Flexibility in Contact and Symplectic Geometry

Oleg Lazarev
Michael Zhao Memorial Student Colloquium

February 13, 2019
Rolling without slipping

Consider a car in \mathbb{R}^2 with position x, y and angle θ with the x-axis; configuration space is $\{(x, y, \theta)\} = \mathbb{R}^2 \times S^1$.

If the car slips, its path $(x(t), y(x(t)), \theta(t))$ can be arbitrary; for example $(t, 0, \pi/4)$.

Oleg Lazarev Michael Zhao Memorial Student Colloquium
Flexibility in Contact and Symplectic Geometry
Rolling without slipping

- Consider a car in \mathbb{R}^2 with position x, y and angle θ with the x-axis; configuration space is $\{(x, y, \theta)\} = \mathbb{R}^2 \times S^1$
Rolling without slipping

Consider a car in \mathbb{R}^2 with position x, y and angle θ with the x-axis; configuration space is $\{(x, y, \theta)\} = \mathbb{R}^2 \times S^1$.
Rolling without slipping

- Consider a car in \mathbb{R}^2 with position x, y and angle θ with the x-axis; configuration space is $\{(x, y, \theta)\} = \mathbb{R}^2 \times S^1$

- If the car slips, its path $(x(t), y(x), \theta(t))$ can be arbitrary; for example $(t, 0, \pi/4)$.
Rolling without slipping

Consider a car in \mathbb{R}^2 with position x, y and angle θ with the x-axis; configuration space is $\{(x, y, \theta)\} = \mathbb{R}^2 \times S^1$.

If the car slips, its path $(x(t), y(x), \theta(t))$ can be arbitrary; for example $(t, 0, \pi/4)$.
Rolling without slipping, II

- If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$
If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$
If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$

So a path $(x(t), y(t), \theta(t))$ is non-slipping if it is tangent to hyperplane distribution $\xi^2 := \ker(dy - \tan(\theta)dx) \subset T\mathbb{R}^2 \times S^1$
Rolling without slipping, II

- If car rolls without slipping, then θ determines direction of motion: $\frac{dy}{dx} = \tan(\theta)$

- So a path $(x(t), y(t), \theta(t))$ is non-slipping if it is tangent to hyperplane distribution $\xi^2 := \ker(dy - \tan(\theta)dx) \subset T\mathbb{R}^2 \times S^1$

- **Question:** can any path in \mathbb{R}^3 be C^0-approximated by the motion of a non-slipping car?
Formal/genuine functions

- Graph of function $z(x)$ with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
Formal/genuine functions

- Graph of function $z(x)$ with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- Decouple derivative from the function and graph ‘formal functions’ $(x, y(x), z(x)) \subset \mathbb{R}^3$
Formal/genuine functions

- Graph of function $z(x)$ with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- Decouple derivative from the function and graph ‘formal functions’ $(x, y(x), z(x)) \subset \mathbb{R}^3$
Formal/genuine functions

- Graph of function $z(x)$ with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- Decouple derivative from the function and graph ‘formal functions’ $(x, y(x), z(x)) \subset \mathbb{R}^3$

$(x, y(x), z(x)) \subset \mathbb{R}^3$ is graph of ‘genuine’ function if $\frac{dz}{dx} = y$, i.e. tangent to the hyperplane distribution $\xi^2 := \ker(dz - ydx)$
Formal/genuine functions

- Graph of function $z(x)$ with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- Decouple derivative from the function and graph ‘formal functions’ $(x, y(x), z(x)) \subset \mathbb{R}^3$

$(x, y(x), z(x)) \subset \mathbb{R}^3$ is graph of ‘genuine’ function if $\frac{dz}{dx} = y$, i.e. tangent to the hyperplane distribution $\xi^2 := \ker(dz - ydx)$

Example: replace ODE $\left(\frac{df}{dx}\right)^2 + f(x)^2 \frac{df}{dx} = x^5$ with *algebraic* equation $y^2 + yz^2 = x^5$; curves in this hypersurface tangent to ξ are solutions to the ODE
Formal/genuine functions

- Graph of function $z(x)$ with its derivative: $(x, \frac{dz}{dx}, z(x)) \subset \mathbb{R}^3$
- Decouple derivative from the function and graph ‘formal functions’ $(x, y(x), z(x)) \subset \mathbb{R}^3$

