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Abstract. While the topological types of normal surface singularities with

homology sphere link have been classified, forming a rich class, until recently
little was known about the possible analytic structures. We proved in [29] that

many of them can be realized as complete intersection singularities of “splice

type,” generalizing Brieskorn type.
We show that a normal singularity with homology sphere link is of splice

type (up to equisingular deformation) if and only if some naturally occurring

knots in the singularity link are themselves links of hypersurface sections of
the singular point.

The Casson Invariant Conjecture (CIC) asserts that for a complete intersec-
tion surface singularity whose link is an integral homology sphere, the Casson

invariant of that link is one-eighth the signature of the Milnor fiber. In this

paper we prove CIC for a large class of splice type singularities.
The CIC suggests that the Milnor fiber of a complete intersection singular-

ity with homology sphere link Σ should be a 4-manifold canonically associated

to Σ. We propose, and verify in a non-trivial case, a stronger conjecture than
the CIC for splice type complete intersections: a precise topological description

of the Milnor fiber.

We present some examples to show that earlier conjectures in [27] and [28]
are not true in the generality stated there.

The topological types of normal surface singularities are well understood, ([25]),
but it is very rare that much is known about the analytic type for given topology.
If one restricts to singularities with (integral) homology sphere link, the possible
links are classified by “splice diagrams” ([7]) and are obtained by repeatedly splicing
together the links Σ(p1, · · · , pn) of Brieskorn complete intersections along naturally
occurring knots. But even for this restricted class, explicit analytic descriptions of
the singularities were known in only the simplest cases.

In a parallel paper [29], we describe how “most” homology sphere singularity
links arise as links of complete intersection singularities, and we give explicit equa-
tions. These equations, which we call “splice type,” generalize the Brieskorn com-
plete intersections1. One may think in terms of an operation of splicing the defining
equations of two singularities which on the boundary corresponds to splicing the
links. Specifically, we have the
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Theorem 0.1. [29] Given a homology sphere link Σ whose splice diagram satisfies
the semigroup condition, there exists a complete intersection singularity of splice
type whose link is Σ.

There is a natural notion of “higher weight terms” for a splice type equation,
and, by definition, the result of adding higher weight terms is still of splice type (the
effect on the singularity is always an equisingular deformation). Our earlier usage
of the term “splice type,” which did not allow the higher weight terms, we now call
“strict splice type.” Thus, for example, the splice type singularities corresponding
to one-node splice diagrams are precisely the Brieskorn singularities with homology
sphere link and their higher weight deformations.

In an earlier paper [27], we made the following optimistic

Splice Type Conjecture. Any Gorenstein surface singularity with integral ho-
mology sphere link is a complete intersection of splice type.

Implicit in this conjecture was a new and unexpected necessary condition (the
“semigroup condition”) on a splice diagram (and hence on a resolution diagram)
in order that it come from a Gorenstein singularity. After all, a similar semi-
group condition on the value semigroup of a curve singularity is well known to
characterize the Gorenstein ones. Further, the conjecture would imply that the
topology of a homology sphere link determines a Gorenstein singularity uniquely
up to equisingularity—a kind of “tautness.” (Compare with the equations of plane
curve singularities with given Puiseux pairs.) An elementary case for which we can
show the conjecture is for any singularity zn + g(x, y) = 0 with homology sphere
link (Corollary 8.2).

But a class of examples, to which we were led by conversations with Némethi,
Luengo, and Melle-Hernandez, shows this Conjecture to be false, at least with the
Gorenstein hypothesis:

Example 1. There exists a Gorenstein singularity, not of splice type, whose link is
the Brieskorn sphere Σ(2, 13, 31). There exists a Gorenstein singularity, not of splice
type, whose link is a homology sphere but which does not satisfy the semigroup
conditions.

The above singularities are universal abelian covers of hypersurface singularities.
We do not know if any of them are complete intersections.

We prove our original conjecture under additional assumptions, which clarifies
the situation. A homology sphere link Σ of a normal surface singularity (X, o) has
a number of natural knots, one for each leaf of the splice diagram (or equivalently,
of the resolution graph). For a splice type singularity these knots are cut out by
hypersurface sections. We prove, conversely (see Theorem 8.1 for a more precise
version):

Theorem 1. For a normal surface singularity (X, o) with homology sphere link,
if all the knots associated to leaves of the splice diagram are links of hypersurface
sections of X, then the semigroup condition is fulfilled, and X is a complete inter-
section of splice type.

Our study of singularities with homology sphere link originated in our conjecture,
formulated in [26]:
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Casson Invariant Conjecture. Let (X, o) be an isolated complete intersection
surface singularity whose link Σ is an integral homology 3-sphere. Then the Casson
invariant λ(Σ) is one-eighth the signature of the Milnor fiber of X.

At the time, we verified the Casson Invariant Conjecture for Brieskorn complete
intersections by direct computation. It was a challenge to find other examples, but
having done so, the conjecture was verified in these cases, with the serious work
being calculation of the signature. With the singularities of splice type we now have
an abundance of examples. The following theorem includes all previously proved
cases of the Casson Invariant Conjecture, except for some cases described by Collin
and Saveliev in [4] (see Remark 5.3).

Theorem 2. The Casson Invariant Conjecture is true for complete intersection
singularities of splice type for which the nodes of the splice diagram are in a line.

This is proved by reformulating (as in [26]) the Casson Invariant Conjecture
in terms of geometric genus, which is easier than the signature to compute from
defining equations.

Casson Invariant Conjecture (Version 2). Let (X, o) be a complete intersection
surface singularity with integral homology 3-sphere link Σ. Then the Casson in-
variant λ(Σ) equals −pg(X, o) − 1

8C(Σ), where C(Σ) is the characteristic number
c2
1 + c2 − 1 of any good resolution of X (this is a topological invariant).

This version implies the previous version by formulas of Laufer and Durfee (see
proof of Theorem 3.3). The corresponding version of the Conjecture makes sense
for Gorenstein singularities, but is false in that generality, as seen using some of
the examples above.

Assuming the Splice Type Conjecture for complete intersections (a shaky as-
sumption), one might expect to verify the Casson Invariant Conjecture by direct
calculation with the equations. But we expect things to go in the opposite direction:
a proof of the Casson Invariant Conjecture (perhaps symplectic or gauge-theoretic)
might allow one to deduce the form of defining equations. This happens for in-
stance in the one-node case: we proved in [26] that a Gorenstein singularity (X, o)
with link Σ(p1, · · · , pn) is of splice type, i.e., an equisingular deformation of the
corresponding Brieskorn complete intersection, if and only if the Casson Invari-
ant Conjecture holds for X (equivalently, X has the same geometric genus as the
Brieskorn complete intersection). We remark that A. Némethi [18] has proved this
value of geometric genus for weakly elliptic singularities, e.g., for Σ(2, 3, 6k + 5).

Part of the interest of the Casson Invariant Conjecture is its suggestion that the
Milnor fiber is a “natural” 4-manifold which is attached to its boundary Σ, and
for which the signature computes the Casson invariant exactly (and not just mod
2). Specifically, it implies that for a complete intersection singularity whose link
is a homology sphere, analytic invariants like the Milnor number and geometric
genus are determined by the link. (Such results are known to be false for general
hypersurface singularities.) Given the equations of a singularity, it is relatively easy
to calculate the Casson invariant of the link, but it is extremely hard to calculate
the signature of the Milnor fiber (let alone understand its topology).

We conjecture a topological construction that, when splicing two singularities,
creates the new Milnor fiber out of the old ones, extending the operation of splicing
on the boundaries (see Conjecture 3). This conjecture easily implies (and hence
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motivates) the Casson Invariant Conjecture for such singularities (Corollary 3.2
below). We succeed in proving it in a non-trivial case:

Theorem 3. For a singularity zn + g(x, y) = 0 with homology sphere link, the
Milnor fiber is formed by the conjectured topological construction.

Though the Casson Invariant Conjecture for this case follows, it had already been
proven in [26] (by a much less conceptual proof), and recently by Collin and Saveliev
[4] using equivariant Casson invariants and by Némethi and Nicolaescu [22] in a
more general context. It is also a special case of Theorem 2.

In [27, 28] we proposed a more general version of the Splice Type Conjecture:
Any Q-Gorenstein surface singularity with Q-homology sphere link has as universal
abelian cover a complete intersection singularity of splice type (using a generalized
notion of splice diagram). Again, the examples above show this to be false even
for hypersurface singularities. But, in [29] we prove a general result which uses
equations of splice type to produce Q-Gorenstein singularities with given topo-
logical type. In particular, the equations of splice type of the current paper give
singularities with the expected homology sphere links, so we do not give a proof
here.

On the other hand, the contents of this paper are somewhat transverse to [29],
since in [28, 29] we offer no guess as to the topology or the signature of the Milnor
fiber of the universal abelian cover. Though [26] wondered about a generalization
involving the Casson-Walker invariant, computations for Seifert fibered rational
homology spheres by Lescop [15, 16] showed the naive generalization fails (see also
[5]). Lim’s result [14] suggests looking at a Seiberg-Witten invariant, and a recent
generalization along these lines of the Casson Invariant Conjecture to Q-Gorenstein
Q-homology spheres has been offered by Némethi and Nicolaescu [20, 21, 22].

