
ABOUT THE CLASS AND NOTES ON SET THEORY

About the Class

Evaluation. Final grade will be based 25%, 25%, 25%, 25%, on home-
work, midterm 1, midterm 2, final exam.

Exam dates. Midterm 1: February 19. Midterm 2: April 2. Final:
May 14.

Homework. will be assigned on Courseworks each week. It is due be-
fore 1pm the following Wednesday in the Modern Algebra 1 homework
box the 4th floor of the Math Building. Collaboration on homework is
fine but the final write-up of homework solutions should be your own.

Extra Credit Problems. Homework problems labelled “extra credit”
are optional and should be handed in separately directly to the instruc-
tor. The (rare) grade of A+ is for exceptional work, and cannot be
earned without extra credit work.

Book. Dummit and Foote “Abstract Algebra” (DF for short) is strongly
recommended. The course will cover roughly the content of chapters
1–6 (theory of groups), with some omissions, since DF is written as a
graduate text.

We will start with two lectures on set theory, which is material not
in DF.

The second semester of the course, Modern Algebra 2, will focus on
rings, fields, Galois theory.

Notes. Class notes such as these will be posted on Courseworks when
needed (material not in Bummit and Foote, etc.). The notes are not
a replacement for class — they generally cover the bare essentials of
what is described in class.

1. Basic set theory

(This material is mostly not in Dummit and Foote.)
We will start by explaining how “Russell’s paradox” implies the ne-

cessity of being careful in the foundations of set theory.
A set is a collection of objects, but not every collection of objects

can be called a set. For example the collection of all sets is not a set.
The objects collected in a set are called the elements of the set.
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1.1. Notations for sets.

• a ∈ A means a is an element of the set A.
• {a1, a2, . . . , an} is the set whose elements are a1, . . . , an.
• ∅ is the set containing no elements.
• Z, R, C are standard notations for the sets of all integers, real

numbers and complex numbers respectively.
• N is the set of natural numbers (“counting numbers”). Different

authors use different conventions: it may mean {0, 1, 2, . . . } or
{1, 2, 3, . . . }. We will use the latter notation.
• If A is a set and P is a property which can be applied to elements

of A then {a ∈ A : P (a)} is a set which consists of the elements
a of A for which property P (a) is true. For example {n ∈ Z :
n ≥ 1} is the set N.
• A ⊆ B means A is a subset of B, i.e., every element of A is an

element of B. A = B means A ⊆ B and B ⊆ A
• A ⊂ B sometimes means the same as A ⊆ B but some authors

use it to mean A is a proper subset of B, i.e., A ⊆ B and A 6= B.
• |A| is the number of elements in A, called the size or cardinality

of A. For example |∅| = 0 and |{∅}| = 1.
• If A and B are sets then A × B is the set of ordered pairs:
A×B = {(a, b) : a ∈ A and b ∈ B}.
• If A is a set then its “power set” is the set whose elements

are the subsets of A. It is usually denoted either by P(A) or
sometimes 2A.

1.2. Functions or maps. A function or map f from a set A to a set
B is a rule which assigns an element of B to each element of A. We
will generally use the word “map” rather than “function” but they are
synonymous.

Notations:

• f : A→ B means f is a map from A to B.
• If f is a map from A to B and a ∈ A one writes f(a) for the

element of B assigned by f to a. It is called the image of a (by
f).
• f : a 7→ b (read as “a mapsto b by f”) is a synonym for f(a) = b.
• If f : A→ B and g : B → C then g ◦ f denotes the composition

of f and g defined by g ◦ f(a) = g(f(a)).
• The function idA : A→ A is defined by idA(a) = a for all a ∈ A.

It is also sometimes denoted 1A. It is called the identity function
of A.
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Definition (Types of functions).