- $(x, y(x), z(x)) \subset \mathbb{R}^3$ is graph of ‘genuine’ function if $\frac{dz}{dx} = y$, i.e. tangent to the hyperplane distribution $\xi^2 := \ker(dz - ydx)$
- **Example:** replace ODE $(\frac{df}{dx})^2 + f(x)^2 \frac{df}{dx} = x^5$ with algebraic equation $y^2 + yz^2 = x^5$; curves in this hypersurface tangent to ξ are solutions to the ODE
- **Question:** can any formal function approximated by a genuine function?
Contact distribution

The contact distribution ξ and submanifolds tangent to it are the key objects.
Contact distribution

The contact distribution ξ and submanifolds tangent to it are the key objects.

Figure: The contact distribution $\xi_{std} = \ker(dz - ydx) \subset T\mathbb{R}^3$, image due to Patrick Massot
Definition: a contact structure ξ on a manifold Y^{2n+1} is a hyperplane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable.
Contact geometry

- **Definition:** a *contact structure* ξ on a manifold Y^{2n+1} is a hyperplane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, *maximally non-integrable*

- **Examples:** 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, $(S^{2n-1}, \xi_{\text{std}})$
Contact geometry

Definition: a contact structure ξ on a manifold Y^{2n+1} is a hyperplane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable.

Examples: 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})

The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism $\phi : (M, \xi_M) \to (N, \xi_N)$ such that $\phi^*\xi_N = \xi_M$
Contact geometry

- **Definition:** a *contact structure* ξ on a manifold Y^{2n+1} is a hyperplane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, *maximally non-integrable*

- **Examples:** 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std})

- The (universal cover of the) previous two examples are *contactomorphic:* exists a diffeomorphism $\phi : (M, \xi_M) \to (N, \xi_N)$ such that $\phi^* \xi_N = \xi_M$

- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is *isotropic* if $T\Lambda \subset \xi$
Contact geometry

- **Definition:** a contact structure ξ on a manifold Y^{2n+1} is a hyperplane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable.

- **Examples:** 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, (S^{2n-1}, ξ_{std}).

- The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism $\phi : (M, \xi_M) \to (N, \xi_N)$ such that $\phi^*\xi_N = \xi_M$.

- **Definition:** $\Lambda^k \subset (Y^{2n+1}, \xi)$ is isotropic if $T\Lambda \subset \xi$.

- Non-slipping car and graph of a genuine function are isotropics.
Definition: a contact structure ξ on a manifold \mathbb{Y}^{2n+1} is a hyperplane distribution $\xi^{2n} = \ker(\alpha)$ for a 1-form α with $\alpha \wedge (d\alpha)^n \neq 0$, maximally non-integrable

Examples: 1-jet space $J^1(M) = T^*M \times \mathbb{R}$, $(S^{2n-1}, \xi_{\text{std}})$

The (universal cover of the) previous two examples are contactomorphic: exists a diffeomorphism $\phi: (M, \xi_M) \to (N, \xi_N)$ such that $\phi^*\xi_N = \xi_M$

Definition: $\Lambda^k \subset (\mathbb{Y}^{2n+1}, \xi)$ is isotropic if $T\Lambda \subset \xi$

Non-slipping car and graph of a genuine function are isotropics

Basic but important linear algebra fact: if $\Lambda^k \subset (\mathbb{Y}^{2n+1}, \xi)$ is isotropic, then $k \leq n$ (called Legendrian if $k = n$).

Intuition: contact distribution is maximally non-integrable.
Classical flexibility results

» Flexibility = topological phenomenon in contact geometry
Classical flexibility results

- Flexibility = topological phenomenon in contact geometry
- **Darboux’s theorem:** any contact manifold is locally contactomorphic to \((\mathbb{R}^{2n+1}, \xi_{\text{standard}} = dz - \sum_{i=1}^{n} y_i dx_i)\)
Classical flexibility results

- **Flexibility** = topological phenomenon in contact geometry
- **Darboux’s theorem**: any contact manifold is locally contactomorphic to \((\mathbb{R}^{2n+1}, \xi_{\text{standard}} = dz - \sum_{i=1}^{n} y_i dx_i)\)
- So no local invariants, unlike Riemannian geometry!
Classical flexibility results

- **Flexibility** = topological phenomenon in contact geometry

- **Darboux’s theorem:** any contact manifold is locally contactomorphic to \((\mathbb{R}^{2n+1}, \xi_{\text{standard}} = dz - \sum_{i=1}^{n} y_i dx_i)\)

- So no local invariants, unlike Riemannian geometry!