We offer now a road map to help readers go through this paper.
Sections 1 and 2 are introductory. In Section 1, we review from [7] the definition

of splice diagrams and the topological description of homology sphere links; further
details are found in the Appendix (Section 9), where we also give an improved
description of the relationship between splice diagrams and plumbing (or resolution)
graphs. We also introduce the important “semigroup condition.” In Section 2 we
associate “splice type equations” to any splice diagram with semigroup condition;
this provides a wealth of examples of complete intersections with homology sphere
links.

Sections 3 to 5 discuss the Milnor Fiber Conjecture. Section 3 introduces this
conjecture, which describes the topology of the Milnor fiber of splice type singu-
larities, and which would imply the Casson Invariant Conjecture. The discussion
leads to Theorem 3.3, which clarifies how the Casson Invariant Conjecture relates
to splicing. This involves the relationship between signature and geometric genus,
and the key is to understand the behavior of the topological invariant C(∆) of the
link under splicing. This is done in Theorem 3.4, whose proof, using numerics of
splice diagrams, takes up the following section (Section 4).

Section 5 verifies the Milnor Fiber Conjecture for equations of the form zn =
f(x, y), by careful topological construction of the Milnor fiber. This uses a descrip-
tion of plane curve singularities in terms of splice diagram equations.

The remaining sections address Theorems 2 and 1 and are for the most part
independent of the preceding sections (although Theorem 3.3 is used in Section 7).
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Section 6 develops some theory of semigroups and monomial curves that is needed
in the next two sections. In particular, it includes a new characterization of com-
plete intersection monomial curves in terms of one-dimensional analogues of splice
type singularities (Theorem 6.1 and its scholium).

Section 7 has as its goal the inductive calculation of the geometric genus pg for
a splice type singularity. Every node v of the splice diagram gives a valuation (or
weight function) ν of the singularity; a key result (Theorem 7.3) states that the
associated graded ring associated to ν is an integral domain, whose normalization
is a Brieskorn complete intersection. Though pg is the colength of a fairly explicit
ideal determined by all ν’s, only when all the nodes of the splice diagram are on a
line can we find “good bases” allowing calculation of this number. The main result
is Theorem 7.6.

Finally, Section 8 examines the key property of a splice type singularity: the
natural knots in the link associated to leaves in the splice diagram are obtained
by setting a coordinate equal to 0. We prove (Theorem 8.1) that conversely any
normal surface singularity with homology sphere link, and for which the natural
knots are hypersurface sections, is in fact a splice type singularity.

As mentioned above, Section 9 is an appendix on splice diagrams.
The conjectures and some results of this paper arose from a visit by the first

author to Duke University, and we thank the Duke Mathematics Department for
its hospitality. We also thank the Max-Planck-Institut für Mathematik in Bonn for
its hospitality while some of the work on this paper was done.

1. Splice diagrams for integral homology sphere links

For more details on splicing see the Appendix (Section 9).
Recall that a splice diagram is a finite tree with vertices only of valency 1

(“leaves”) or ≥ 3 (“nodes”) and with a collection of integer weights at each node,
associated to the edges departing the node. The following is an example.

◦ ◦
◦

2
OOOOOOO

3ooooooo ◦
5 OOOOOOO
2

ooooooo117

◦ ◦
For an edge connecting two nodes in a splice diagram the edge determinant is the
product of the two weights on the edge minus the product of the weights adjacent
to the edge. Thus, in the above example, the one edge connecting two nodes has
edge determinant 77− 60 = 17.

The splice diagrams that classify homology sphere singularity links satisfy the
following conditions on their weights:

• the weights around a node are positive and pairwise coprime;
• the weight on an edge ending in a leaf is > 1;
• all edge determinants are positive.

More general splice diagrams appear for other situations (see, e.g., [7] and [28]),
but we will only consider splice diagrams satisfying the above conditions here.

Theorem 1.1 ([7]). The homology spheres that are singularity links are in one-one
correspondence with splice diagrams satisfying the above conditions.

The splice diagram and resolution diagram for the singularity determine each
other uniquely, and describe how to construct the link by splicing or by plumbing.
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One method to compute the resolution diagram from the splice diagram is given in
[7]. We describe an easier method in the appendix to this paper (Section 9), where
we also recall the topological meaning of splicing and describe how to compute the
splice diagram from the resolution diagram for a singularity.

The following notations will be used extensively in this paper.

Notation. For a node v and an edge e at v, let dve be the weight on e at v, and
dv the product of the dve over all such e. Let ∆ve be the subgraph of ∆ cut off
from v by e. For any pair of vertices v and w, let `vw (the linking number) be the
product of all the weights adjacent to, but not on, the shortest path from v to w
in ∆. We also consider `′vw, the same product but excluding weights around v and
w. Thus if v is a node and w is a leaf in ∆ve, then

`vwdve = `′vwdv.

Definition 1.2 (Semigroup Condition). Let ∆ be a splice diagram. We say ∆
satisfies the semigroup condition if, for each node v and adjacent edge e, the edge-
weight dve is in the semigroup

N〈`′vw : w a leaf of ∆ in ∆ve〉 .
Equivalently, the product dv of the edge-weights adjacent to v is in the semigroup

N〈`vw : w a leaf of ∆ in ∆ve〉 .

For instance, in the two-node splice diagram above, let v be the leftmost node
and w the upper right hand leaf. Then `vw equals 2 · 3 · 5, while `′vw = 5; the
semigroup condition is satisfied at that node since 7 is in the semigroup generated
by 2 and 5.

If a splice diagram satisfies the semigroup condition, we will write down complete
intersection equations that give a singularity with the given link. We conjecture
conversely that the semigroup condition is necessary for the link to be realized by a
complete intersection — even a Gorenstein — singularity. The following is a special
case of Conjecture 2 of [28].

Conjecture 1 (Gorenstein implies Semigroup Condition). If a surface singular-
ity with homology sphere link is Gorenstein, then its splice diagram satisfies the
semigroup condition.

For example, consider the splice diagram

◦ ◦
∆ = ◦

p
TTTTTTT

qjjjjjjj ◦
q′ TTTTTTT
p′ jjjjjjjr′r

◦ ◦
with p, q, r and p′, q′, r′ pairwise coprime triples of positive integers satisfying rr′ >
pqp′q′. Then ∆ satisfies the semigroup condition if and only if

r ∈ N〈p′, q′〉 and r′ ∈ N〈p, q〉.
(Note r is automatically in the semigroup N〈p′, q′〉 if it is greater than or equal to
the conductor (p′ − 1)(q′ − 1).) In particular, the resolution diagram

−2
◦

−2
◦

T =
−7
◦

QQQQQQ

mmmmmm
−1
◦

mmmmmm
QQQQQQ

−3
◦

−3
◦
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gives the splice diagram

◦ ◦
∆ = ◦

2
TTTTTTT

3jjjjjjj ◦
3 TTTTTTT
2

jjjjjjj371

◦ ◦
which does not satisfy the semigroup condition, since 1 is not in the semigroup
generated by 2 and 3. We would therefore expect that there is no Gorenstein
singularity with this resolution.

2. Equations associated to a splice diagram

Let ∆ be a splice diagram satisfying the semigroup condition. We will write
down a system of complete intersection equations that give a singularity with the
corresponding link. Associate a variable zw to each leaf w of the splice diagram.
To each node v of the splice diagram, we will associate (δv − 2) equations, where
δv is the valency of the node. If n is the number of leaves, then it is easy to check
that n − 2 =

∑
(δv − 2) (summed over the nodes of ∆), so this will give the right

number of equations.
Fix a node v. For each leaf w we give the variable zw weight `vw (we call this

the v-weight of zw). For each edge e at v the semigroup condition lets us write

(1) dv =
∑
w

αvw`vw, sum over the leaves w of ∆ in ∆ve, with αvw ∈ N.

Equivalently,

(2) dve =
∑
w

αvw`′vw sum over the leaves w of ∆ in ∆ve

We define an admissible monomial (associated to the edge e at the node v) to be
a monomial

∏
w zαvw

w , the product over leaves w in ∆ve, with exponents satisfying
the above equations. Thus an admissible monomial Mve associated to v has total
v-weight dv (and depends on the choice of αvw).

Next, choose one admissible monomial Mve for each edge at v and consider
δv − 2 equations associated to v by equating to 0 some C-linear combinations of
these monomials: ∑

e

aieMve = 0, i = 1, . . . , δv − 2.

Repeating for all nodes, we get a total of n− 2 equations. If the coefficients aie of
the equations are “sufficiently general,” we say that the resulting system of n − 2
equations is of strict splice type.

Sufficiently general simply means that for every v, all maximal minors of the
(δv − 2) × δv matrix (aie) of coefficients should be non-singular. By applying row
operations to such a matrix (taking linear combinations of the equations) one can
always put the (δv − 2)× δv coefficient matrix in the form

1 0 . . . 0 a1 b1

0 1 . . . 0 a2 b2

...
...

...
...

