.14.

1[h](g) =

{
1 if g ∈ [h],

0 otherwise.
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Then we have

〈1[h1], 1[h2]〉 =

{
|[h1]|
|G| if [h1] = [h2],

0 if [h1] 6= [h2].

The elements 1[h] form a basis for class functions.
The trace formula is ∑

i

m(πi)χπi =
∑
[g]

Tr(π(g)) · 1[g]

where m(πi) is the multiplicity of πi in π. This is just the spectral theorem. To get the
Selberg trace formula, we consider Γ ⊂ G. Let π : Γ → GL(W ) be a representation, where
W = Cl is a finite-dimensional complex vector space. We induce π to a representation
πind = IndGΓ (π) : G→ GL(V ) by

V := {f : g → W : f(γg) = π(γ)f(g) for all γ ∈ Γ, g ∈ G}
and

πind(h)f(g) := f(gh).

Definition 17.15 (Selberg kernel).

Kφ(x, y) :=
∑
γ∈Γ

φ(x−1γy)

where x, y ∈ Γ\G.

We have
χind(φ) =

∑
[γ]

Vol(Γγ\Gγ)
∑

x∈Γγ\G

φ(x−1γx)

where
∑

x∈Γγ\G φ(x−1γx) is the orbital integral.
If we work everything out, we get the Selberg trace formula for finite groups∑

conjugacy
classes [γ]

Vol(Γγ\Gγ)1[γ](φ) =
∑

irreducible
representations φi

mi · χi(φ)

where mi is the multiplicity. This turns out to be equivalent to Frobenius reciprocity.
Next time I will to explain how to do the truncation of the kernel function for GL(2). I

will follow the exposition in Gelbart’s book.

18. Lecture 18 (November 14, 2013)

Unfortunately I was unable to attend the lecture.

19. Lecture 19 (November 19, 2013)

19.1. Beyond Endoscopy. Beyond Endoscopy is the title of a famous paper by Langlands,
which is available on the IAS website. Shortly after the paper was published, Sarnak wrote
the letter Comments on Robert Langlands’ Lecture “Endoscopy and Beyond”, which is also
available online and has been very influential. Everything I say in the next few lectures will
be motivated by Sarnak’s letter.

Let me give a rough outline of what Beyond Endoscopy means. The motivation is Lang-
lands’ functoriality conjectures. Rather than defining these conjectures in general, which
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requires a huge amount of notations, let me give an example which is still unsolved. Let
π be an automorphic representation on GL(n,Q). Associated to π we have an L-function
L(s, π), which will have an Euler product that looks like

L(s, π) =
∏
p

n∏
i=1

(
1− αp,i(π)

ps

)−1

where αp,i(π) ∈ C. The key point is that there are n factors at each prime. We have the
Ramanujan conjecture: |αp,i(π)| ≤ 1 (usually equal to 1, but 0 when there is ramification).
Let’s take the tensor product

L(s, π⊗k) =
∏
p

∏
1≤i1,··· ,ik≤n

(
1− αp,i1(π) · · ·αp,ik(π)

ps

)−1

.

We could do other kinds of operations than tensor products, e.g. symmetric powers

L(s, Symk(π)) =
∏
p

∏
1≤i1≤···≤ik≤n

(
1− αp,i1(π) · · ·αp,ik(π)

ps

)−1

.

We have the special case of Langlands functoriality

Conjecture 19.1.

(1) L(s, πk) is automorphic on GL(nk).
(2) L(s, Symk(π)) is automorphic on GL

((
n+k−1

k

))
.2

Let me review the known results.

(1) D. Ramakrishnan: if π is on GL(2), then π ⊗ π is automorphic on GL(4).
(2) Jacquet–Gelbart: if π is on GL(2), then L(s, Symk(π)) is automorphic on GL(3).

Kim–Shahidi: if π is on GL(2), then L(s, Symk π) is automorphic for k = 2, 3, 4.
They have some partial results for k = 5.

There seems to be a real barrier going beyond these results. Langlands proposed a method
to try to prove these kinds of conjectures using the trace formula. The basic idea is that we
want to compare the trace formulae on two different groups and get some kind of matching. I
should say that Ngô’s method of proving the fundamental lemma does not help with proving
these conjectures. All the known results use the converse theorem. Remarkably, Kim–Shahidi
used the exceptional Lie groups to get their results, so it doesn’t go any further. Langlands
proposed a completely different method. Venkatesh, Herman and Altug have reproved some
of the above results using Beyond Endoscopy methods.