- **Gray stability theorem:** if \((Y, \xi_t)\) is isotopy of contact structures on a closed manifold \(Y\), then all contactomorphic, i.e. exists diffeotopy \(\phi_t\) of \(Y\) such that \(\phi_t^* \xi_t = \xi_0\)
Classical flexibility results

- **Flexibility** = topological phenomenon in contact geometry
- **Darboux’s theorem**: any contact manifold is locally contactomorphic to \((\mathbb{R}^{2n+1}, \xi_{\text{standard}} = dz - \sum_{i=1}^{n} y_i dx_i)\)
 - So no local invariants, unlike Riemannian geometry!
- **Gray stability theorem**: if \((Y, \xi_t)\) is isotopy of contact structures on a closed manifold \(Y\), then all contactomorphic, i.e. exists diffeotopy \(\phi_t\) of \(Y\) such that \(\phi_t^* \xi_t = \xi_0\)
 - So deformation invariant, unlike complex geometry!
Classical flexibility results

- **Flexibility** = topological phenomenon in contact geometry
- **Darboux’s theorem:** any contact manifold is locally contactomorphic to \((\mathbb{R}^{2n+1}, \xi_{\text{standard}} = dz - \sum_{i=1}^{n} y_i dx_i)\)
- So no local invariants, unlike Riemannian geometry!
- **Gray stability theorem:** if \((Y, \xi_t)\) is isotopy of contact structures on a closed manifold \(Y\), then all contactomorphic, i.e. exists diffeotopy \(\phi_t\) of \(Y\) such that \(\phi_t^* \xi_t = \xi_0\)
- So deformation invariant, unlike complex geometry!
- **Weinstein neighborhood theorem:** any Legendrian \(\Lambda^n \subset (Y^{2n+1}, \xi)\) has a neighborhood that is contactomorphic to neighborhood of \(\Lambda\) in \(J^1(\Lambda)\)
Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding

- Definition: A formal contact structure is a 1-form α and a non-degenerate 2-form ω on $\ker \alpha$ (but $\omega \neq d\alpha$)

- Definition: A formal isotropic embedding is smooth embedding of L_k and a homotopy E_k^t of k-planes in TY^{2n+1} over L such that $E_0 = TL$ and $E_1 \subset \xi$ (but $E_t \neq TL$)

- Consider $i: \text{Solutions} \rightarrow \text{Formal Solutions}; h$-principle holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebraic topology

- Question: does h-principle hold for contact structures or isotropic submanifolds?
Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the \textit{formal} problem given by decoupling the PDE
Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE
- **Definition:** A formal contact structure is a 1-form α and a non-degenerate 2-form ω on $\ker \alpha$ (but $\omega \neq d\alpha$)
Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the formal problem given by decoupling the PDE

Definition: A *formal* contact structure is a 1-form α and a non-degenerate 2-form ω on $\ker \alpha$ (but $\omega \neq d\alpha$)

Definition: A *formal* isotropic embedding is smooth embedding of L^k and a homotopy E^k_t of k-planes in TY^{2n+1} over L such that $E_0 = TL$ and $E_1 \subset \xi$ (but $E_t \neq TL$)
Partial Differential Relations

- Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding
- Necessary algebraic condition: there is a solution to the *formal* problem given by decoupling the PDE
- **Definition:** A *formal* contact structure is a 1-form α and a non-degenerate 2-form ω on $\ker \alpha$ (but $\omega \neq d\alpha$)
- **Definition:** A *formal* isotropic embedding is smooth embedding of L^k and a homotopy E^k_t of k-planes in TY^{2n+1} over L such that $E_0 = TL$ and $E_1 \subset \xi$ (but $E_t \neq TL$)
- Consider $i : Solutions \leftrightarrow FormalSolutions$; *h-principle* holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebraic topology
Many geometric problems given by a PDE, e.g. existence of contact structure, contactomorphism, isotropic embedding