...
0 0 . . . 1 aδv−2 bδv−2





8 WALTER D. NEUMANN AND JONATHAN WAHL

so we will often assume we have done so. In this way, the defining equations are
sums of three monomials. The “sufficiently general” condition is then aibj−ajbi 6= 0
for all i 6= j, and all ai and bi nonzero.

Example 2. Assume ∆ has one node, of valency n. There is no semigroup condi-
tion. There is only one admissible monomial for each edge, namely z

dj

j , where dj

is the weight on the edge. Our equations are thus of Brieskorn type:
n∑

j=1

aijz
dj

j = 0, i = 0, . . . , n− 2 .

The “sufficiently general” condition is then the well-known condition (due to H.
Hamm [9]) for the system of n− 2 equations to have an isolated singularity. Thus,
for a splice diagram with one node, “strict splice type” is equivalent to isolated
Brieskorn complete intersection.

Example 3. For the ∆ of the example at the start of Section 1 we associate
variables z1, . . . , z4 to the leaves as follows:

z1 ◦ ◦ z4

∆ = ◦
2

SSSSSSS
3kkkkkkk ◦

5 SSSSSSS
2

kkkkkkk117

z2 ◦ ◦ z3

The admissible monomials for the left node are z2
1 , z3

2 , and z3z4. The admissible
monomials for the right node are z5

3 , z2
4 , and z1z

4
2 or z3

1z2 (since 11 = α · 3 + β · 2
has solutions (1, 4) and (3, 1)). Thus the system of equations might be

z2
1 + z3

2 + z3z4 = 0 ,
z5
3 + z2

4 + z1z
4
2 = 0 .

This system is always of “strict splice type” by our comments above.

Equisingular deformations of systems of equations of strict splice type should
come from adding terms of greater or equal weight with respect to the vertex
weights to each equation. If only greater weight is allowed the result always is an
equisingular deformation. We speak of a higher weight deformation and say the
resulting equations are simply of splice type. See [29] for a fuller discussion.

The importance of splice type singularities is indicated by a result we prove
elsewhere.

Theorem 2.1 ([29]). A system of equations of splice type defines an isolated com-
plete intersection surface singularity whose link is the homology sphere Σ defined
by the splice diagram ∆, and whose resolution graph is therefore the corresponding
resolution diagram.

Moreover, the curve zi = 0 cuts out in Σ the knot corresponding to the i-th leaf
of ∆.

One could in fact expand the definition of strict splice type singularities slightly,
to include (for fixed v) suitable linear combinations of all possible admissible mono-
mials associated to edges at v. But, up to higher weight deformations, this adds
no generality. Also, if we change our choice of admissible monomials for the edges
at each node, then we only change our splice type singularities up to higher weight
deformation. Thus the concept of splice type is independent of choices of admissible
monomials.
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Conjecture 2 (Splice Type Conjecture). Any Gorenstein surface singularity with
integral homology sphere link is a complete intersection of splice type.

Implicit in this conjecture is Conjecture 1 on the necessity of the semigroup
condition.

A variant of the splice diagram yields a more familiar object. Let ∆ be a splice
diagram satisfying the semigroup conditions, and choose a distinguished leaf w′.
Attach a variable zw to each leaf w 6= w′. Now, for each vertex v of ∆, form
the same equations as before, except that one does not consider the edge in the
direction of w′. (One is in general eliminating more monomials than simply setting
zw′ = 0 in our previous splice diagram equations.) There is now one equation less
than there are variables. Note that the edge-weights in the direction of w′ now
play no role and can be discarded. We claim these equations generate a complete
intersection curve, and this curve is the monomial curve associated to a semigroup
Γ′. To describe this we first briefly recall some terminology about semigroups (see
Section 6 for more details).

The semigroups arising in this paper are always numeric semigroups, that is
subsemigroups Γ of N = Z≥0 for which N − Γ is finite. The conductor c(Γ) is the
smallest c ≥ 0 so that γ ≥ c implies γ ∈ Γ. The semigroup ring C[tΓ], or monomial
curve associated to Γ, is the graded subalgebra of C[t] generated by tγ , γ ∈ Γ. Γ is
called a complete intersection semigroup if C[tΓ] is a graded complete intersection.

In our situation of a splice diagram ∆ satisfying the semigroup conditions with
distinguished leaf w′, the semigroup Γ′ is the semigroup generated by `w′w over all
leaves w 6= w′. We will see in section 6 that Γ′ is a complete intersection semigroup
and that the curve described above is isomorphic to the monomial curve C[tΓ

′
].

Example 4. Consider the splice diagram at the beginning of Section 1, and let
w′ be the lower left leaf. In the modified splice diagram, the weights 3 and 11 are
removed. Denote the three leaves by wi, i = 1, 3, 4, starting at the upper left and
going counterclockwise; the corresponding variables by zi; and the two nodes by v
and v′. Then the equations at v resp. v′ could be z2

1 + az3z4 = 0 and z5
3 + bz2

4 = 0.
The semigroup Γ′ is Γ′ = N〈7, 4, 10〉 and, if we choose a = b = −1, the curve can
be parameterized as (z1, z3, z4) = (t7, t4, t10).

In terms of Theorem 2.1, the significance of this curve is that if w′ is the i-th
leaf of ∆ then this curve, or an equisingular deformation of it, arises as the curve
cut out by the hyperplane zi = 0.

A leaf w′ of a splice diagram ∆ always represents a knot in the corresponding
homology sphere, and this knot is a fibered knot (see §11 of [7]). If the homology
sphere is given as a link of a splice type singularity as above, then this knot is
the link of the curve cut out by a coordinate hyperplane zi = 0 (and the fibration
can be given by the usual Milnor fibration zi/|zi|). The first Betti number of its
fiber is the Milnor number of the knot. We recall that even without the semigroup
condition, we have:

Theorem 2.2 ([7], §11). The Milnor number of the above knot is

1 +
∑
v 6=w′

(δv − 2)`vw′ .



10 WALTER D. NEUMANN AND JONATHAN WAHL

If the link is given by splice type equations, then the theory of curve singularities
implies that this number equals the conductor of the above semigroup Γ′, as can
be confirmed by computation of the conductor (Theorem 6.1).

3. Milnor fibers

Suppose Σ is the link of an isolated singularity at 0 of a complete intersection
surface X = f−1(0), where f is a map f = (f1, . . . , fn−2) : (Cn, 0) → (Cn−2, 0).
The Milnor fiber is the manifold F := f−1(δ) ∩ B(ε) where B(ε) is a sufficiently
small ball about 0 and δ is a general point of Cn−2 very close to the origin. It
is a smooth simply-connected piece of complex surface with boundary Σ; it has a
symmetric intersection pairing on the second homology group, whose rank b2(F )
is usually denoted by µ. The Casson Invariant Conjecture says that when Σ is a
homology sphere, sign(F ) should equal 8λ(Σ), where λ(Σ) is the Casson invariant.

The Casson invariant of Σ is not hard to compute, and the hurdle in confirm-
ing this conjecture for any particular example is to understand F well enough to
compute sign(F ). This has been done for Brieskorn complete intersections. Thus,
the conjecture could be verified in this case—a one-node splice diagram (see [26],
which also proves a few other cases).

Now suppose the equations fi(z1, . . . , zn) = 0, i = 1, . . . , n− 2, are of splice type
as above, corresponding to a splice diagram ∆. Thus the curve zj = 0 cuts out in Σ
the knot Kj corresponding to the j-th leaf of ∆. The link (Σ,Kj) is a fibered link
whose fiber Gj can also be seen as the Milnor fiber of the singularity at 0 of the
complete intersection curve (f1, . . . , fn−2, zj)−1(0). The topology of this fiber and
its embedding in Σ can be described by gluing together Milnor fibers of appropriate
links in the splice components of Σ (see [7]).

We shall describe a conjectural iterative description of F in terms of the Milnor
fibers of simpler complete intersection surface singularities and fibers Gj as above
lying in their boundaries.

Thus consider Σ as the splice Σ = Σ1
K1 K2 Σ2 of two homology spheres

determined by cutting ∆ at an edge to form two diagrams. It is easy to see that
these two diagrams ∆1 and ∆2 also satisfy the semigroup condition so Σ1 and Σ2

are both complete intersection singularity links given by equations of splice type.
They thus have Milnor fibers, which we shall call F1 and F2, with ∂Fi = Σi.

Let G1 ⊂ Σ1 be the fiber for the knot (Σ1,K1). We may push the embedding
G1 → F1 inside F1 by a normal vector-field to obtain a proper embedding G1 → F1

(that is, an embedding with ∂G1 = G1 ∩ ∂F1, transverse intersection) and then
extend to an embedding G1 × D2 → F1 of a tubular neighborhood of G1. We
similarly construct an embedding D2 ×G2 → F2.

Denote
F o

1 := F1 − (G1 ×
◦
D2), F o

2 := F2 − (
◦
D2 ×Gi),

so ∂F o
1 is the union of G1 × S1 and the exterior (complement of an open tubular

neighborhood) of the knot K1 ⊂ Σ1, and similarly for ∂F o
2 .