The first step is to get analytic continuation of things like L(s, πk) and L(s, Symk(π)) and
location of poles. This seems hopeless at the moment for a single π, but Langlands suggested
trying to do it for

S(h) =
∑
π

h(λπ)L(s, Symk(π))

where h is a test function of rapid decay and λπ is the Laplace eigenvalue of π, called the
spectral parameter. The key idea is that we can construct S(h) using the trace formula. In

2Here
(
n+k−1

k

)
=
∑

1≤i1≤···≤ik≤n 1.
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the trace formula we have the kernel function

K(g, g′) =
∑
f

h(f) · f(g)f(g′)

which gives

Tr =

∫
K(g, g) =

∑
h(f).

In order to get L(s, Symk(π)), we need the Hecke operators Tn. Let

Tnf = α(n)f

where α(n) is the n-th Fourier coefficient. Let’s say f ∈ Space(π) generates the space. Then

L(s, π) =
∑
n

(Tnf) · n−s.

The idea is to apply T ks , roughly of the form
∑

Tn
ns

(dependent on k), and get∫
T ks ·K(g, g) =

∑
h(π)L(s, Symk(π)).

By modifying the trace formula, we can get the sum S(h) on the spectral side. The idea is
to compare the trace formula on GL(n) using

∫
T ksK(g, g) =

∑
h(π)L(s, Symk(π)) with the

trace formula on GL
((
n+k−1

k

))
, and try to find some matching.

Definition 19.2. A smaller or simpler group G′ is endoscopic to G if the representations of
G′ describe the internal structure of the representations of G.

In this case the trace formula for G and G′ can be compared.
Langlands suggested using poles of L(s, Symk π) and considering some matching of the

form
Trace =

∑
π on GL(n)

h(π)Res
s=α

L(s, Symk(π)) =
∑

π∗ on GL(M)

h(π∗)Res
s=α

L(s, π∗).

In Sarnak’s letter to Langlands, he first talks about Andy Booker’s paper A test for
identifying Fourier coefficients of automorphic forms and application to Kloosterman sums.
Basically he gives a numerical test for modularity.

Katz made the following conjecture in his book Exponential Sums and Differential Equa-
tions.

Conjecture 19.3 (Katz). Let

S(m,n, c) =
c∑

a=1
(a,c)=1

aa≡1 (mod c)

e2πi·am+an
c

be the Kloosterman sum. Then

L(s,Kl) =
∏
p

(
1± S(m,n, p)

ps+
1
2

+
1

p2s

)−1

(which is convergent on Re(s) > 1) is the L-function of a Maass form for Γ0(N) for some
N ≥ 1.
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Remark. In 1999, Chai and Li proved Katz’s conjecture for function fields.

Booker numerically tested Katz’s conjecture and it came out very negative. Sarnak’s idea
was to combine Booker’s test and Langlands’ ideas.

Theorem 19.4 (Booker). L(s,Kl) cannot be the L-function of a holomorphic modular form
on Γ0(N).

Proof. If it is associated to a holomorphic form, then the Fourier coefficients all lie in a fixed
number field K/Q. Suppose that for fixed m,n, all S(m,n, p) ∈ K. Pick p > 3 not dividing
N . Then

S(m,n, p) ∈ Q(ζp) ∩K = Q.
On the other hand,

S(m,n, p) =

p−1∑
a=1

e2πi·am+an
p

=

p−1∑
t=1

(
1 +

(
t2 − 4mn

p

))
e

2πit
p

where
(
t2−4mn

p

)
is the quadratic symbol. This series has at most p−1

2
terms, but this is

impossible because the minimal polynomial for ζp is 1 + x+ · · · xp−1. �

Let us talk about Booker’s numerical test for checking modularity. Let

f(x+ iy) =
∑
n6=0

af (n)
√
yKiν(2π|n|y)e2πinx

be a Maass form for Γ0(N). The associated L-function is

L(s, f) =
∞∑
n=1

af (n)

ns
.