Necessary algebraic condition: there is a solution to the \textit{formal} problem given by decoupling the PDE

\textbf{Definition:} A \textit{formal} contact structure is a 1-form α and a non-degenerate 2-form ω on $\ker \alpha$ (but $\omega \neq d\alpha$)

\textbf{Definition:} A \textit{formal} isotropic embedding is smooth embedding of L^k and a homotopy E_t^k of k-planes in TY^{2n+1} over L such that $E_0 = TL$ and $E_1 \subset \xi$ (but $E_t \neq TL$)

Consider $i: \text{Solutions} \hookrightarrow \text{FormalSolutions}$; \textit{h-principle} holds when i is a (weak) homotopy equivalence, i.e. geometric problem reduces to algebraic topology

\textbf{Question:} does \textit{h}-principle hold for contact structures or isotropic submanifolds?
Rigidity in contact geometry

- There are non-local, deformation stable invariants of contact manifolds, Legendrians called *contact homology* and *Legendrian contact homology*, Gromov-Witten type invariant defined using J-holomorphic curves. Related to wrapped Fukaya category, mirror symmetry...
There are non-local, deformation stable invariants of contact manifolds, Legendrians called contact homology and Legendrian contact homology, Gromov-Witten type invariant defined using J-holomorphic curves. Related to wrapped Fukaya category, mirror symmetry...

Many Legendrian knots in \((\mathbb{R}^3, \xi_{\text{std}})\) are formally isotopic but not Legendrian isotopic, distinguished by Legendrian contact homology.

Figure: Chekanov Legendrians in \(\mathbb{R}^2_{xz}\); images due to John Etnyre
Rigidity in contact geometry, II

- Similarly, many contact structures are formally contactomorphic but not contactomorphic.

Figure: Standard and overtwisted structures; images due to Patrick Massot

- h-principle fails for contact manifolds, isotropic submanifolds! i_* is not injective on π_0; for Legendrian knots, i_* is not surjective on π_0.

- **Question**: what is the boundary between rigidity and flexibility?
Flexibility for isotropics

- Gromov's h-principle for subcritical isotropics: two formally isotopic $\Lambda_1^k, \Lambda_2^k \subset (Y^{2n+1}, \xi)$ with $k < n$ are genuinely isotopic
Contact Manifolds and Legendrian Submanifolds
Symplectic manifolds and Weinstein domains

Flexibility for isotropics

- **Gromov’s h-principle for subcritical isotropics:** two formally isotopic \(\Lambda_1^k, \Lambda_2^k \subset (Y^{2n+1}, \xi) \) with \(k < n \) are genuinely isotopic

- h-principle fails for general Legendrians \((k = n) \) by LCH
Flexibility for isotropics

- **Gromov’s h-principle for subcritical isotropics**: two formally isotopic $\Lambda^k_1, \Lambda^k_2 \subset (Y^{2n+1}, \xi)$ with $k < n$ are genuinely isotopic.

- **h-principle fails for general Legendrians ($k = n$) by LCH**

- **Definition**: a Legendrian $\Lambda^n \subset Y^{2n+1}$ is *loose* if $n \geq 2$ and it has a ‘zig-zag’ in its xz-projection.

Figure: Loose chart, i.e. zig-zag, pictured in \mathbb{R}^2_{xz} and in \mathbb{R}^2_{xy}.
Loose Legendrians

- **Murphy’s h-principle for loose Legendrians:** formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C^0-approximated by a loose Legendrian.
Loose Legendrians

- **Murphy’s h-principle for loose Legendrians**: formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C^0-approximated by a loose Legendrian.

Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path
Loose Legendrians

- **Murphy’s h-principle for loose Legendrians:** formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C^0-approximated by a loose Legendrian.

 Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path

- **LCH vanishes for loose Legendrians!** Existence of (local) zig-zag kills all symplectic geometry!
Loose Legendrians

- **Murphy’s h-principle for loose Legendrians:** formally isotopic loose Legendrians are Legendrian isotopic; any smooth embedding can be C^0-approximated by a loose Legendrian.

 ![Approximating slipping path](image)

 Figure: Approximating slipping path $(t, 0, \pi/4)$ by non-slipping path

- LCH vanishes for loose Legendrians! Existence of (local) zig-zag kills all symplectic geometry!