Conjecture 3 (Milnor Fiber Conjecture). F is homeomorphic to the result F of
pasting:

F := F o
1 ∪G1×S1 (G1 ×G2) ∪S1×G2 F o

2 ,

where we identify G1 × S1 with G1 × ∂G2 and S1 ×G2 with ∂G1 ×G2.
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By Milnor [17] and Hamm [9], F , F1, F2 are simply connected 4-manifolds which
are homotopy equivalent to 2-complexes and thus have reduced homology only in
dimension 2. We show that F has the nice properties we would like F to have.

Theorem 3.1. ∂F = Σ and F is simply connected and homotopy equivalent to a
2-complex. Moreover,

H2(F ) ∼= H2(G1 ×G2)⊕H2(F1)⊕H2(F2)

=
(
H1(G1)⊗H1(G2)

)
⊕H2(F1)⊕H2(F2).

with maps induced by inclusions, so

sign(F ) = sign(F1) + sign(F2) .

Corollary 3.2. The Milnor Fiber Conjecture (Conjecture 3) implies the Casson
Invariant Conjecture for complete intersection singularities of splice type.

Proof. The theorem and Conjecture 3 imply that signature of Milnor fiber is ad-
ditive under splicing. The Casson invariant is additive for splicing. The Casson
Invariant Conjecture is known for Brieskorn complete intersections (the one-node
case). �

Proof of Theorem 3.1. The fact that ∂F = Σ is immediate from the construction.
For the rest of this proof it is convenient to have a different description of F .

Consider Gi embedded in Σi and let Ni ⊂ Σi = ∂Fi be a tubular neighborhood
of Gi in Σi, so Ni

∼= Gi × I. Note that ∂(G1 × G2) = (G1 ×K2) ∪ (K1 × G2), so
we can also embed N1 in ∂(G1 ×G2) as G1 × I ⊂ G1 ×K1, and similarly for N2.
We claim:

(3) F ∼= F1 ∪N1 (G1 ×G2) ∪N2 F2.

Indeed, to turn our previous description of F into this one, connect the proper
embedding Gi ⊂ Fi to the embedding Gi ⊂ ∂Fi by a “strip” Gi × I and remove
a tubular neighborhood of this strip from F o

i and glue it onto F1 × F2 instead.
The result of removing it from F o

i is something homeomorphic to Fi, while, when
glued to F1×F2 it is just a collar on part of the boundary and does not change the
homeomorphism type of F1 × F2.

Consider, therefore, F as in equation (3). By shrinking slightly the regions Ni

along which the Fi are glued to G1 ×G2 we can make them disjoint in ∂(G1 ×G2)
without changing the homotopy type (or even homeomorphism type) of F1 ∪N1

(G1 ×G2)∪N2 F2. Then (G1 ×G2)∩ (F1 ∪ F2) consists of the disjoint union of N1

and N2. The Meyer-Vietoris sequence for the decomposition (G1 ×G2)
⋃

(F1 ∪F2)
then easily yields that the inclusions induce an isomorphism

H2(F ) ∼= H2(G1 ×G2)⊕H2(F1)⊕H2(F2)

as desired.
The fact that F is simply connected is an easy application of the Van Kampen

theorem. The fact that F is homotopy equivalent to a 2-complex can be seen by
replacing G1 and G2 by one-dimensional spines S1 and S2 say, replacing F1 and F2

by 2-dimensional spines T1 and T2, and then gluing S1×S2 to T1 and T2 by means
of mapping cylinders of appropriate maps Si → Ti. �

Recall that the geometric genus pg(X, o) of a singularity is dimH1(Y,O), where
Y → X denotes a resolution of the singularity. In general, it is not topologically
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determined by the link of X, but the Casson Invariant Conjecture (second version)
says that it should be for Gorenstein singularities with homology sphere links. The
following theorem says what the Casson Invariant Conjecture implies about the
behavior of various invariants under splicing. Item (3) of this theorem provided part
of the motivation for the above construction of F for the Milnor Fiber Conjecture.

Theorem 3.3. Let X be a complete intersection with homology sphere link, with
Milnor fiber F ; and suppose its link is spliced from links of two singularities X1, X2,
with Milnor fibers F1, F2. Assume the Casson Invariant Conjecture for X1 and X2.
Then the following statements are equivalent:

(1) The Casson Invariant Conjecture holds for X.
(2) We have sign(F ) = sign(F1) + sign(F2).
(3) With G1, G2 as above, we have b2(F ) = b2(F1) + b2(F2) + b1(G1)b1(G2) ,

where bi is Betti number.
(4) The geometric genus satisfies pg(X) = pg(X1) + pg(X2) + 1

4b1(G1)b1(G2).
Moreover, these invariants of X are then topologically determined by the link.

Proof. The equivalence of (1) and (2) has already been discussed, so we prove the
equivalence of (2), (3), and (4).

Formulas of H. Laufer and A. Durfee imply that the geometric genus of X, and
the signature and second Betti number µ of the Milnor fiber, are explicitly related
by topological invariants of the link (see, e.g., [32].) Let Y → X denote a good
resolution, and c2

1 and c2 the characteristic Chern numbers of Y (also known as
K · K and χ(Y ), where χ is topological Euler characteristic). Then these Chern
numbers are determined by the resolution dual graph, and their sum c2

1 + c2 is
independent of the resolution, hence depends only on the link. We define

C(∆) = c2
1 + c2 − 1,

the notation indicating that this number depends only on the splice diagram ∆.
Then the aforementioned formulas may be written

µ = 12pg + C(∆) (Laufer)

3 sign(F ) = −2µ− C(∆) (Durfee)

(In general Durfee’s formula has an extra 3b1(Y ) on the right, which vanishes in
our case.) Eliminating µ, these formulas imply

sign(F ) = −8pg − C(∆) ,

proving the equivalence of the two formulations of the Casson Invariant Conjec-
ture in the Introduction (for complete intersections). Moreover, it follows that the
equivalence of (2), (3), and (4) of Theorem 3.3 reduce to the formula of the following
theorem, which will therefore complete the proof. �

Theorem 3.4. In the above notation, even if ∆ does not satisfy the semigroup
condition we have

C(∆)− C(∆1)− C(∆2) = −2b1(G1)b1(G2).

This theorem involves computing c2
1 and c2 of the resolution in terms of the

splice diagram, which is of interest in its own right, so we devote the next section
(Section 4) to its proof.
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If any one of the analytic invariants sign(F ), µ, and pg(X) is a topological in-
variant, then they all are, by the above formulas. The Casson Invariant Conjecture
gives a topological description of pg and sign(F ).

Suppose (X, o) is a Gorenstein surface singularity whose homology sphere link
has one node; thus, its link is Σ(p1, · · · , pn). The Casson Invariant Conjecture
for X is equivalent to the assertion that pg(X) = pg(V (p1, · · · , pn)). But this
latter condition is well-known to be equivalent to the statement that X admits
an equisingular, simultaneous resolution degeneration to V (see, e.g., [31] (6.3) for
a convenient proof). In other words, we could conclude that X is a splice type
singularity, as was mentioned in the Introduction. We suspect a similar result is
true in the general case. But, even in case X is a hypersurface singularity with link
Σ(p, q, r), we do not know a proof. As we mentioned in the Introduction, there are
a few very non-trivial cases worked out by A. Némethi ([18]).

4. Canonical divisor of a resolution

This section is devoted to proving Theorem 3.4. We start by computing the ra-
tional canonical divisor for an arbitrary resolution of an isolated surface singularity.

Suppose we have a good resolution of an isolated surface singularity. Denote
the exceptional curves by Ei, i = 1, . . . , n. For each i let δi be the number of
intersection points of Ei with other Ej ’s and let E0

i be Ei with these intersection
points removed. Denote χi = χ(E0

i ) = χ(Ei)− δi (χ is Euler characteristic).
Let K be the (rational) canonical divisor, defined by the adjunction formula

K · Ei = −χ(Ei)− Ei · Ei.

Let

D := −K − E, where E =
n∑

i=1

Ei

and suppose

D =
n∑

i=1

kiEi.

Then the adjunction formula becomes D.Ej = χ(Ej)− δj = χj , so

ki = −
∑

`ijχj , where (`ij) = (−Ei · Ej)−1 (matrix inverse).

Now

K = −D − E =
∑

i

(−ki − 1)Ei =
∑

i

(∑
j

`ijχj − 1
)
Ei
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so

K ·K =
(∑

i

(∑
j

`ijχj − 1
)
Ei

)
·
(∑

k

(∑
l

`klχl − 1
)
Ek

)
=

∑
i,j,k,l

`ij`kl(Ei · Ek)χjχl −
∑
i,k,l

`kl(Ei · Ek)χl −
∑
i,j,k

`ij(Ei · Ek)χj

+
∑
i,k

Ei · Ek

= −
∑
j,l

`jlχjχl +
∑

i

χi +
∑

i

χi +
(∑

i

Ei · Ei + 2
∑
i<j

Ei · Ej

)
= −

∑
i,j

`ijχiχj + 2χ(
⋃
i

Ei) +
∑

i

Ei · Ei .

We note that our notation ki and `ij is consistent with the notation in the
Appendix (Section 9). Summarizing:

Proposition 4.1. For any good resolution of an isolated surface singularity the
divisor D = −K − E is given by

D =
∑

kiEi with ki = −
∑

j

`ijχj

where (`ij) = (−Ei · Ej)−1 (matrix inverse). Also,

c2
1 + c2 = −

∑
i,j

`ijχiχj + 3c2 +
∑

Ei · Ei .

