(1) Hatcher 2.1.9

(2) Hatcher 2.1.11. Use this exercise to conclude that any inclusion \(i : S^k \hookrightarrow S^n, k < n, \) does not have a retract.

(3) Hatcher 2.1.14

(4) Hatcher 2.1.15

(5) a) Hatcher 2.1.20 (assume that \(X \) is a \(\Delta \)-complex and prove this by finding a \(\Delta \)-complex for \(SX \) in terms of a \(\Delta \)-complex for \(X \); or use the long exact sequence)

b) Suppose \(M \) is a \(\Delta \)-complex. Construct a \(\Delta \)-complex on \(\text{Cone}(M) \) and use this to show that \(\tilde{H}_n(\text{Cone}(M)) = 0 \) for all \(n \).

6. Consider a chain complex \(C \) given by \(0 \rightarrow \mathbb{Z}^k \xrightarrow{\varphi} \mathbb{Z}^n \xrightarrow{\psi} \mathbb{Z}^m \rightarrow 0 \) that is exact; so \(\varphi \) is injective, \(\psi \) is surjective, and \(\text{Image}(\varphi) = \text{Kernel}(\psi) \). Find an chain homotopy between the identity chain map \(\text{Id} : C \rightarrow C \) and the zero chain map \(0 : C \rightarrow C \).

7. a) Is every chain map \(B_* \rightarrow C_* \) so that \(B_k \rightarrow C_k \) is surjective for all \(k \) induce a surjective map \(H_k(B) \rightarrow H_k(C) \) on homology? If not, give a counterexample.

b) Is every chain map \(B_* \rightarrow C_* \) so that \(B_k \rightarrow C_k \) is injective for all \(k \) induce a injective map \(H_k(B) \rightarrow H_k(C) \) on homology? If not, give a counterexample.

8) Optional:

The simplicial chain complex for a point \(p \) is \(C_0(p) = \mathbb{Z} \) if \(n = 0 \) and \(C_n(p) = 0 \) otherwise; the boundary map is zero for all \(n \). The singular chain complex for \(p \) is \(D_0(p) = \mathbb{Z} \) for all \(n \) (since there is a single, constant map \(\Delta^n \rightarrow p \) for all \(n \)); the boundary map \(\partial_n : D_n(p) \rightarrow D_{n-1}(p) \) is the identity map if \(n \) is even and the zero map if \(n \) is odd. These two chain complexes have the same homology (later we will prove that simplicial and singular homology always agree).

Find chain maps \(f_* : C_* \rightarrow D_* \) and \(g_* : D_* \rightarrow C_* \), and chain homotopies \(h_1 : C_* \rightarrow C_{*+1}, h_2 : D_* \rightarrow D_{*+1} \) so that \(g_* \circ f_* : C_* \rightarrow C_* \) is chain homotopic to the identity chain.
map $Id_* : C_* \to C_*$ (via the chain homotopy h_1) and $f_* \circ g_* : D_* \to D_*$ is chain homotopic to the identity chain map $Id_* : D_* \to D_*$ (via the chain homotopy h_2).