• A function f : A→ B is surjective (also called “onto”), if every
element b ∈ B is the image of some element of A. Notation:
f : A→→B.
• A function f : A → B is injective (also called “one-one”), if

no two elements of A have the same image by f , i.e., f(a) =
f(a′) ⇒ a = a′ for any two elements a, a′ ∈ A. Notation:
f : A� B.
• A function f : A → B is bijective if it is both injective and

surjective. Notation: f : A �→ B.
Equivalently, the function f has an inverse function (denoted
f−1), characterized by the property that f ◦ f−1 = idB and
f−1 ◦ f = idA.

1.3. Cardinality and sizes of infinity.

Definition (Cardinality). We say two sets A and B have the same
cardinality (a fancy name for “size”), written |A| = |B| if there exists a
bijective map f : A→ B. We write |A| ≤ |B| if there exists an injective
map f : A→ B.

Theorem 1. For two sets A and B either |A| ≤ |B| or |B| ≤ |A| (or
both).

Looking at the definition above, what this theorem says is that for
any two set A and B there exists an injective map from one of the two
sets to the other. This is a non-trivial fact, and to prove it one needs
the “Axiom of Choice”, one of the basic axioms of moderm set theory
(which a few some logicians still reject).

Theorem 2 (Bernstein-Schroeder Theorem). |A| ≤ |B| and |B| ≤ |A|
implies |A| = |B|.

The proof of this will given later.

The following theorem implies that for any set there is a set with
strictly greater cardinality. In particular, for every infinite “number”
there is a larger one.

Theorem 3. For any set A one has |A| < |P(A)| (i.e., |A| ≤ |P(A)|
and |A| 6= |P(A)|).

Recall P(A) is the “power set” (set of all subsets) of A. If |A| = n
is finite then the theorem just says that n < 2n for any non-negative
integer n.

The following sets all have the same size: N, Z, Q. We also men-
tioned in class that the set of algebraic numbers (zeros of polynomials
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with integer coefficients), commonly called Q, also has the same size.
The size of these sets is called ℵ0 (spoken “aleph-zero”); it is the small-
est infinite cardinal number and also goes by the name “countable
infinity”1. The numbers which measure sizes of sets are called cardinal
numbers, so they include 0, the natural numbers, ℵ0, and larger sizes
of infinity.

Theorem 3 implies that the cardinality of the power set of any one of
the above countably infinite sets is strictly larger than ℵ0. This larger
cardinal number is called c (for “continuum”). It is also the size of R
and C.

A theorem of set theory says that for any cardinal there is a smallest
cardinal larger than it. The second smallest infinite cardinal number
is called ℵ1, and after it come ℵ2, etc. It was long an open question
whether the Continuum Hypothesis, which says c = ℵ1, is true. But it
was then proved by Paul Cohen in 1963 that the Continuum Hypothesis
is independent of the standard axioms of set theory, so one can choose
to add it as an axiom or to add its negation as an axiom. Most logicians
take the view that c is much larger than every ℵn, n = 1, 2, . . . .

We don’t need to worry about this question. But the fact that there
are different sizes of infinity has important consequences. For example,
in the 19th century mathematicians worried whether transcendental
numbers exist—numbers which are not algebraic, i.e., not a solution of
a polynomial equation with integer coefficients. It took many years to
prove that certain numbers, first e, then π and others, were transcen-
dental. But the fact that there are only a countable infinity of algebraic
numbers while the size of R and C is the larger cardinal c shows that,
in fact, “almost every” number is transcendental.

1.4. Some proofs. We start with the proofs of two of the theorems
above. First some notation.

Notation. If f : A→ B is a map and A′ ⊆ A one writes f(A′) for the
set

f(A′) := {b ∈ B : b = f(a) for some a ∈ A′} .
It is called the image of A′ under f . The set f(A) is simply called the
image of f .