To apply this to prove Theorem 3.4 we now restrict to the case of a singularity
with homology sphere link given by a splice diagram ∆. Then χi = 2 − δi which
vanishes except at nodes and ends of the plumbing graph, so we only need to know
`ij when i and j index nodes or ends. By Theorem 9.1, this is as follows. If i 6= j
then `ij is the product of the splice diagram weights adjacent but not on the path
from i to j in ∆. If i = j then

• If i is a node then `ii is the product of weights at that node.
• If i is a leaf adjacent to a node with weights p0, . . . , pn with p0 on the edge

to i then `ii = dp1 . . . pn/p0e.
A simple matrix calculation shows that −`ii is the weight one would have to put

on a new vertex attached to vertex i by a new edge, to get an extended plumbing
diagram of determinant 0 (this is computed in [7] and gives an alternative proof of
the description of `ii).

Now let C(T ) denote c2
1 + c2 − 1 computed for a plumbing graph T . We want

to compute the effect of splicing on C. So suppose that T is the result of splicing
diagrams T1 and T2. Let I1 and I2 be index sets for the nodes and leaves of T1

and T2 with 0 ∈ I1 and 1 ∈ I2 representing the leaves at which we splice. Then
I = I1

⋃
I2 − {0, 1} is the index set for nodes and leaves of T .

Let T 1 be the result of extending T1 at vertex 0 by a vertex with weight −`00(T1)
and similarly for T 2. Let T be the result of attaching T 1 to T 2 by an edge joining
the new vertices. Then in [7] it is shown that T results from T by a sequence of
(−1)-blow-downs of vertices of valency 2 followed by one 0-absorption. Suppose the



COMPLEX SURFACE SINGULARITIES WITH INTEGRAL HOMOLOGY SPHERE LINKS 15

number of blow-downs is r. Then the blow-downs and 0-absorption remove (r+2)
vertices, so

c2(T ) = c2(T )− (r + 2) = c2(T1) + c2(T2)− r − 1.

Moreover each blow-down reduces
∑

Ei · Ei by 3 and the 0-absorption does not
change it, so∑

T

Ei · Ei =
∑
T1

Ei · Ei − `00 +
∑
T2

Ei · Ei − `11 − 3r .

Thus

C(T ) = −
∑
i,j∈I

`ijχiχj + 3c2(T ) +
∑
T

Ei · Ei − 1

= −
( ∑

i,j∈I1

`ijχiχj − `00 − 2
∑

i∈I1−{0}

`0iχi +
∑

i,j∈I2

`ijχiχj − `11−

− 2
∑

j∈I2−{1}

`1jχj + 2
∑

i∈I1−{0}
j∈I2−{1}

`ijχiχj

)
+ 3

(
c2(T1) + c2(T2)− r − 1

)
+

∑
T1

Ei · Ei +
∑
T2

Ei · Ei − `00 − `11 − 3r − 1

= −
∑

i,j∈I1

`ijχiχj + 2
∑

i∈I1−{0}

`0iχi −
∑

i,j∈I2

`ijχiχj

+ 2
∑

j∈I2−{1}

`1jχj − 2
∑

i∈I1−{0}

`i0χi

∑
j∈I2−{1}

`j1χj

+ 3c2(T1) + 3c2(T2)

+
∑
T1

Ei · Ei +
∑
T2

Ei · Ei − 4 ,

where the last equality uses the fact that for i ∈ I1 − {0} and j ∈ I2 − {1} one has
`ij = `i0`1j .

The above simplifies to

C(T ) = C(T1) + C(T2)− 2
(
−

∑
i∈I1−{0}

`0iχi + 1
)(
−

∑
j∈I2−{1}

`1jχj + 1
)

= C(T1) + C(T2)− 2µ(T1, 0)µ(T2, 1),

where µ(Ti, i) is the Milnor number for the knot represented by vertex i in the
homology sphere represented by Ti, that is, the first Betti number of its fiber (it is
a basic result of [7] that

∑
i∈I1−{0}(`0iχi) is the Euler characteristic of the fiber in

question). This completes the proof of Theorem 3.4. �

5. Plane curves and their cyclic covers

Let (X, o) be a hypersurface singularity at the origin given by an equation in the
form zn + g(x, y) = 0 and suppose that its link is a homology sphere. The Casson
Invariant Conjecture was proved in this case in [26] by a somewhat subtle calcula-
tion. In this section we will show that the Milnor Fiber Conjecture (Conjecture 3)
holds for these singularities, giving a more conceptual proof of the Casson Invariant
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Conjecture in this case. We must first explain how these hypersurface singularities
fit the format of equations of splice type. In [26] we point out that if the link of
zn + g(x, y) = 0 is a homology sphere, then g(x, y) = 0 defines an irreducible plane
curve singularity at the origin o ∈ C2. We therefore need to start by discussing
how plane curve singularities in general, and irreducible plane curve singularities
in particular, fit into the framework of our conjectures.

5.1. Non-minimal splice diagrams and plane curve singularities. Theorem
2.1 gives a general sufficient condition for a knot in a homology sphere to be real-
izable as the link of a germ (Y, o) ⊂ (X, o) of a curve cut out by a single equation
in a compete intersection surface. This has content also for non-minimal splice
diagrams. For example, the splice diagram

◦ ◦
∆ = ◦

2
TTTTTTT

3jjjjjjj ◦
2 TTTTTTT
1

jjjjjjj35

◦ ◦
is a non-minimal version of

◦
◦

2
UUUUUUU

3iiiiiii 5 ◦
◦

so it represents the Seifert fibered homology sphere Σ(2, 3, 5) (Poincaré’s dodec-
ahedral space). The upper right vertex of ∆ represents a particular knot in this
homology sphere (a (3, 2)-cable on the degree 5 fiber of Σ(2, 3, 5)). Since ∆ satisfies
the semigroup condition, Theorem 2.1 tells us that this knot in Σ(2, 3, 5) is the link
of a complex curve singularity (Y, o) cut out by a single equation in (V (2, 3, 5), o). In
fact, the splice type equations for ∆ can be chosen as z2

1+z3
2+z5

3 = 0, z1+z2
3+z4 = 0,

and the curve is then cut out by z4 = 0. Eliminating z4, the curve is cut out by
the equation z1 + z2

3 = 0 in V (2, 3, 5) = {(z1, z2, z3) : z2
1 + z3

2 + z5
3 = 0}.

When X is non-singular, that is, for a link of a plane curve singularity, the next
proposition implies that we can always do the analogous thing. That is, for any
irreducible plane curve singularity we will find strict splice type equations for X
(= C2) so that the curve Y cut out by a coordinate function has the topology of
the given plane curve. Corollary 8.2 below then says that the original plane curve
singularity is a higher weight deformation of the one given by strict splice type
equations.

Proposition 5.1. The splice diagram of any plane curve singularity satisfies the
semigroup condition.

Proof. It is easy to see that the semigroup condition for the splice diagram of a
reducible plane curve singularity follows from the semigroup condition for each of
the subdiagrams for the irreducible branches of the plane curve. Thus we may
assume that the germ (C2, Y, o) is an irreducible germ. In this case the result is
well known (see, e.g., Teissier’s appendix to [34]) but we give a proof in our language
for completeness. By [7] the singularity is given by a splice diagram of the form:

◦ p1◦ 1 p2

q1
◦

q2

1 pk◦
qk

1 //

◦ ◦ ◦

,
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where gcd(pi, qi) = 1 for each i and the positive edge determinant condition holds
(pi > qiqi−1pi−1 for each i > 1). Since this diagram may have arisen as a subdia-
gram of a diagram for a plane curve with several branches, we cannot assume that
it is a reduced diagram, so some of the qj may equal 1.

The only non-trivial cases of the semigroup condition for this diagram are:

pj+1 ∈ Sj := N〈q1q2 . . . qj , p1q2 . . . qj , . . . , pj−1qj , pj〉

for each j = 1, . . . , k − 1. Since pj+1 > pjqjqj+1 ≥ pjqj it suffices to show that
the conductor µj of this semigroup satisfies µj ≤ pjqj . Proposition 6.3 of section
6 implies µj = qj(µj−1 − 1) − pj + pjqj + 1 (or use Theorem 2.2 and its following
paragraph). The desired inequality is now a trivial induction. �

This gives a new way to find an equation for a plane curve singularity of given
topology: start with the equations of splice type and then eliminate variables to
obtain an equation in C2. To describe this in detail, let us assign variables to the
leaves of our splice diagram as follows:

z0 ◦
p1 ◦ 1 p2

q1
◦

q2

1 pk◦
qk

1 ◦ zk+1

◦ ◦ ◦
z1 z2 zk

.

