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Since its birth, Lie theory has been constantly expanding its scope 
and its range of applications. 

Lie groups, continuous symmetries, etc. are among the main building 
blocks of mathematics and mathematical physics



Simple finite-dimensional Lie groups have been classified by the 
1890s. Their elegant structure and representation theory in many 
ways shaped the development of mathematical physics in the XX 
century



In return, very concrete questions prompted many fruitful directions of 
research in Lie theory
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The Virasoro Lie algebra, Affine Lie algebras (a special case of Kac-
Moody Lie algebras), and their relatives, play a key role in the study 
of 2-dimensional critical phenomena described by the Conformal 
Field Theories

Their quantum group analogs underlie integrable lattice 
discretizations of CFT 



Today, I want to talk about a more recent set of ideas that links 
mathematical physics with Lie theory in a new, much expanded sense. It
originates in the study of supersymmetric QFT, in particular, susy gauge 
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I want to share with you my excitement 
about a subject that is still forming. We don’t 
see yet its true logical boundaries and our 
definitions, technical foundations, etc. are 
improving in real time. I will try to stick to 
what we know for certain and not try to be 
too visionary. 



What I understand about the subject owes a great deal to Nikita 
Nekrasov and Samson Shatashvili, as well as to Mina Aganagic, Roman 
Bezrukavnikov, Hiraku Nakajima, Davesh Maulik, and many others



What I understand about the subject owes a great deal to Nikita 
Nekrasov and Samson Shatashvili, as well as to Mina Aganagic, Roman 
Bezrukavnikov, Hiraku Nakajima, Davesh Maulik, and many others

One of the guiding stars in the subject has been a certain powerful 
duality that generalizes Langlands duality to this more general setting. 
It goes back to Intrilligator and Seiberg, and has been studied by many 
teams of researchers, in particular, by Davide Gaiotto, Hiraku 
Nakajima, Ben Webster, and their collaborators



It may be easier to explain what is new by explaining which 
highlights of the late XX century Lie theory are being generalized

Before, it may be helpful to remind ourselves what is a Weyl group, 
Hecke algebra, etc. as generalizations of these objects will be essential 
in what follows
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Finite and discrete reflection groups W of a 

Euclidean space Rn appear in Lie theory as 
finite and affine Weyl groups and play a central 
role in classification and representation theory

To every W one can associate a braid group 

and a Hecke algebra, in which the generators 

satisfy a generalization of S2=1
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... It may be easier to explain what is new by explaining which 
highlights of the late XX century Lie theory are being generalized



Macdonald-Cherednik theory 

Irreducible Lie group characters and, more generally, spherical 
functions, are eigenfunctions of invariant differential operators, that
is, solutions to certain linear differential equations. In MC theory, 
these are generalized to certain q-difference equations associated to 
root systems and involving additional parameters. Solutions of these 
equations are remarkable multivariate generalizations of q-
hypergeometric functions, whose terminating cases are known as the 
Macdonald polynomials. 

Numerous applications of those in combinatorics, number theory, 
probability theory, algebraic geometry etc. have been found. 



Macdonald-Cherednik theory 

The algebraic backbone of the theory is a certain double version of 
the affine Hecke algebra constructed by Cherednik. A fundamental 
symmetry of this doubling yields an amazing label-argument 
symmetry in Macdonald polynomials, of which

is a kindergarten example. It plays a key role in applications and is 
a preview of the general duality statements. 



Kazhdan-Lusztig theory

in its simplest form, describes the characters of irreducible highest 
weight modules over a Lie algebra in terms of the combinatorics of the 
associated finite Hecke algebra. The proof of the original KL conjectures 
by Beilinson-Bernstein and Brylinski-Kashiwara is, perhaps, one of 
highest achievements in all of Lie theory, with further contributions 
by Ginzburg, Soergel, Bezrukavnikov, Williamson, and many, many 
others. In characteristic p ≫ 0, there is a version with affine Hecke 
algebra. 

the talk by Geordie Williamson



Yang-Baxter equation and quantum groups 

In vertex models of 2D statistical mechanics, the degrees of freedom live 

in vector spaces Vi  attached to edges of a grid and their interaction is 

described by a matrix R of weights attached to each vertex



Yang-Baxter equation and quantum groups 

Baxter noted the importance of the YB equation

for exact solvability, with further important insights by the Faddeev 
and Jimbo-Miwa-Kashiwara schools. This gives rise to the whole theory
of quantum groups (Drinfeld, … ), associated knot invariants, et cetera, 
et cetera



Note by Reshetikhin et al the quantum group may be reconstructed 
from matrix elements of the R-matrix, or as the algebra behind the 
braided tensor category constructed from R. 