If B′ ⊆ B one writes f−1(B′) for the set

f−1(B′) := {a ∈ A : f(a) ∈ B′}

1Caution: If you google the word “countable” (and even in some recent books)
you may see the statement that “countable” means “of size ℵ0.” This is WRONG.
It means “either finite or of size ℵ0”
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(note that f−1 itself is not a map unless f is bijective—the notation
f−1(B′) should be seen as a whole). f−1(B′) is called the inverse image
of B′ by f .

For b ∈ B one abbreviates f−1({b}) as f−1(b). It is often called the
fiber of f over b.
CAUTION: If f is bijective then f−1 exists, so the notation f−1(b)
becomes ambiguous: if a is such that f(a) = b then f−1(b) means
“{a}” in the previous paragraph, but means “a” if interpreted as the
function f−1 applied to b. Which is meant will usually be clear from
context.

If f is just injective one still sometimes uses f−1(b) to mean the
element a with f(a) = b, if this a exists, rather tnan the set {a}.
Again, what is meant is usually clear from context. This occurs in the
following proof, for example.

Proof of the Bernstein Schroeder Theorem 2. We are given that |A| ≤
|B| and |B| ≤ |A| and we are to show that |A| = |B|. Using the
definitions of what this means, we have injective maps α : A� B and
β : B � A, and we need to construct a bijective map f : A �→ B.

We consider maximal chains of the form

. . .
β7→ ai

α7→ bi
β7→ ai+1

α7→ bi+1
β7→ . . .

Notice that such a chain always extends infinitely far to the right, since
given an a ∈ A we can always apply α to it to get a

α7→ α(a) ∈ B and

similarly for a b ∈ B we have an arrow b
β7→ β(b). On the other hand,

the chain is not necessarily extendable to the left, since if some a ∈ A
is in the chain, there may or may not be a b with β(b) = a (if there
is such a b it is unique by injectivity of β, so we can then extend the
chain one step to the left). Similarly for b ∈ B in a chain there may or
may not be an a with α(a) = b to let one extend the chain to the left.
Thus each element of A and B is either in a bi-infinite chain (one that
extends infinitely both left and right) or a chain that starts with an a
which is not in the image of β : B → A (we call this an A-chain) or a
chain which starts with a b which is not in the image of α : A→ B (a
B-chain).

We define f : A→ B and g : B → A as follows:

f(a) =

{
α(a) if a is in a bi-infinite chain or A-chain,

β−1(a) if a is in a B-chain.

g(b) =

{
α−1(b) if b is in a bi-infinite chain or A-chain,

β(b) if b is in a B-chain.
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Note that f is well-defined, since α(a) is always defined, while β−1(a)
is defined if a is in a B-chain (going to the left in such a chain stops at
an element of B, not of A). Similarly g is well defined. If an element
a ∈ A is in a bi-infinite or A-chain we have g ◦ f(a) = α−1 ◦ α(a) = a
while if it is in a B-chain we have g ◦ f(a) = β ◦ β−1(a) = a. Thus
g◦f(a) = a for any a ∈ A, that is: g◦f = idA. Similarly one computes
that f ◦ g = idB, so g is an inverse function for f , proving that f is
bijective. �

(The little box � is a standard sign in mathematics to signify the
end of a proof. In old texts you sometimes see the box replaced by
“QED” and the box is therefore called a QED-box. QED is short for
quod erat demonstrandum, latin for “what was to be proved”.)

Proof of Theorem 3. We want to show that if A is a set then |A| <
|P(A)|. Certainly |A| ≤ |P(A)|, since this means there is an injective
map A→ P(A), and such a map can be given, for example, by a 7→ {a}
for a ∈ A. To see that |A| < |P(A)| we must show that there is no
bijective map between f : A→ P(A). Suppose there were such a map
f . Then, in particular, f is surjective. We will show that this leads to
a contradiction, showing f cannot exist.

So suppose f : A→→P(A) (recall the double-headed arrow means
“surjective map”). Consider the following element of P(A) (i.e., subset
of A):

B := {a ∈ A : a /∈ f(a)}.