- **Open problem:** If Λ has vanishing LCH, is it loose?
Loose Legendrians, II

Loose Chekanov knots (in high-dimensions) are Legendrian isotopic
Definition a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold.
Definition a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold

Examples: Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$, T^*M
Definition a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold.

Examples: Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^n dx_i \wedge dy_i)$, T^*M.

Definition: a formal symplectic structure is a non-degenerate 2-form and a class $[a] \in H^2(M; \mathbb{R})$ (with $[a]^n \neq 0$ if M closed).
Sympylectic manifolds

- **Definition** a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold

- **Examples**: Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$, $T^* M$

- **Definition**: a *formal* symplectic structure is a non-degenerate 2-form and a class $[a] \in H^2(M; \mathbb{R})$ (with $[a]^n \neq 0$ if M closed)

- Let $i : \text{Symplectic}(M^{2n}) \hookrightarrow \text{FormalSymplectic}(M)$, M closed.
Definition a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold

Examples: Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$, $T^* M$

Definition: a formal symplectic structure is a non-degenerate 2-form and a class $[a] \in H^2(M; \mathbb{R})$ (with $[a]^n \neq 0$ if M closed)

Let $i : Symplectic(M^{2n}) \leftrightarrow FormalSymplectic(M)$, M closed.

Taubes: i_* not surjective in dimension 4 by Seiberg-Witten = Gromov-Witten: $\mathbb{C}P^2 \# \mathbb{C}P^2 \# \mathbb{C}P^2$ has no symplectic structure
Symplectic manifolds

Definition a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold.

Examples: Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$, $T^* M$.

Definition: a formal symplectic structure is a non-degenerate 2-form and a class $[a] \in H^2(M; \mathbb{R})$ (with $[a]^n \neq 0$ if M closed).

Let $i: \text{Symplectic}(M^{2n}) \hookrightarrow \text{FormalSymplectic}(M)$, M closed.

Taubes: i_* not surjective in dimension 4 by Seiberg-Witten = Gromov-Witten: $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$ has no symplectic structure.

McDuff: i_* not injective in dimensions > 4 by GW invariants.
Symplectic manifolds

- **Definition** a symplectic structure ω on a manifold M^{2n} is a closed, non-degenerate 2-form ω; get $[\omega] \in H^2(M; \mathbb{R})$ and $[\omega]^n \neq 0$ if M closed manifold

- **Examples:** Kahler manifolds, $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)$, $T^* M$

- **Definition:** a *formal* symplectic structure is a non-degenerate 2-form and a class $[a] \in H^2(M; \mathbb{R})$ (with $[a]^n \neq 0$ if M closed)

- Let $i: \text{Symplectic}(M^{2n}) \hookrightarrow \text{FormalSymplectic}(M)$, M closed.

- **Taubes:** i_* not surjective in dimension 4 by Seiberg-Witten \equiv Gromov-Witten: $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$ has no symplectic structure

- **McDuff:** i_* not injective in dimensions > 4 by GW invariants

- **Open problems:** Is i_* injective on π_0 in dimension 4? Is i_* surjective on π_0 in dimensions > 4?
Weinstein domains

- An exact symplectic manifold \((M^{2n}, d\alpha)\) has contact boundary if \((\partial M, \ker \alpha)\) is a contact manifold
Weinstein domains

- An exact symplectic manifold \((M^{2n}, d\alpha)\) has contact boundary if \((\partial M, \ker \alpha)\) is a contact manifold.

- **Example:** \((B^{2n}, \alpha_{\text{standard}} = \frac{1}{2}(\sum_{i=1}^{n} x_i dy_i - y_i dx_i))\)
Weinstein domains

- An *exact* symplectic manifold \((M^{2n}, d\alpha)\) has *contact* boundary if \((\partial M, \ker \alpha)\) is a contact manifold.

- **Example:** \((B^{2n}, \alpha_{\text{standard}} = \frac{1}{2}(\sum_{i=1}^{n} x_i dy_i - y_i dx_i))\)

- **Weinstein:** can attach a handle to an isotropic sphere \(\Lambda^{k-1} \subset \partial M^{2n}\) and get a new symplectic manifold with contact boundary \(M^{2n} \cup H^k_{\Lambda}\)
Weinstein domains

- An exact symplectic manifold \((M^{2n}, d\alpha)\) has contact boundary if \((\partial M, \ker \alpha)\) is a contact manifold.