Particularly important are R-matrices with a 
spectral parameter that correspond to quantum 
loop groups. By Baxter, these contain large 
commutative subalgebras that become quantum 
integrals of motion in vertex models and 
associated quantum spin chains

Many brilliant minds worked on diagonalization of these algebras, a 
problem known as the “Bethe Ansatz”



More generally, R-matrices with a 
spectral parameter define an action of an 
affine Weyl group of type A by q-
difference operators, the lattice part of 
which are the quantum Knizhnik-
Zamoldchikov equations of Frenkel and 
Reshetikhin. These are among the most 
important linear equations in 
mathematical physics; solving them 
generalizes the Bethe Ansatz problem

new variable



For knot theory and other topological applications, limits of R(u) are important 

YB equation becomes a Reidemeister move 



Example: 

associated to T*P1, classical 
hypergeometry, etc. Self-dual!



modern formulas are more suitable downloads than slides



A 3-dimensional supersymmetric 
Quantum Field Theory is a lot of data, 
of which we will be using only a very 
small piece - the susy states in the 
Hilbert space associated to a given time
slice, a Riemann surface B with, 
maybe, boundary and marked points.



Even narrower, we will focus on the 

Index = Even fermion number - Odd

as a virtual representation of all symmetries and as a virtual vector 
bundle over the moduli of B, as in the talk by Rahul Pandharipande. 



Even narrower, we will focus on the 

Index = Even fermion number - Odd

as a virtual representation of all symmetries and as a virtual vector 
bundle over the moduli of B, as in the talk by Rahul Pandharipande. 

This (Witten) index being deformation invariant, it can be studied 
using any of the different description of the QFT in various corners of 
its parameter space. 



At lowest energies (that is, for very large B), the states of
a QFT may be described as modulated vacuum, that is, 

a map f from B to the moduli space X of vacua of the 
theory. The amount of supersymmetry that we want 

makes X, ideally, a hyperkähler manifold and f a 
holomorphic map. Finer details of the theory will 

become important at the singularities of X or f which 
are, in general, unavoidable.



Mathematically, this becomes a problem in the spirit of enumerative 
geometry. Susy states are holomorphic maps f from B to X, which is a 
symplectic algebraic variety, or stack, or … The index is the Euler 
characteristic of a certain coherent sheaf (a virtual Â-genus, like for 
the index of a Dirac operator) on the moduli space of such. This index 
is graded by the action of Aut(X). The additional grading on this 
index by the degree of the map may be viewed as a character of the 
Kahler torus 
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To make the index nontrivial, we require that the symplectic form 
ωX is scaled by Aut(X) with a nontrivial weight ħ



For example, susy gauge theories contain gauge fields for a compact form 
of a Lie group G, matter fields in a symplectic representation M of G, and 
their superpartners. In this case 

and moduli spaces in question are “stable quasimaps” f: B -> X. There 
are generalizations with critical loci of functions etc. If



For example, susy gauge theories contain gauge fields for a compact form 
of a Lie group G, matter fields in a symplectic representation M of G, and 
their superpartners. In this case 

and moduli spaces in question are “stable quasimaps” f: B -> X. There 
are generalizations with critical loci of functions etc. If

then X is a Nakajima quiver variety. The 
quiver is the generalization of the Dynkin 
diagram from before

many



(2, conjecturally) the theory on the worldsheet of the M2 brane of M-
theory 

For instance, for this quiver this theory is:

(1) the K-theoretic Donaldson-Thomas theory of Y3=rank 2 bundle 
over B, which together with its sister theories eventually determines 
the K-theoretic DT counts in all threefolds (not just CY). These capture
deeper information than the cohomological DT and Gromov-Witten 
counts



The physical diversity of operator insertions and boundary conditions 
translates into different flavors of evaluation maps from such moduli 

spaces to X, or … As function of B, these define a K-theoretic analog of 

CohFT with a state space K(X).  

Further enriched by the data of an arbitrary Aut(X)-bundle over B. 



Of paramount importance are the vertex functions, that is, counts for 
B= complex plane, with boundary conditions imposed at infinity (this 

is formalized as maps from P1 nonsingular at ∞). Like for Nekrasov 

counts of instantons on R4, these make sense equivariantly for the 
action of 



Of paramount importance are the vertex functions, that is, counts for 
B= complex plane, with boundary conditions imposed at infinity (this 

is formalized as maps from P1 nonsingular at ∞). Like for Nekrasov 

counts of instantons on R4, these make sense equivariantly for the 
action of 

A fundamental feature of the theory are linear q-difference equations

in all variables, Kahler Z or equivariant T ⊂ Aut(X), satisfied by the 
vertex functions. The operators in these equations are certain counts for 

B=P1 with insertions at both 0 and ∞
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 or if one prefers abstract statements to special functions, then