We will show that B is not in the image of the map f , contradicting
surjectivity. Indeed, if we have an element a with f(a) = B, then
we ask ourselves if the element a is in B or not. If a ∈ B then the
definition of B says a /∈ f(a), but f(a) = B, so a /∈ B. Similarly, a /∈ B
means a /∈ f(a), which by definition of B means a ∈ B. Thus, under
the assumption that f(a) = B we find that a is neither in nor not in
B. So no such a can exist, and the proof is done. �

1.5. Union, Intersection, Cartesian Product. If A1, A2, . . . , An
are sets we write

A1 ∪ · · · ∪ An and A1 ∩ · · · ∩ An

for the union and intersection of these sets. A1 ∪ · · · ∪An is the set of
elements which occur in at least one of the Ai and A1 ∩ · · · ∩An is the
set of elements which occur in all of them.
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More generally, if I is some set (which need not be finite) and we
have a set Ai for each i ∈ I we write⋃

i∈I

Ai := {a : ∃i, a ∈ Ai} and
⋂
i∈I

Ai := {a : ∀i, a ∈ Ai}

for their union and intersection.
If A1, A2, . . . , An are sets one defines their cartesian product to be

the set of ordered n-tuples

A1 × A2 × · · · × An := {(a1, . . . , an) : ai ∈ Ai for i = 1, . . . , n} .

We also use the notation A1 × · · · × An =�
n

i=1Ai.
One way of thinking of an element (a1, . . . , an) ∈ A1 × · · · × An is

that it is a choice of an element ai in each set Ai. We can also think
of this as a function with domain I, since choosing an element ai for
each i ∈ {1, . . . , n} is the same as considering the function defined on
{1, . . . , n} given by i 7→ ai.

Now if I is again just some set (possibly infinite) and we have a set
Ai for each i ∈ I we would like to write the cartesian product of these
sets, but a notation like (. . . , ai, . . . ) does not work well, since there is
no obvious order to put on the entries. But we can use the above idea
of an element of the cartesian product being a function which chooses
an element of Ai for each i ∈ I, and define:

�i∈I Xi := {a : I →
⋃
i∈I

Ai | a(i) ∈ Ai for each i ∈ I} .

A fundamental axiom of set theory is the Axiom of Choice, which

says that if each Xi is non-empty then�i∈I Xi is non-empty, i.e., there
exists some choice of an element from each Xi. Although it might seem
that this should be obviously true, it does not follow from the other
basic axioms that are used to create modern set theory. As already
mentioned earlier, one cannot prove Theorem 1 without the axiom of
choice. Proving Theorem 1 would take us too far afield, so we won’t
do it here.

2. Binary Relations

A binary relation on A is a subset R ⊆ A × A. The notation aR b
then means (a, b) ∈ R.

The binary relation R is an equivalence relation if it satisfies the
properties:

(1) Reflexivity : ∀a ∈ A aRa
(2) Symmetry : ∀a, b ∈ A aR b⇒ bR a
(3) Transitivity : ∀a, b, c ∈ A aR b and bR c⇒ aR c
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The binary relation R is a partial order if it is reflexive and transitive
(properties (1) and (3)) and also satisfies

(2′) Antisymmetry∀a, b ∈ A aR b and bRA⇒ a = b

A set with a partial order relation on it is called a partially ordered set.

Examples.
• Equality. If A is any set then the relation “=” := {(a, a) : a ∈ A}
is the usual relation of equality. It is an equivalence relation.
• Congruence. The relation on the set Z of integers

≡n:= {(a, b) ∈ Z× Z : ∃k ∈ Z, b = a+ kn}

is called congruence mod n. One writes “a ≡n b” or more commonly:
“a ≡ b (mod n)”. ≡n is an equivalence relation.
• Set inclusion The relation “⊆” on the power set P(X) of a set X
defined as “⊆” := {(A,B) ∈ P(X)×P(X) : A ⊆ B} is a partial order.
• The usual relation of inequality ≤ defined on N or R or Q or R is
a total order, i.e. a partial order with the additional property that for
any a, b in the set at least one of a ≤ b or b ≤ a is true.