The only admissible monomial for the outgoing edge to the right at the j-th node
is zj+1. Thus the general system of equations of strict splice type can be written

z2 = a1z
q1
1 + a0z

p1
0

z3 = a2z
q2
2 + g2(z0, z1)

. . . . . . . . .

zk = ak−1z
qk−1
k−1 + gk−1(z0, . . . , zk−2)

zk+1 = akzqk

k + gk(z0, . . . , zk−1),

where gj(z0, . . . , zj−1) is a multiple of an admissible monomial for the left edge at
the j-th node, that is, a monomial of the form zα0

0 . . . z
αj−1
j−1 with

α0q1 . . . qj−1 + α1p1q2 . . . qj−1 + · · ·+ αj−2pj−2qj−1 + αj−1pj−1 = pj .

We now successively substitute each of the above equations into the next to put
them in the form:

z2 = a1z
q1
1 + a0z

p1
0

z3 = a2(a1z
q1
1 + a0z

p1
0 )q2 + g2(z0, z1) =: f2(z0, z1)

. . . . . . . . .

zk+1 = akfk−1(z0, z1)qk + gk(z0, z1, . . . , fk−2(z0, z1)) =: fk(z0, z1).

In terms of new coordinates, x := z0, y := z1, Z2 := z2 − a1z
q1
1 + a0z

p1
0 , . . . ,

Zk := zk − fk−1(z0, z1), Zk+1 := zk+1 − fk(z0, z1) these equations become

Z2 = Z3 = · · · = Zk = Zk+1 = 0,

so our surface is the (x, y)-plane. Our plane curve is the curve cut out by the
coordinate equation zk+1 = 0 which is fk(x, y) = 0 in our new coordinates. Thus,
if we write f = fk, the equation of the plane curve is f(x, y) = 0.
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We now address what the Milnor Fiber Conjecture says for this type of example.
Our surface germ is a nonsingular point, and the Milnor fiber for a non-singular
point is a disk, so the conjecture postulates a particular decomposition of D4.
Although it is rather trivial, it will be useful in the discussion of hypersurfaces of
the form zn = g(x, y). We will therefore reserve the notations G1 etc. of Conjecture
3 for that case and use primes (as in G′

1 etc) to distinguish the ingredients involved
in the present discussion.

Suppose therefore that we have decomposed our splice diagram as the splice of
two diagrams:

◦ p1◦ 1 p2

q1
◦

q2

1 pr◦
qr

1 // ◦
pr+1oo

qr+1

1 pk◦ 1

qk
◦

◦ ◦ ◦ ◦ ◦
The left diagram represents a plane curve whose Milnor fiber we will denote by
G′

1 ⊂ S3 = ∂D4. The right diagram is a non-reduced diagram for the trivial knot
in S3 so its Milnor fiber is G′

2 = D2 ⊂ S3 = ∂D4.
Let (F ′

1)
o be the result of removing from D4 a tubular neighborhood of G′

1

pushed inside to a proper embedding G′
1 ⊂ D4. Let (F ′

2)
o be the result of removing a

tubular neighborhood of a proper embedding D2 ⊂ D4. Note that (F ′
2)

o ∼= S1×D3.
The Milnor Fiber Conjecture says that the result of the pasting:

(4) (F ′
1)

o ∪ (G′
1 ×D2) ∪ (F ′

2)
o

should be D4. This is indeed clear, since, starting with (F ′
1)

o, the first pasting
clearly gives D4 back, while the second just pastes a collar onto a portion of the
boundary of this D4.

5.2. The hypersurface zn + g(x, y) = 0. As already mentioned, if the link of
zn + g(x, y) = 0 is a homology sphere, then g(x, y) = 0 defines a plane curve
singularity at (0, 0) ∈ C2 which is irreducible. Its splice diagram therefore has the
form

◦ p1◦ 1 p2

q1
◦

q2

1 pk◦
qk

1 //

◦ ◦ ◦

,

where gcd(pi, qi) = 1 for each i and the positive edge determinant condition holds
(pi > qiqi−1pi−1 for each i > 1). Moreover, given an irreducible plane curve
singularity as above, we showed in [26] that the hypersurface singularity defined by

zn + g(x, y) = 0

has homology sphere link if and only if n is relatively prime to all the pi and qi,
and the splice diagram for the link of this singularity is then

(5) ◦ p1◦ n p2

q1
◦

q2

n pk◦
qk

n ◦

◦ ◦ ◦

.

We now show that the splice diagram equations for this splice diagram reduce
to the equation zn = f(x, y), with f as in the previous subsection (Corollary 8.2
below shows that the original zn = g(x, y) is an equisingular deformation of this).
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We assign variables to the leaves of the splice diagram (5) as follows:

x = z0 ◦
p1 ◦ n p2

q1
◦

q2

n pk◦
qk

n ◦ z

◦ ◦ ◦
y = z1 z2 zk

.

The only admissible monomial for the outgoing edge to the right at the j-th node
is zj+1 if j < k and zn if j = k. Thus the general system of equations of strict
splice type can be written

z2 = a1z
q1
1 + a0z

p1
0

z3 = a2z
q2
2 + g2(z0, z1)

. . . . . . . . .

zk = ak−1z
qk−1
k−1 + gk−1(z0, . . . , zk−2)

zn = akzqk

k + gk(z0, . . . , zk−1),

where the gj(z0, . . . , zk) are as before.
We again successively substitute each of these equations into the next to elimi-

nate the variables z2, z3, . . . , zk. To be precise, we first make these substitutions to
put the equations in the form:

z2 = a1z
q1
1 + a0z

p1
0

z3 = f2(z0, z1)
. . . . . . . . .

zk = fk−1(z0, z1)

zn = fk(z0, z1).

Recall our notation f = fk. In terms of new coordinates, x = z0, y = z1, z,
Z2 := z2 − a1z

q1
1 + a0z

p1
0 , . . . , Zk := zk − fk−1(z0, z1), these equations become

Z2 = Z3 = · · · = Zk = 0; zn = f(x, y).

We are now ready to prove the main result of this section.

Theorem 5.2. Let (X, o) be a hypersurface singularity at the origin given by an
equation in the form zn + g(x, y) = 0 with homology sphere link. Then the Milnor
Fiber Conjecture is true for (X, o).

Proof. Suppose that we have a splice decomposition corresponding to the following
decomposition of our splice diagram as the splice of two diagrams:

◦ p1◦ n p2

q1
◦

q2

n pr◦
qr

n // ◦
pr+1oo

qr+1

n pk◦ n

qk
◦

◦ ◦ ◦ ◦ ◦
We wish to show that the Milnor fiber F for zn = g(x, y) is obtained by the
construction F o

1 ∪N1 (G1×G2)∪N2 F o
2 of Conjecture 3, where F1 and F2 are Milnor

fibers for the two splice components, G1 and G2 are fibers in the links of the two
splice components for the knots along which we splice, and F o

i is the result of
removing a tubular neighborhood of a properly embedded Gi in Fi.

In [24] (see also [12]) it is shown that the Milnor fiber F is obtained by pushing
a Milnor fiber G ⊂ S3 = ∂D4 inside D4 so that it is properly embedded (that is,
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∂G = G ∩ ∂D4), and then taking the n-fold branched cyclic cover of D4, branched
along this embedding of G.

We need to understand the placement of G with respect to the decomposition
of D4 of equation (4). On taking the n-fold branched cover we will see that we get
the desired decomposition of F .

According to [7] the fiber G decomposes according to the splice diagram into
qr+1 . . . qk parallel copies of the Milnor fiber G′

1 of the plane curve given by

◦ p1◦ 1 p2

q1
◦

q2

1 pr◦
qr

1 //

◦ ◦ ◦
and one copy of the Milnor fiber of the plane curve corresponding to

◦ ◦
pr+1

qr+1

1 pk◦ 1 //
qk

◦ ◦

,

punctured qr+1 . . . qk times.
We can position G with respect to the decomposition of equation (4) so that it

lies completely in (G′
1 × D2) ∪ (F ′

2)
o. It then intersects (G′

1 × D2) in qr+1 . . . qk

parallel copies of G′
1. Its intersection with (F ′

2)
o is obtained as follows. First make

the fiber G′ of the knot represented by the right arrowhead of the splice diagram

◦
pr+1oo 1 pr+2

qr+1
◦qr+2

1 pk◦
qk

1 //

◦ ◦ ◦

.

properly embedded in D4 and transverse to the properly embedded version of the
fiber D2 of the unknot represented by the left arrowhead. Then remove the tubular
neighborhood of the latter. Using [24], the n-fold cyclic cover of D4 along G′ is the
Milnor fiber for the surface singularity with diagram:

◦ ◦
pr+1 n pr+2

qr+1
◦qr+2

n pk◦
qk

n ◦

◦ ◦ ◦

.

Moreover, the embedded D2 ⊂ D4 lifts in this cover to copy of the fiber for the
knot represented by the left-most vertex.

It follows that the decomposition of equation (4) lifts to give the desired decom-
position of F , as desired. �

In the context of the above result it is worth mentioning that Némethi and
Mendris recently showed [19] that for a singularity zn = f(x, y) with homology
sphere link (even rational homology sphere link) the Milnor fibration is topologically
determined by the link of the singularity.