It satisfies a functional equation. If we define

Λ(s, f) =
N

s
2

πs
Γ

(
s+ ε+ iν

2

)
Γ

(
s+ ε− iν

2

)
L(s, f)

where ε = 0 or −1 depending on whether f is even or odd, then

Λ(s, f) = ±Λ(1− s, f).

Choose F (x) = x2e−x.

Definition 19.5. SY,N =
∞∑
n=1

(n,N)=1

λf (n)F
( n
Y

)
.

We have SY,N ≈
∑

n�Y λf (n)F
(
n
Y

)
. If λf (n) are randomly chosen, we expect SY,N ≈

√
Y .

However, Booker shows that modularity implies SY,N is much smaller than
√
Y . I can now

state the precise theorem.
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Theorem 19.6 (Booker). Assume f is a Maass form for Γ0(N) with eigenvalue λ. Then∣∣∣∣SY,N√Y
∣∣∣∣ < ∏

p|N
p2-N

(1 + p) ·
(
N(λ+ 3)

4288Y

)2

� 1

Y 2
.

Corollary 19.7. If Katz’s conjecture is true, then N(λ+ 3) > (18.3) · 106.

I should mention that Venkatesh–Booker–Strömbergsson numerically computed the first
1000 Maass forms for SL(2,Z) (for each of these Maass forms, they computed the first 100
Fourier coefficients to 1000 decimal places). These Fourier coefficients seem to be irrational
and transcendental.

Next time I will show how to use this kind of numerical modularity test in combination
with Langlands’ ideas, as suggested by Sarnak.

20. Lecture 20 (November 21, 2013)

20.1. Booker’s Theorems. We will give a proof of the theorem by Booker. Let

f(x+ iy) =
∑
n6=0

Af (n)
√
yKiν(2π|n|y)e2πinx

be a Maass newform on Γ0(N) with Laplace eigenvalue 1
4

+ ν2. We have the L-function

L(s, f) =
∑ Af (n)

ns

which satisfies the functional equation

Λ(s, f) =

(√
N

π

)s

Γ

(
s+ ε+ iν

2

)
Γ

(
s+ ε− iν

2

)
L(s, f) = ±Λ(1− s, f)

where

ε =

{
1 if f is even,

−1 if f is odd.

We define

SY,N :=
∑

(n,N)=1

Af (n)
( n
Y

)2

e−
n
Y .

Theorem 20.1 (Booker). We have

SY,N√
N

<
∏
p|N
p2-N

(1 + p) ·

(
N
(

1
4

+ ν2 + 3
)

42.88Y

)2

.

This implies that for Y →∞,
SY,N√
N
� 1

Y 2
.

On the other hand, if Af (n) are random, we expect

SY,N
N

= O(1)
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as Y →∞. So this gives a numerical test for modularity.
The proof uses standard methods in analytic number theory.

Proof. We have the test function h(x) = x2e−x, which is equal to

h(x) =
1

2πi

∫ 2+i∞

2−i∞
Γ(s+ 2)x−sds

by Mellin inversion, because

h̃(s) =

∫ ∞
0

x2e−xxs
dx

x
= Γ(s+ 2).

This implies that

SY,N =
∑

(n,N)=1

Af (n)h
( n
Y

)
=

∑
(n,N)=1

Af (n) · 1

2πi

∫ 2+i∞

2−i∞
Γ(s+ 2)

(
Y

n

)s
ds

=
1

2πi

∫ 2+i∞

2−i∞
Γ(s+ 2)L(s, f)

∏
p|N
p2-N

(
1± p−s−

1
2

)
Y sds

= ± 1

2πi

∫ − 3
2

+i∞

− 3
2
−i∞

Γ(s+ 2)Y s

(√
N

π

)1−2s
Γ
(

1−s+ε+iν
2

)
Γ
(

1−s+ε−iν
2

)
Γ
(
s+ε+iν

2

)
Γ
(
s+ε−iν

2

) L(1− s, f)
∏
p|N
p2-N

(
1± p−s−

1
2

)
ds

where we used the functional equation, and shifted the line of integration because the L-
function of a cusp form is holomorphic.