Theorem 4 (Zorn’s Lemma). Suppose (A,≤) is a partially ordered set
with the property that any infinite sequence in A of the form a1 ≤ a2 ≤
a3 ≤ . . . has an upper bound (i.e., there is an a ∈ A with ai ≤ a for
all i = 1, 2, 3, . . . ). Then A has at least one maximal element m (i.e.,
an element with the property that m ≤ a⇒ m = a).

This theorem is equivalent to the Axiom of Choice, and it turns out
to be a powerful tool in proving existence of certain things (an example
is in the homework as an extra credit problem).

2.1. Partitions. A partition of a set is a decomposition of the set as
a union of pairwise disjoint non-empty subsets. Precisely, if A is a set
then a set {Ai : i ∈ I} of subsets of A is a partition of A if it satisfies
the properties

• Each Ai is non-empty;
•
⋃
i∈I Ai = X;

• Ai ∩ Aj = ∅ if i 6= j.

An example is the partition of the integers Z into the sets of even and
odd integers.

A partition turns out to be just a different view of an equivalence
relation.

2.2. Partition to equivalence relation. If {Ai : i ∈ I} is a partition
of A then there is a corresponding equivalence relation ∼ on A given
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by a ∼ b if and only if a and b are in the same member of the partition
(i.e., a ∼ b :⇔ ∃i ∈ I : a, b ∈ Ai).

2.3. Equivalence relation to partition. Given an equivalence rela-
tion ∼ on a set A, for each a ∈ A the set

{b ∈ A : a ∼ b}

is called the equivalence class of a. Common notations for this equiv-
alence class are a or [a]. I will use a here, so

a = {b ∈ A : a ∼ b} .

We call a a representative for the equivalence class a. Any two elements
of a are representatives of a:

Lemma 5. If ∼ is an equivalence relation on A and a denotes the
equivalence class of a then the following are equivalent:

(1) a ∼ b
(2) a = b
(3) a ∩ b 6= ∅.

Proof. (1)⇒(2): Assume a ∼ b. Then if c ∈ b we have b ∼ c so by
transitivity of ∼ also a ∼ c, whence c ∈ a. Similarly c ∈ b implies c ∈ a
so a = b.

(2)⇒(3) is trivial.
(3)⇒(1): Suppose c is a common element of a and b. Then c ∈ a

means a ∼ c and c ∈ b means b ∼ c and then c ∼ b by symmetry and
then a ∼ b by transitivity. �

A “lemma” is a statement designed to help prove some other result.
In this case the result we are proving is

Theorem 6. If ∼ is an equivalence relation on A then the set of equiv-
alence classes for ∼ is a partition of A.

Proof. We need to prove the three defining properties of a partition.
First, each a is nonempty, since a ∈ a. Second,

⋃
a∈A a = A since for

any b ∈ A we have b ∈ b ∈
⋃
a∈A a. Finally if two equivalence classes a

and b are not equal then they are disjoint by the above lemma. �

Example. The partition of the integers Z into the sets of even and of
odd integers corresponds to the equivalence relation ≡2 of congruence
modulo 2.
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More generally, congruence modulo n leads to the partition of the
integers into the n sets:

0 ={. . . ,−2n,−n, 0, n, 2n, . . . }
1 ={. . . ,−2n+ 1,−n+ 1, 1, n+ 1, 2n+ 1, . . . }
2 ={. . . ,−2n+ 2,−n+ 2, 2, n+ 2, 2n+ 2, . . . }

...
...

n− 1 ={. . . ,−n− 1,−1, n− 1, 2n− 1, 3n− 1, . . . }
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