Remark 5.3. The results of this section give a proof of the Casson Invariant
Conjecture (CIC) for these examples, also proven in [26, 4, 22]. Saveliev and Collin
[4], using equivariant Casson invariant, give an iterative generalization of these
examples but their approach implies more: Let ∆ be any splice diagram satisfying
the semigroup condition and w a leaf of ∆. We allow, as in this section, the weight
on the edge to w to be 1. For n ∈ N let ∆n(w) be the diagram obtained by
multiplying the weight furthest from w on each edge by n. We assume n is chosen
coprime to all the unchanged weights at each node, so ∆n(w) is again a splice
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diagram. Then if CIC is valid for splice type singularities for ∆, then the same
holds for ∆n(w).

6. Numerical semigroups and monomial curves

In this section we develop some results about semigroups and their associated
curves that are needed in the proofs of Theorems 2 and 1 of the Introduction.

As mentioned in Section 2, the semigroups we consider are always numeric semi-
groups, that is, subsemigroups Γ of N = Z≥0 for which N − Γ is finite. The semi-
group ring C[tΓ], or monomial curve associated to Γ, is the graded subalgebra of
C[t] generated by tγ , γ ∈ Γ. We briefly collect some known facts and terminology
(e.g., [6, 10, 11, 33]).

The conductor c(Γ) is the smallest c ≥ 0 so that γ ≥ c implies γ ∈ Γ. Γ
is symmetric when γ ∈ Γ if and only if c(Γ) − 1 − γ /∈ Γ; equivalently, C[tΓ] is
Gorenstein (see [11] Prop. 2.21). Since γ and c(Γ) − 1 − γ cannot both be in Γ, a
symmetric semigroup is maximal with given conductor. Classically an element of
N that is not in Γ is called a gap. The number of gaps is denoted δ(Γ); clearly

δ(Γ) ≥ c(Γ)/2, with equality if and only if Γ is symmetric.

Γ is called a complete intersection semigroup if C[tΓ] is a graded complete inter-
section. A complete intersection semigroup is symmetric. Γ is a complete intersec-
tion semigroup if and only if it has a semigroup presentation of deficiency one (i.e.,
with one fewer relations than generators; see [10]). If Γ (complete intersection or
not) has a semigroup presentation

Γ = 〈x1, . . . , xn :
∑

j

aijxj =
∑

j

bijxj , i = 1, . . . , r〉

with aij , bij ∈ N, then the monomial curve is presented as

C[z1, . . . , zn]/
(∏

j

z
aij

j −
∏
j

z
bij

j , i = 1, . . . , r
)
.

Example. Relatively prime p and q generate a complete intersection semigroup
with conductor (p− 1)(q− 1). This semigroup has semigroup presentation 〈x1, x2 :
qx1 = px2〉. Its monomial curve C[tp, tq] is presented as C[z1, z2]/(zq

1 − zp
2), with

the isomorphism given by z1 7→ tp, z2 7→ tq.

Let (∆, w′) be a finite rooted tree (tree with one vertex singled out as “root”),
whose root vertex w′ is of valency 1. We visualize it with the root vertex at the
top, so “downward” means in the direction away from the root. We assume also
that ∆ has positive integer weights on all edges other than the root edge and that
the weights on the downward edges at each non-root vertex are pairwise coprime.
For example, one obtains such a tree if one picks some leaf w′ of a splice diagram
as root, and then forgets all “far weights” of the splice diagram (splice diagram
weights on the far end of edges from the point of view of w′).

In such a tree, the numbers `w′v for v 6= w′ are still defined (product of weights on
edges directly adjacent to the shortest path from w′ to v). We define the semigroup
of (∆, w′) to be the semigroup

sg(∆) = sg(∆, w′) := N〈`w′w : w is a leaf of ∆〉
(we use the shorter sg(∆) if the root vertex is clear). Each non-root vertex of ∆
cuts off a collection of subtrees below it. We say that (∆, w′) satisfies the semigroup
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condition if the weight on the root edge of every such subtree is in the semigroup
of the subtree.

Define an invariant µ(∆, w′) by

µ(∆) = µ(∆, w′) := 1 +
∑
v 6=w′

(δv − 2)`w′v.

Theorem 6.1. Let (∆, w′) be a weighted rooted tree as above and Γ = sg(∆). Then

2δ(Γ) ≤ µ(∆),

with equality if and only if (∆, w′) satisfies the semigroup condition, in which case
Γ = sg(∆) is a complete intersection semigroup. (It follows that the same result
holds with 2δ(Γ) replaced by c(Γ).)

If (∆, w′) satisfies the semigroup condition we will describe the complete inter-
section equations; these equations will be associated to the nodes of ∆. We assign
a variable zj to each leaf wj of ∆. The equations will generate the kernel of the
map C[z1, . . . , zm] → C[tΓ] given by zj 7→ t

lw′wj .
For a node v of the tree and a leaf wj below it let l′vwj

be the product of weights
adjacent to the path from v to wj , excluding weights adjacent to v. For each
downward edge e at v the semigroup condition tells us that the weight pe is a non-
negative integer linear combination pe =

∑
j αj l

′
vwj

, summed over the leaves below
v. We choose such an expression and denote by Me =

∏
j z

αj

j ∈ C[z1, . . . , zm] the
corresponding monomial. Then:

Scholium. If (∆, w′) satisfies the semigroup condition in the above theorem then
the equations associated to node v are the equations that equate the monomials Me

for the different downward edges at v.
If we replace each of these equations Me = Me′ by an equation Me = aee′Me′

with aee′ ∈ C∗ then we obtain the same monomial curve.

Remark 6.2. Delorme’s Proposition 9 in [6] implies that every complete intersec-
tion semigroup arises as in Theorem 6.1. Already in the three-generator case the
minimal tree defining the semigroup need not be unique.

Example. If gcd(a, b) = gcd(a, c) = gcd(c, d) = 1 then the tree

◦
◦

◦
ad ���� ◦

c;;;;

◦
a ���� ◦

b;;;;

satisfies the semigroup condition and leads to the complete intersection monomial
curve

C[z1, z2, z3]/(za
1 − zb

2, z
d
2 − zc

3) ∼= C[tbc, tac, tad].

Exchanging a with c and b with d gives a different tree for the same semigroup.

Proof of Theorem 6.1 and Scholium. The second part of the scholium is an easy
induction once the rest is proved, replacing zj 7→ t

`w′wj for j > 1 by zj 7→ λjt
`w′wj

for suitable λj ∈ C∗. So we will just prove the theorem and first part of the
scholium.
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Let ∆1, . . . ,∆n be the subtrees cut off by the bottom vertex w0 of the root edge
of ∆ and let pi be the weight on the root edge of ∆i. Write Γi = sg(∆i, w0),
P = p1 . . . pn and Pi = P/pi. Then

Γ = P1Γ1 + · · ·+ PnΓn,

the semigroup consisting of all integers of the form
∑

Piγi, γi ∈ Γi. Moreover,

µ(∆, w′) =
n∑

i=1

(Piµ(∆i, w0)− 1) + (n− 1)P + 1.

By Lemma 6.3 below, the desired results now hold for ∆ if they are true for each
∆i. The proof is thus an induction, with the induction start being the case that ∆
consists of only a root edge and sg(∆) is the one-generator semigroup N. �

Lemma 6.3. Suppose Γi are semigroups for i = 1, . . . , n, and p1, . . . , pn are pair-
wise coprime positive integers. Write P = p1 . . . pn and Pi = P/pi. Let

Γ = P1Γ1 + · · ·+ PnΓn.

Then
(1) 2δ(Γ) ≤

∑n
i=1 Pi(2δ(Γi)− 1) + (n− 1)P + 1

(2) If equality holds in (1) then pi ∈ Γi for i = 1, . . . , n
(3) c(Γ) ≤

∑n
i=1 Pi (c(Γi)− 1) + (n− 1)P + 1.

(4) If pi ∈ Γi for i = 1, . . . , n then equality holds in (3).
(5) If each Γi is symmetric then the three statements are equivalent: equality

in (1), equality in (3), pi ∈ Γi for i = 1, . . . , n.
(6) Assuming pi ∈ Γi for each i, then Γ is symmetric resp. a complete inter-

section if and only if each Γi is symmetric resp. complete intersection.
(7) If pi ∈ Γi for each i then one obtains a presentation for Γ by adjoining to the

disjoint union of presentations for the Γi the n−1 relations w1 = · · · = wn,
where wi is an expression for pi in the presentation of Γi.

Proof. We shall prove the case n = 2. The case of general n follows from this case
by an easy induction.

To prove (1) we count gaps in Γ. A gap γ of Γ = p2Γ1 + p1Γ2 is either
(i) one of the (p1 − 1)(p2 − 1)/2 gaps of p2N + p1N,

or it is of the form γ = p2α + p1β for some α, β ∈ N. In this case we will see that
either:

(ii) β is the smallest β ∈ Γ2 in its congruence class mod p2, and α /∈ Γ1, or
(iii) 0 ≤ α < p1, and β /∈ Γ2.

Indeed, if we can express γ in the form γ = p2α + p1β with α, β ∈ N, then we
can do so with 0 ≤ α < p1. If this expression does not satisfy condition (iii) then
β ∈ Γ2. In this case decrease β by some multiple of p2 (maybe zero) to make it the
smallest β ∈ Γ2 in its congruence class mod p2, and simultaneously increase α by
the same multiple of p1 to keep γ = p2α + p1β. Since γ is a gap of p2Γ1 + p1Γ2, we
must have α /∈ Γ1, so the expression now satisfies condition (ii).