Recall Stirling’s formula: for s = σ + it where σ is a fixed real number, we have

Γ(σ + it) ∼ c|t|σ−
1
2 e−

π
2
|t|

as |t| → ∞, where c is a constant. This implies that in the integral above, Γ(s + 2) has
exponential decay as |t| → ∞, and

Γ
(

1−s+ε+iν
2

)
Γ
(

1−s+ε−iν
2

)
Γ
(
s+ε+iν

2

)
Γ
(
s+ε−iν

2

)
has polynomial decay in |t|. If we compute the constants carefully we will get Booker’s
theorem

SY,N√
Y
≤ cN,fY

−2.

�

In the appendix, Booker proves the following

Theorem 20.2 (Booker). Suppose 0 ≤ αp ≤ π are arbitrary real numbers (angles) for
primes p < P where P →∞. Then there exists c > 0 such that for all ε > 0, there exists a
Maass cusp newform f of level 1 such that ∆f = λf with

λ < e
cP2

logP
· log(1+

1
ε )

ε
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whose Fourier coefficients Af (p) = 2 cos θp (0 ≤ θp ≤ π) satisfy

|θp − αp| < ε

for all p ≤ P .

This implies we cannot disprove Katz’s conjecture by numerical calculations! However,
if we know that the coefficients are algebraic (e.g. modular forms), once we know they are
close enough we can prove things by numerical computations.

The proof of this theorem uses the trace formula. I think it will be interesting to generalize
this theorem adelically.

20.2. Selberg Trace Formula for Holomorphic Forms. Let us talk about the Selberg
trace formula for holomorphic forms. An interesting proof for Γ = SL(2,Z) was found by
Zagier in 1975, and it was generalized to level N by H. Cohen and Oèsterlé.

For z, z′ ∈ h, we will construct a kernel h(z, z′) which is assumed to be a holomorphic
form of weight k in both z and z′ independently. We define the convolution

f ∗ h(z′) :=

∫
Γ\h

f(z)h(z,−z′)(Im z)k
dxdy

y2
.

Zagier chooses the kernel function to be

hm(z, z′) :=
∑

ad−bc=m

(czz′ + dz′ + az + b)−k =
∑

ad−bc=m

(cz + d)−k
(
z′ +

az + b

cz + d

)−k
,

which converges absolutely for k ≥ 4. This kernel function simplifies Selberg’s original proof
of his trace formula, but only works when there is a holomorphic structure.

Theorem 20.3 (Zagier). Define Ck = (−1)
k
2 π

2k−3(k−1)
, and let Sk be the space of holomorphic

weight k cusp forms for SL(2,Z).

• The function C−1
k mk−1hm(z, z′) satisfies

f ∗ hm(z′) = Ckm
−k+1(Tmf)(z′)

where Tm : Sk → Sk is the Hecke operator, i.e. C−1
k mk−1hm(z, z′) is the kernel for

Tm.
• Let f1, · · · , fr be an eigenbasis of Sk with Tmfi = ai(m)fi. Then the trace of Tm is

equal to

Tr(T (m)) =
r∑
i=1

ai(m) =
mk−1

Ck

∫
Γ\h

hm(z,−z)(Im z)k
dxdy

y2
.

Proof. We want to prove

mk−1

Ck
hm(z, z′) =

r∑
i=1

ai(m)
fi(z)fi(z

′)

〈fi, fi〉
.

This is the spectral expansion into a basis f1, · · · , fr of Sk. This would then imply∫
Γ\h

mk−1

Ck
h(z,−z)(Im z)k

dxdy

y2
=
∑

ai(m).
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When m = 1, γ =

(
a b
c d

)
∈ SL(2,Z). Then the convolution is

f ∗ h1(z) =

∫
Γ\h

∑
γ∈SL(2,Z)

(−z′ + γz)−kf(γz)(Im γz)k
dxdy

y2

= 2

∫ ∞
0

∫ ∞
−∞

(x− iy − z′)−kf(x+ iy)yk−2dxdy

= 2

∫ ∞
0

2πi

(k − 1)!
f (k−1)(2iy + z′)dy

= Ckf(z′).