- Example: \((B^{2n}, \alpha_{\text{standard}} = \frac{1}{2}(\sum_{i=1}^{n} x_i dy_i - y_i dx_i))\)

- Weinstein: can attach a handle to an isotropic sphere \(\Lambda^{k-1} \subset \partial M^{2n}\) and get a new symplectic manifold with contact boundary \(M^{2n} \cup H^k_{\Lambda}\)

![Weinstein handle attachment](image)

Figure: Weinstein handle attachment
Definition: a Weinstein domain W^{2n} is iterated Weinstein handle attachment to $(B^{2n}, \omega_{\text{standard}})$, i.e. symplectic handlebody
Weinstein domains, II

- **Definition**: a *Weinstein domain* W^{2n} is iterated Weinstein handle attachment to $(B^{2n}, \omega_{\text{standard}})$, i.e. symplectic handlebody
- W^{2n} is homotopy equivalent to n-dimensional CW complex
Definition: a Weinstein domain W^{2n} is iterated Weinstein handle attachment to $(B^{2n}, \omega_{\text{standard}})$, i.e. symplectic handlebody

W^{2n} is homotopy equivalent to n-dimensional CW complex

Andreotti-Frankel: affine varieties V^{2n} have Weinstein structure, so homotopy equivalent to n-dimensional complex
Definition: a Weinstein domain W^{2n} is iterated Weinstein handle attachment to $(B^{2n}, \omega_{standard})$, i.e. symplectic handlebody

W^{2n} is homotopy equivalent to n-dimensional CW complex

Andreotti-Frankel: affine varieties V^{2n} have Weinstein structure, so homotopy equivalent to n-dimensional complex

Example: $T^*S^n = B^{2n} \cup H^n_{unknot}$
Definition: M^{2n} has a formal Weinstein structure if it has a non-degenerate 2-form and is homotopy equivalent to an n-dimensional CW complex.
Rigidity for Weinstein domains

- **Definition:** M^{2n} has a formal Weinstein structure if it has a non-degenerate 2-form and is homotopy equivalent to an n-dimensional CW complex.

- **McLean:** infinitely many different formally symplectomorphic Weinstein structures on B^{2n}, $n \geq 4$ (distinguished by symplectic homology)
Definition: M^{2n} has a formal Weinstein structure if it has a non-degenerate 2-form and is homotopy equivalent to an n-dimensional CW complex.

McLean: infinitely many different formally symplectomorphic Weinstein structures on B^{2n}, $n \geq 4$ (distinguished by symplectic homology).

Figure: Sketch of an exotic Weinstein ball.
Definition: a Weinstein domain W^{2n}, $n \geq 3$ is flexible if all n-handles are attached along loose Legendrians.
Definition: a Weinstein domain $W^{2n}, n \geq 3$ is flexible if all n-handles are attached along loose Legendrians.

Figure: T^*S^n and $T^*S^n_{\text{flex}}$
Definition: a Weinstein domain $W^{2n}, n \geq 3$ is flexible if all n-handles are attached along loose Legendrians.

Figure: T^*S^n and $T^*S^n_{flex}$

Cieliebak-Eliashberg: A formal Weinstein manifold $W^{2n}, n \geq 3$, has a genuine Weinstein structure. Two formally symplectomorphic flexible structures are symplectomorphic.
Flexibility for Weinstein domains

- **Definition**: a Weinstein domain $W^{2n}, n \geq 3$ is *flexible* if all n-handles are attached along loose Legendrians.

![Diagram](image)

Figure: $T^* S^n$ and $T^* S^n_{\text{flex}}$

- **Cieliebak-Eliashberg**: A formal Weinstein manifold $W^{2n}, n \geq 3$, has a genuine Weinstein structure. Two formally symplectomorphic flexible structures are symplectomorphic.

- **Question**: can this result be used to construct symplectic structures on closed manifolds?
Modifying Weinstein presentations

- Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles
Modifying Weinstein presentations

- Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

![Figure: Handle-slides and handle cancellation/creation]
Modifying Weinstein presentations

- Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles.

