Last Time:

- deck transformations \(G(X) \): isomorphisms \(\tilde{X} \overset{\text{r}}{\rightarrow} X \)
- normal covering space: for any \(\tilde{x}_0, \tilde{x}_0' \in p^{-1}(x_0) \)
- \(H \subset \pi_1(X) \) normal \(\iff \) \(\tilde{X} \rightarrow X \) normal covering space

Prop: if \(\tilde{X} \rightarrow X \) is normal, \(G(\tilde{X}) \cong \pi_1(X)/\pi_1(X)_{\text{r}} \)

Today: what spaces can \(Y \) cover? group actions

Def.: a group \(G \) action on a set \(S \) (write \(G \acts \! \! \! \! \! \! \! \! \! S \)) is a map \(G \times S \rightarrow S \)

\[(g, s) \mapsto g(s) \]

and \(g, (g_2(s)) = (g, g_2)(s), \) \(\text{Id}(s) = s \)

so get group homomorphism \(G \rightarrow \text{Aut}(S) \)

if \(Y \) is a space, \(g : Y \rightarrow Y \) homeomorphism and so \(G \rightarrow \text{Homeo}(Y) \)

Ex.: group action of \(G(X) \) on \(\tilde{X} \), i.e. group homomorphism \(G(\tilde{X}) \rightarrow \text{Homeo}(\tilde{X}) \)
If $g \in G(\tilde{x})$, then $g : p^\sim(\tilde{x}) \to p^\sim(g(x))$, action on $p^\sim(\tilde{x})$, so $G(\tilde{x}) \to \text{Aut}(p^\sim(\tilde{x})) = S_n$ if $|p^\sim(\tilde{x})| = n$.

HW: Relate this description with previous description.

Ex.

$Z = \pi_1(S') \to S_3 = \text{Aut}(\{1, 2, 3\})$

Now study converse:

given $G \subseteq Y$, can form $Y/G : = \{y - g(y) : g \in G\}$ orbit space

Ex. if S is a group, $G \subseteq S$ subgroup,
then $G \subseteq S$ by multiplication and S/G
are cosets (quotient group if $G \subseteq S$ normal)

Ex. $G(\tilde{x}) \supseteq \tilde{x}$ and $\tilde{x}/G(\tilde{x}) \cong X$ quotient map $S \to S/G$ $s \to [s]$

Q. when is this map a covering space?

Ex. $\mathbb{Z}/2 \subseteq \mathbb{R}$ by $\phi(x) = -x$ ($\phi^2 = \text{Id}$)

$\xymatrix{ \mathbb{Z}/2 \ar[r]^\phi \ar[d]^{p^\sim(\mu)} & \mathbb{R} \ar[d]^\mu \\
\not\text{not homeomorphic} & \text{not homeomorphic} }$
Ex. \(Z \cong \mathbb{R}, \ \phi(x) = x + 1 \)

then \(\mathbb{R} \xrightarrow{\subseteq} \mathbb{S} \)

covering space

Def. \(G \curvearrowright Y \) is a covering space action if every \(y \in Y \) has a neighborhood \(U \ni y \) so that \(g(U) \cap U = \emptyset \) for all \(g \neq \text{Id} \in G \) \(\Rightarrow \) no fixed points (if \(G \) finite, \(\Leftarrow \))

Prop. if \(G \curvearrowright Y \) covering space action, then

1) \(Y \xrightarrow{\pi_1} Y/G \) is a normal covering space

2) deck transformation \(G(\tilde{y}) \cong G \) if \(Y \) is path-connected

\[\Rightarrow \pi_1(Y/G) / \pi_1(Y) \cong G \]

\(\tilde{y} \rightarrow Y \xrightarrow{\pi_1} Y/G \) maps \(\bigsqcup_{g \in G} g(U) \xrightarrow{\sim} U \)

and \(g(U) \cong U \)

- normal: \(\pi^{-1}(x_0) = \bigsqcup_{g \in G} g(\tilde{x}_0) \) so all related by \(G \)-action

- \(G \subseteq G(\tilde{y}) \) and \(G(\tilde{y}) \subseteq G \) since deck transformation \(\phi \) deformed by \(\phi(\tilde{x}_0) \in \pi^{-1}(\tilde{x}_0) \) and exists \(g \) with \(g(\tilde{x}_0) = \phi(\tilde{x}_0) \)
normal covering spaces \(Y \to X \iff \) covering space action \(G \subseteq Y \) for some \(G \)

with \(\pi_1(X) / \rho_\pi_1(Y) \cong G \)

Ex. \(\mathbb{Z}/2 \triangleleft S^n, \ x \to -x \)

\(S^n \to S^n/(\mathbb{Z}/2) = \mathbb{R}P^n \) covering space

\(\implies \mathbb{Z}/2 \cong G(S^n) \cong \pi_1(\mathbb{R}P^n) / \rho_\pi_1(S^n) \cong \pi_1(\mathbb{R}P^n) \)

so way to compute \(\pi_1(\mathbb{R}P^n) \)

Q: for which \(G \) is there covering space action \(G \triangleleft S^n \)

(i.e., if \(X_{\text{new}} \cong S^n \), what can \(\pi_1(X) \) be ?)

Thm. if \(n \) even, \(G \cong \mathbb{Z}/2 \) is only possibility

(Milnor): every abelian subgroup of \(G \) is cyclic

and \(G \) has at most one element of order 2

(Madsen, Thomas, Wall) given a group \(G \) satisfying *:

exists \(m \) so that \(G \triangleleft S^n \) is covering action

Ex. \(\mathbb{Z}/m \triangleleft S^{2m-1} \to \mathbb{R}^{2k} = S^k \)

by \(\phi(v) = e^{2\pi i/m} v, \phi^m = \text{Id} \)

no fixed points \(\implies \) finite \(\implies \) covering action

\(S^{2m-1}/\mathbb{Z}/m \) called lens space, generalise \(\mathbb{R}P^n \)
can get non-cyclic groups

Ex. \(n=3 \), \(S^3 \) is actually a group!
(called Lie group)

Quaternion algebra \(H = \mathbb{R}^4 = \mathbb{R}< 1, i, j, k > \)

\[i^2 = j^2 = k^2 = -1, \quad ij = k, \quad ji = -k \]

- \(S^3 = \{ |a| = 1 \} \subset H \), \(\| \cdot \| \) Euclidean norm and \(|ab| = |a| \cdot |b| \), so \(S^3 \subset H \) is subgroup

so any finite subgroup \(G \subset S^3 \)

gives \(G \subset S^3 \) covering space action

Quaternion group \(Q_8 = \{ \pm 1, \pm i, \pm j, \pm k \} \subset S^3 \)

\(Q_{um} = \langle e^{2\pi i m}, j \rangle = \langle a, b \mid a^4 = b^2 = 1, bab^{-1} = a^{-1} \rangle \)