So we have proved the theorem when m = 1. We can easily generalize it to m > 1. �

We now state the

Theorem 20.4 (Selberg trace formula of Tm for holomorphic forms of weight k for SL(2,Z)).
We have

Tr(T (m)) = −1

2

∞∑
t=−∞

Pk(t,m)H(4m− t2)− 1

2

∑
dd′=m

min(d, d′)k.

Here

Pk(t,m) =
ρk−1 − ρk−1

ρ− ρ
where ρ+ ρ = t and ρ · ρ = m, and

H(n) =


0 if n < 0,

− 1
12

if n = 0,

class number = #{ax2 + bxy + cy2 : b2 − 4ac = −n} if n > 0,

where we have to count forms equivalent to x2 + y2 (resp. x2 + xy + y2) with multiplicity 1
2

(resp. 1
3
).

Zagier gives the following table:

n 0 3 4 7 8 11 12 15
H(n) − 1

12
1
3

1
2

1 1 1 4
3

2

Example 20.5. Let k = 4. There are no cusp forms of weight 4 for SL(2,Z), so Tr(Tm) = 0.
On the other hand,
∞∑

t=−∞

(t2−m)H(4m−t2) = −5H(20)−8H(19)−2H(16)+8H(11)+22H(4) = −10−8−3+8+11 = −2

and ∑
min(d, d′)3 = 13 + 13 = 2.

In fact, when k = 2, 4, 6, 8, 10, Tr(Tm) = 0 so we get an identity between class numbers and
divisor sums. But those relations were discovered previously by Kronecker. When k ≥ 12,
the trace involves cusp forms and the formula becomes more interesting.
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Proof (Sketch). We have

Tr(T (m)) =
mk−1

Ck

∫
Γ\h

∑
ad−bc=m

yk

(c|z|2 + dz − az − b)k
dxdy

y2
.

Zagier writes Tr(T (m)) =
∑∞

t=−∞ I(m, t) where

I(m, t) =
mk−1

Ck

∫
Γ\h

∑
ad−bc=m
a+d=t

yk

(c|z|2 + dz − az − b)k
dxdy

y2
.

Then he proves that

1

2
I(m, t) + I(m,−t) =


−1

2
Pk(t,m)H(4m− t2) if t2 − 4m < 0,

k−1
24
m

k−2
2 − 1

4
m

k−1
2 if t2 − 4m = 0,

−1
2

(
|t|−u

2

)k−1

if t2 − 4m = u2, u > 0,

0 otherwise

by elementary counting. This implies the trace formula. �

21. Lecture 21 (November 26, 2013)

21.1. Jacquet–Langlands Correspondence. Today I will talk about the Jacquet–Langlands
correspondence. In 1970 Jacquet and Langlands published their book Automorphic Forms
on GL(2). Ninety percent of that book was already known by work of the Russians —
the notion of automorphic representations was due to Gelfand, and even the tensor product
theorem was basically proved by Piatetski-Shapiro. Jacquet–Langlands gave new proofs,
which weren’t very surprising except when they gave the correspondence at the end of their
book. The idea was to compare two different groups and obtain a matching. That was what
inspired Langlands to make his conjecture in the end.

Let me first talk about quaternion algebras. Fix integers q, r ≥ 1 which are co-prime and
square-free.

Definition 21.1 (Quaternion algebra). D[r, q] := {x0 + x1J1 + x2J2 + x3J3 : x0, x1, x2, x3 ∈
Q}, where J1, J2, J3 are quaternions satisfying

J2
1 = q, J2

2 = r, J2
3 = −rq,

J1J2 = −J2J1,J1J3 = −J3J1,J2J3 = −J3J2,

J1J2 = J3, J2J3 = −rJ1, J3J1 = −qJ2.

Example 21.2. When r = q = −1, we get Hamilton’s quaternions.

Definition 21.3 (Conjugate). If x = x0+x1J1+x2J2+x3J3, then x = x0−x1J1−x2J2−x3J3.

Definition 21.4 (Norm). N(x) = x · x = x2
0 − qx2

1 − rx2
2 + rqx2

3.

Definition 21.5 (Trace). Tr(x) = x+ x.

We can realize the quaternion algebra D[q, r] as a matrix group inside M(2×2,Q(
√
q,
√
r))

by

1 7→
(

1 0
0 1

)
,
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J1 7→
(√

q 0
0 −√q

)
,

J2 7→
(

0
√
r√

r 0

)
,

J3 7→
(

0
√
rq

−√rq 0

)
.