The whole enumerative theory may be described using certain 
new geometric representation theory



Main point: 

These q-difference equations generalize what we have seen before, 

 or if one prefers abstract statements to special functions, then

The whole enumerative theory may be described using certain 
new geometric representation theory

In general, it will involve algebras that are not Hopf, but for 
Nakajima quiver varieties we get new quantum loops groups and their 
entire package



[Maulik-O,12]  gave a geometric construction of solutions of the YB and
related equations using their theory of stable envelopes. This associates 

a new quantum loop group Uħĝ to any quiver so that K(X) is a weight 

space in a Uħĝ-module. The corresponding Lie algebra g is a 

generalization of the Kac-Moody Lie algebra constructed geometrically 
by Nakajima
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[Maulik-O,12]  gave a geometric construction of solutions of the YB and
related equations using their theory of stable envelopes. This associates 

a new quantum loop group Uħĝ to any quiver so that K(X) is a weight 

space in a Uħĝ-module. The corresponding Lie algebra g is a 

generalization of the Kac-Moody Lie algebra constructed geometrically 
by Nakajima

[O., 15] q-difference equations in certain equivariant variables are the

qKZ equations for Uħĝ

[Smirnov-O., 16] the affine dynamical groupoid of Uħĝ gives the q-

difference equations in the Kahler variables 

Last 2 statements generalize what was proven in cohomology in [MO] 
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a dynamical groupoid  is a collection of 
operators of the form

for every wall w of a periodic hyperplane 
arrangement. Must satisfy

Generalize YB equation, braid groups, 
and give flat q-difference connections. 

Constructed for every Uħĝ in [OS] Bezrukavnikov
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This gives a complete control over quantities of prime enumerative 
interest, such as those from K-theoretic DT theory of threefolds. 
Conversely, with geometric tools one can really control the analytic 
theory of these equations

[Aganagic-O., 16] Monodromy of these q-difference equations computed 
in terms of elliptic R-matrices (<- elliptic cohomology generalization of 
stable envelopes). This generalizes the Kohno- Drinfeld computation of 
the monodromy of KZ equations, among other things

[Aganagic-O., 17] Integral representation of solutions which, in 
particular, solves the corresponding generalization of the Bethe Ansatz 
problem in the q->1 limit 



Beyond Nakajima varieties
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q-diff equations exist for abstract reasons

The Kähler ones should be given by a similar groupoid, 
now with roots of X (a finite subset of effective curve 
classes) instead of the roots of g. 

This is a work in progress [Halpern-Leistner+Maulik+O] for rather general 
gauge theories. In other cases, one is still looking for the right moduli spaces.

Same for shifts in the equivariant variables in A ⊂ Aut(X,ω). The roots 

here are the normal weights of A at XA and the wall operators come from
stable envelopes

The duality should exchange the Kahler torus Z and A, and the two 
groupoids. In some limited generality,  this is indeed shown in a work 
in progress with M. Aganagic



Unlike classical Langlands duality, the Kähler and equivariant roots live in 
spaces of apriori different dimension, making the duality more dramatic

Kähler roots for Xv 

Equivariant roots for Xv 

Kähler roots for X

Equivariant roots for X



Where is the Kazhdan-Lusztig theory ?

The braid group limit Sw(0), Sw(∞) of the Kähler groupoid gives the 

right analog of the Hecke algebra for quantizations of X over a field of 
characteristic p ≫ 0 as shown by [Bezrukavnikov-O] for a list of 
theories that includes all Nakajima varieties. 



Where is the Kazhdan-Lusztig theory ?

The braid group limit Sw(0), Sw(∞) of the Kähler groupoid gives the 

right analog of the Hecke algebra for quantizations of X over a field of 
characteristic p ≫ 0 as shown by [Bezrukavnikov-O] for a list of 
theories that includes all Nakajima varieties. 

Better still than such limit, one should study the full elliptic theory of 
[Aganagic-O]. It controls the roots of unity analogs of characteristic p ≫ 0 
quantization questions for finite p. It categorifies to equivalences between 
different descriptions of the category of boundary conditions in the QFT, 
which is where the different roads of categorification in Lie theory 
should converge. 



Any formulas today ? 



Any formulas today ? 

I haven’t put up any beyond the X=T*P1 example, but these new 
worlds are full of e.g. remarkable q-diff equations whose solutions 
contain a treasure of geometric, representation-theoretic, 
combinatorial, and no doubt number-theoretic information. 

Explicit formulas for e.g. stable envelopes [Smirnov], Bethe eigen-
functions, etc. contain, as a special case, answers to many old questions.



back to Earth 
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Добро пожаловать в Санкт-Петербург на ICM2022!