Figure: Handle-slides and handle cancellation/creation

- $WCrit(W) : = \text{minimum number of Weinstein handles for } W$
- $Crit(W) : = \text{minimum number of smooth handles}$
Modifying Weinstein presentations

▶ Can modify Weinstein presentation by doing handle-slides and create/cancel handles; easy to create more handles

\[WCrit(W) : = \text{minimum number of Weinstein handles for } W \]
\[Crit(W) : = \text{minimum number of smooth handles} \]

\[WCrit(M) \geq Crit(M) \geq \text{rank } H^*(M; \mathbb{Z}) \]
Smale’s h-cobordism theorem: if \(\dim M \geq 5, \pi_1(M) = 0, \) then \(\text{Crit}(M) = \text{rank } H^*(M; \mathbb{Z}); \) key is Whitney trick
Modifying Weinstein presentations, II

- **Smale’s h-cobordism theorem:** if \(\dim M \geq 5, \pi_1(M) = 0 \), then \(\text{Crit}(M) = \text{rank } H^*(M; \mathbb{Z}) \); key is Whitney trick

- **Cieliebak-Eliashberg:** \(WC\text{Crit}(W_{\text{flex}}) = \text{Crit}(W) \)
Smale’s h-cobordism theorem: if \(\text{dim } M \geq 5, \pi_1(M) = 0 \), then \(\text{Crit}(M) = \text{rank } H^*(M; \mathbb{Z}) \); key is Whitney trick

Cieliebak-Eliashberg: \(WCrit(W_{\text{flex}}) = \text{Crit}(W) \)

McLean: exist \(W \) with \(WCrit(W) \geq \text{Crit}(W) + 2 \); Whitney trick fails!
Smale’s h-cobordism theorem: if \(\dim M \geq 5, \pi_1(M) = 0 \), then \(\text{Crit}(M) = \text{rank } H^*(M; \mathbb{Z}) \); key is Whitney trick.

Cieliebak-Eliashberg: \(WC\text{rit}(W_{\text{flex}}) = \text{Crit}(W) \)

McLean: exist \(W \) with \(WC\text{rit}(W) \geq \text{Crit}(W) + 2 \); Whitney trick fails!

L. any Weinstein \(W^{2n}, n \geq 3 \), has \(WC\text{rit}(W) \leq \text{Crit}(W) + 2 \)
Modifying Weinstein presentations, II

- **Smale’s h-cobordism theorem**: if \(\dim M \geq 5, \pi_1(M) = 0 \), then \(\text{Crit}(M) = \text{rank } H^*(M; \mathbb{Z}) \); key is Whitney trick
- **Cieliebak-Eliashberg**: \(WCrit(W_{\text{flex}}) = \text{Crit}(W) \)
- **McLean**: exist \(W \) with \(WCrit(W) \geq \text{Crit}(W) + 2 \); Whitney trick fails!
- **L.** any Weinstein \(W^{2n} \), \(n \geq 3 \), has \(WCrit(W) \leq \text{Crit}(W) + 2 \)
- Implies restrictions on J-holomorphic curve invariants: there is no Weinstein structure on the ball \(B^{2n} \) whose wrapped Fukaya category is that of \(T^*S^n_{\text{std}} \), i.e. modules over \(C_*(\Omega S^n) \)
Modifying Weinstein presentations, II

- **Smale’s h-cobordism theorem:** if $\dim M \geq 5$, $\pi_1(M) = 0$, then $\text{Crit}(M) = \text{rank } H^*(M; \mathbb{Z})$; key is Whitney trick

- **Cieliebak-Eliashberg:** $WCrit(W_{\text{flex}}) = \text{Crit}(W)$

- **McLean:** exist W with $WCrit(W) \geq \text{Crit}(W) + 2$; Whitney trick fails!

- **L.** any Weinstein W^{2n}, $n \geq 3$, has $WCrit(W) \leq \text{Crit}(W) + 2$

- Implies restrictions on J-holomorphic curve invariants: there is no Weinstein structure on the ball B^{2n} whose wrapped Fukaya category is that of $T^*S^n_{\text{std}}$, i.e. modules over $\mathcal{C}_*(\Omega S^n)$

- **Question:** what is the interaction between symplectic flexibility and rigidity?