In general, this can be described by the following formula.

Definition 21.6.

φ(x0 + x1J1 + x2J3 + x3J3) =

(
x0 + x1

√
q

√
r(x2 + x3

√
q)√

r(x2 − x3
√
q) x0 − x1

√
q

)
.

Then φ : D[q, r]
∼=→M ′(2× 2,Q(

√
r,
√
q)) ⊂M(2× 2,Q(

√
r,
√
q)) is an algebra homomor-

phism.

Definition 21.7. A subring O ⊂ D[q, r] is called an order if 1 ∈ O and, in addition, O is a
free Z-module of rank 4.

Definition 21.8. Let O be an order of D[q, r]. Then we define

disc(O) := det(Tr[ξj, ξk])

where {ξj} is a Z-basis for O.

Definition 21.9. Let O be an order of D[q, r]. We define ΓO ⊂ SL(2,R) to be the set

{φ(x) : x ∈ O, N(x) = 1}.

This will turn out to be a discrete subgroup. This was studied intensely by Eichler, who
proved the following

Theorem 21.10 (Eichler). Assume D = D[q, r] is a division algebra (i.e. for all a, b ∈
D − {0}, there exists a unique x ∈ D such that a = bx and a unique y ∈ D such that
ay = b.) Let O ⊂ D[q, r] be an order. Let h = {x + iy : x ∈ R, y > 0} be the upper half
plane. Then ΓO is a finitely generated Fuchsian group where Vol(ΓO\h) < ∞ and ΓO\h is
compact.

In other words, there are no cusps! Hecke had intensely studied modular forms for Γ0(N),
and Eichler was trying to generalize the theory to (quaternion) groups whose quotients are
compact. Jacquet and Langlands were aware of this, and they started to look at the trace
formula for these groups. Recall that when the quotient is compact, the trace formula has
no continuous spectrum and is very simple.

Now I can state the “naive” version of the Jacquet–Langlands correspondence. Let D[q, r]
be a division algebra over Q. Let O be an order of D[q, r]. To each Maass form φ ∈ L2(ΓO\h)
satisfying

∆φ = λφ

where ∆ = −y2
(
∂2

∂x2
+ ∂2

∂y2

)
is the Laplacian, there exists an integer N ≥ 1 and a Maass

form Φ ∈ L2(Γ0(N)\h) where ∆Φ = λΦ.
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This is worked out in Hejhal’s book, following Eichler who proved some special cases of
this. It is remarkable that there is such a correspondence, since the groups ΓO have compact
quotient and the theory of Hecke operators is very different from usual.

Jacquet–Langlands worked out the trace formulae on L2(ΓO\h) and L2(Γ0(N)\h) and
looked for matching. This led to Langlands’ functoriality conjectures, endoscopy and beyond
endoscopy. The proof was local and involved the “non-principal series”.

Let me now talk about the more general case.

Definition 21.11 (Essentially square-integrable local representations). Let Fv be a local
field. An irreducible admissible representation of GL(2, Fv) is essentially square-integrable
if it is a twist of a local representation which is not a principal series.

Theorem 21.12 (Jacquet–Langlands for GL(2)). Put G = GL(2) and G′ the unit group of
a quaternion algebra D over a field F . There is a one-to-one correspondence

{Automorphic representations of G′} ←→

{
Automorphic representations of G which
are essentially square-integrable at every
place where D ramifies

}
.

Further, if π′ is an automorphic representation of G′ and π is the corresponding automorphic
representation of G, then πv is completely determined by π′v where π′ ramifies at v.

This is essentially proved by the trace formula.
Let v be a place of F and Fv be its local field. Then there exists a unique quaternion

algebra over Fv which is a division ring. Let K be an extension of F . Then DK = D ⊗F K
is again a quaternion algebra over K.

Definition 21.13. We say K splits D if DK ↪→M(2× 2, K).

Definition 21.14. (Ramified) D is ramified at v if Fv splits D. Otherwise it is unramified.

In the Jacquet–Langlands correspondence, the left hand side is really co-compact finite-
dimensional representations with no parabolic conjugacy classes, but the right hand side has
infinite-dimensional automorphic representations with parabolic conjugacy classes. This is
something even the Russians didn’t expect. Langlands was so struck by this correspondence
that he kept thinking about this and was led to his entire program.

In their proof of the correspondence, Jacquet and Langlands show that if an irreducible
automorphic representation of GL(2) has a supercuspidal local representation, then the con-
tribution of the continuous spectrum to the trace formula is zero for suitable test functions.
This idea was generalized by Deligne-Kazhdan leading to the simple trace formula (no con-
tinuous spectrum contribution).

22. Lecture 22 (December 5, 2013)

22.1. Whittaker Transforms. Today I will talk about the Whittaker functions on GL(n,R)
at the archimedean place ∞.
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Let hn be the generalized upper half plane defined by

hn =


xy : x =


1

1 xij
. . .

1
1

 , y =


y1 · · · yn−1

. . .

y1y2

y1

1

 , xij ∈ R, yj > 0


.

When n = 2, this is the classical upper half plane. SL(n,Z) acts on hn by left multiplication,
and we have the Iwasawa decomposition

GL(n,R)/(SO(n,R)× R×) ∼= hn.

We are interested in functions φ ∈ L2(Γ\hn), where Γ ⊂ SL(n,Z) is a congruence subgroup,
satisfying:

• φ(γz) = φ(z) for all γ ∈ Γ and z ∈ hn;

•
∫

Γ\hn
|φ(z)|2d×z <∞;

• Dφ = λDφ for all invariant differential operators D in the center of the universal
enveloping algebra, where λD ∈ C.

Such a function φ is called an automorphic form.

Let Un =


1 ∗ ∗

. . . ∗
1


, and ψm1,··· ,mn−1 : Un → C× be the character defined by

ψm1,··· ,mn−1




1 u1,2

1 u2,3

. . .
. . .

1 un−1,n

1



 = e2πi(m1u1,2+···+mn−1un−1,n).

We define the (m1, · · · ,mn−1)-th Fourier coefficient of φ to be

φm1,··· ,mn−1(z) :=

∫ 1

0

· · ·
∫ 1

0

φ(uz)ψm1,··· ,mn−1(u)du

where u =

1 uij
. . .

1

 and du =
∏
duij. Then φm1,··· ,mn−1 satisfies the following proper-

ties:

•
∫

Γ\hn
|φm1,··· ,mn−1(z)|2d×z <∞;

• Dφm1,··· ,mn−1 = λDφm1,··· ,mn−1 for all invariant differential operators D;
• φm1,··· ,mn−1(uz) = ψm1,··· ,mn−1(u)φm1,··· ,mn−1(z) for all u ∈ Un(R) and z ∈ hn.

Definition 22.1. A Whittaker function for Γ acting on hn is a function W : hn → C
satisfying:
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(1)

∫
Γ\hn
|W (z)|2d×z <∞;

(2) DW = λDW for all invariant differential operators D;
(3) W (uz) = ψm1,··· ,mn−1(u)W (z) for all u ∈ Un(R) and z ∈ hn.

Condition (2) is a second-order differential equation, so there are two solutions, but only
one of them will be in L2, i.e. condition (1). Thus the Whittaker function is unique if it
exists.

Theorem 22.2 (Shalika, Multiplicity one). Fix a character ψm1,··· ,mn−1. There exists (up to
a constant multiple) a unique Whittaker function W satisfying (1), (2) and (3).

The proof of this is quite difficult. Diaconu and I found a simple proof for GL(3). Our
idea was to take the Mellin transform of this Whittaker function.

Multiplicity one is important because it gives a unique Fourier coefficient at every place,
which can then be used to construct L-functions.

We state the following theorem for Γ = SL(n,Z) and n ≥ 3 only. There is a more
complicated statement for general congruence subgroups.

Theorem 22.3 (Piatetski-Shapiro–Shalika). Let φ ∈ L2(Γ\hn) be an automorphic form.
Let W (z) be a fixed Whittaker function associated to ψ1,··· ,1 for Γ acting on hn. Then

φ(z) =
∑

γ∈Un−1(Z)\ SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

A(m1, · · · ,mn−1)W

(
M

(
γ

1

)
z

)
where M =.

A proof of this can be found in my book Automorphic Forms and L-functions for the
Group GL(n,R). An adelic proof is given in Cogdell’s notes, and details are given in my
book with Hundley.

When m = 2, the first sum does not appear and the expansion is

φ(z) =
∑
m 6=0

A(m)W (mz)

where z =

(
y x
0 1

)
and W (z) =

√
yKiν(2πy)e2πix is the K-Bessel function.

Now we talk about Jacquet’s Whittaker functions, which he constructed in his thesis for
the p-adic places but the construction also works at the archimedean places. The key point
is that Is1,··· ,sn−1(z) := ys11 y

s2
2 · · · y

sn−1

n−1 (where s1, · · · , sn−1 ∈ C) is always an eigenfunction of
all invariant differential operators D. For example, when n = 2, we have

D = −y2

(
∂2

∂x2
+

∂2

∂y2

)
and

Dys = s(1− s)ys.
If we simply define

W (z) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

Is(uz)ψ(u)du,
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then this does not converge! But assuming it does, we have formally

W (u1z) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

Is(uu1z)ψ(u)du

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

Is(uz)ψ(uu−1
1 )du

= ψ(u1)W (z)

for u1 ∈ Un and z ∈ hn.

Definition 22.4. Let s = (s1, · · · , sn−1). Define

Ws(z) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

Is(w0uz)ψ(u)du

where w0 =

 1

. .
.

1

, u =

1 uij
. . .

1

 and du =
∏
duij.

Putting in the long element w0 of the Weyl group guarantees convergence.

Example 22.5 (n = 2). Let z =

(
y x
0 1

)
. Then

Ws(z) =

∫ ∞
−∞

Is

((
0 1
−1 0

)
uz

)
e−2πiuxdu

=

∫ ∞
−∞

Is

((
0 1
−1 0

)(
y x+ ν
0 1

))
e−2πiνxdν

=

∫ ∞
−∞

(
y

(x+ ν)2 + y2

)s
e−2πiνxdν

is essentially the K-Bessel function
√
yKit(y)e2πix, which converges absolutely for Re(s) > 1.

It turns out that if we use other elements of the Weyl group, we get the degenerate
Whittaker functions.

Definition 22.6 (Jacquet’s Whittaker function). Fix n ≥ 2. Let ν = (ν1, · · · , νn−1) ∈ Cn−1.
Define

Iν(z) =
n−1∏
i=1

n−1∏
j=1

y
bijνj
i

where z = xy ∈ hn and bij =

{
ij if i+ j ≤ n,

(n− i)(n− j) otherwise.
Let vj,k =

j−1∑
i=0

nνn−k+i − 1

2
. We

define

W (z) =
n−1∏
j=1

∏
j≤k≤n−1

Γ(1
2

+ vj,k)

π
1
2

+vj,k

∫
Un(R)

Iν(w0uz)ψ(u)d×u.
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Writing νj = 1
n

+ itj, we set t = (t1, · · · , tn−1).

For z = xy =


1

1 xij
. . .

1



y1 · · · yn−1

y1 · · · yn−2

. . .

y1

1

, we define d×z =

d×x · d×y, where

d×x =
∏

dxij

and

d×y =
n−1∏
k=1

y
−k(n−k)
k

dyk
yk
.

Definition 22.7 (Whittaker transform). Let f : Rn−1
+ → C. We define the Whittaker

transform

f#(t) :=

∫
Rn−1
+

f(y)Wit(y)d×y (*)

where t = (t1, · · · , tn−1).

Theorem 22.8 (Kontorovich–Goldfeld, Whittaker transform inversion formula). Let f :
Rn−1

+ → C be smooth of compact support and f# : Rn−1
+ → C be as in (*). Then

f(y) =
1

πn−1

∫
Rn−1

f#(t)W−it(y)
dt∏

1≤k 6=l≤n Γ(αk···αl
2

)

where αi are defined by

k(n− k)

2
+

n−k∑
l=1

αl
2

=
n−1∑
k=1

bklνl

and

αn = −
n−1∑
k=1

αk.

Here
dt∏

1≤k 6=l≤n Γ(αk···αl
2

)
is the Plancherel measure for GL(n), whose existence was proved

by Harish-Chandra for all reductive Lie groups.
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