Now there are exactly p2δ(Γ1) pairs (β, α) satisfying condition (ii) and p1δ(Γ2)
pairs satisfying condition (iii), so there are at most (p1 − 1)(p2 − 1)/2 + p2δ(Γ1) +
p1δ(Γ2) gaps of Γ = p2Γ1 + p1Γ2. This number can be written 1

2

(
p2(2δ(Γ1)− 1) +

p1(2δ(Γ2)− 1) + p1p2 + 1
)
, so part (1) is proven.
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This proof shows that we have equality in part (1) if and only if every element
γ = p2α + p1β satisfying condition (ii) or (iii) is a gap of Γ and there is no overlap
between cases (ii) and (iii). Suppose now p1 /∈ Γ1. Then if every p2α + p1β
satisfying (ii) is a gap of Γ, there is an overlap: (α, β) = (p1, 0) in condition (ii)
shows that p1p2 is a gap of Γ, whence p2 /∈ Γ2, so p1p2 also has an expression with
(α, β) = (0, p2) satisfying condition (iii). Thus p1 /∈ Γ1 implies inequality in part
(1). Similarly for p2 /∈ Γ2, so part (2) is proved.

For statement (3), we show that i ≥ 0 added to the right hand side of the
inequality of part (3) gives an element of Γ. The sum of the last two terms of

p2c(Γ1) + p1c(Γ2) + (p1 − 1)(p2 − 1) + i

is in the semigroup generated by p1 and p2, say p1α + p2β; so the whole expression
equals

p2(c(Γ1) + β) + p1(c(Γ2) + α),

which by definition of conductors is clearly in Γ.
For statement (4), suppose p1 ∈ Γ1 and p2 ∈ Γ2, but

p2c(Γ1) + p1c(Γ2) + (p1 − 1)(p2 − 1)− 1 = p2λ + p1π, for some λ ∈ Γ1, π ∈ Γ2.

Modulo p1 this equation says c(Γ1)− 1 ≡ λ, so

c(Γ1)− 1 = λ + p1t, for some integer t.

Inserting this in the previous equation gives

c(Γ2)− 1 = π + p2(−1− t).

Since one of t and −1 − t is ≥ 0 and λ, p1 ∈ Γ1 and π, p2 ∈ Γ2, one gets either
c(Γ1)− 1 ∈ Γ1 or c(Γ2)− 1 ∈ Γ2, a contradiction.

Part (5) is now immediate: (2) and (4) show

(equality in (1)) ⇒ (p1 ∈ Γ1 and p2 ∈ Γ2) ⇒ (equality in (3)),

and if the Γi are symmetric then c(Γ) ≤ 2δ(Γ) and c(Γi) = 2δ(Γi), so equality in
(3) implies equality in (1).

Part (6) is proved in [6]. (In this paper we use only that Γ is a complete inter-
section if both Γ1 and Γ2 are; this follows from part (7).)

For part (7), let Γ1 = 〈x1, . . . , xn : s1, . . . , sk〉 and Γ2 = 〈y1, . . . , ym : r1, . . . , r`〉
be commutative semigroup presentations of Γ1 and Γ2 and let p1 = v(x1, . . . , xn)
and p2 = w(y1, . . . , ym) be expressions for p1 and p2 in these semigroups. Suppose
p2γ1+p1γ2 = p2γ

′
1+p1γ

′
2 equates two elements of Γ = p2Γ1+p1Γ2, with γ1, γ

′
1 ∈ Γ1

and γ2, γ
′
2 ∈ Γ2. Let γ1 = g1(x1, . . . , xn) be an expression for γ1 ∈ Γ1 in terms of

the generators (and hence for p2γ1 in p2Γ1), and similarly γ′1 = g′1(x1, . . . , xn), γ2 =
g2(y1, . . . , ym), γ′2 = g′2(y1, . . . , ym). Then the relation to be verified in Γ = p2Γ1 +
p1Γ2 is g1 + g2 = g′1 + g′2 (abbreviating g1(x1, . . . , xn) = g1 etc.), and we must show
this follows from the relations of Γ1 and Γ2 and the additional relation v = w.

With no loss of generality γ1 ≥ γ′1 in N. Then, working in N, we have p2(γ1 −
γ′1) = p1(γ′2−γ2), so γ1−γ′1 = sp1 and γ′2−γ2 = sp2 for some s in N. In particular,
the equations g1 = sv + g′1 and g′2 = sw + g2 hold in Γ1 and Γ2, so they must follow
from the relations of these semigroups. Thus, using the additional relation v = w,
we deduce g1 + g2 = sv + g′1 + g2 = sw + g′1 + g2 = g′1 + g′2, as desired. �



COMPLEX SURFACE SINGULARITIES WITH INTEGRAL HOMOLOGY SPHERE LINKS 25

6.1. Normal form monomials. Suppose now that (∆, w′) satisfies the semigroup
condition and put Γ = sg(∆). We wish to describe a monomial basis for the
corresponding complete intersection curve C[z1, . . . , zm]/(relations). That is, we
want “normal form” monomials in z1, . . . , zm so that each tγ with γ ∈ Γ is the
image of exactly one monomial under the map C[z1, . . . , zm] → C[tΓ] given by
zj 7→ t

`w′wj . We will do this by systematically trying to eliminate variables with
small index.

We assume that the tree ∆ is drawn so that the indices i = 1, . . . ,m of the leaves
increase from left to right. For any node v and outward edge e at v let ∆ve be the
subtree below v with root vertex v and root edge e.

If M is a monomial, let Mve be the submonomial of M determined by the
variables corresponding to leaves of ∆ve. This monomial represents tα ∈ C[tsg(∆ve)]
for some α. We will say M is in normal form if for every v and e as above so that
e is not the rightmost edge at v, α− pe /∈ sg(∆ve).

If M is not in normal form at some (v, e) then we could replace Mve in M
by M ′

veMe′ where e′ is the rightmost edge at v, M ′
ve is a monomial representing

tα−pe ∈ C[tsg(∆ve)] and Me′ is a monomial representing tpe′ ∈ C[tsg(∆ve′ )]. Since
tpe ∈ C[tsg(∆ve)] and tpe′ ∈ C[tsg(∆ve′ )] become equal in C[tsg(∆)], this does not
change the value of M . It is easy to see this process must eventually stop. A
simple induction shows that it yields a unique normal form for M . Normal form
monomials thus provide the desired monomial basis of C[z1, . . . , zm]/(relations).

The following example will be important in the next section

Example 5. Let

∆ = ◦

◦p1

��
��

�� pn

>>
>>

>>

◦ . . . ◦

so Γ is the semigroup generated by the Pi = P/pi. The monomial curve

(tP1 , tP2 , · · · , tPn)

is the complete intersection curve singularity defined by the equations

zpi

i − zpn
n = 0, i = 1, · · · , n− 1.

The conductor c(Γ) is

P
(
n− 1−

∑
(1/pi)

)
+ 1.

The monomial basis described above is

{zα1
1 . . . zαn

n : αi < pi for all i = 1, . . . , n− 1}.
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More generally, applied to a tree of the form

∆ = ◦

EE
EE

EE
EE

◦p1

yy
yy

yy
yy

pk1 q1

EEEEEEEEEEEE

◦ . . . ◦
◦pk1+1

yy
yy

yy
yy

>
>

>
>

>
>

>
>

◦ . . . ◦

◦
pkr+1

��
��
� pn

33
33

3

◦ . . . ◦
which satisfies the semigroup condition, the above procedure will again give the
monomial basis

{zα1
1 . . . zαn

n : αi < pi for all i = 1, . . . , n− 1}.
(However, with a different ordering of the variables the monomial basis for this
example can be considerably more complicated.)

7. Geometric genus and Theorem 2

In this section we will prove Theorem 2 by computing geometric genus (see
Theorem 3.3).

Let (X, o) be a germ of a normal surface singularity, with analytic local ring O.
Consider a good resolution π : (Y, E) → (X, o), i.e., the exceptional fiber E =

⋃
Ei

is a union of smooth curves intersecting transversely, no three through a point. By
local duality, one may compute the geometric genus in two ways:

pg(X) = dim H1(OY ) = dim H0(U,KU )/H0(Y, KY ),

where U = X − {o} = Y −E, and K denotes canonical line bundle (or its sheaf of
sections).

If (X, o) is Gorenstein, let ω be a nowhere-0 holomorphic two-form on U . Define
the canonical ideal J of O by

J = {f ∈ O : fω is regular on Y }.
Then clearly

pg(X) = dim O/J.

Let Eα, α = 1, . . . , t be those exceptional curves which either have positive genus,
or intersect at least three other curves. Let G be the union of the remaining curves
(the “strings” in the resolution). The blowing-down Y → Y ′ of G gives a space
with only cyclic quotient singularities (if Y is the minimal good resolution then
Y ′ is the “log-canonical resolution”); since these singularities are rational, regular
forms in a punctured neighborhood automatically extend regularly on a resolution.
Therefore, f ∈ J if and only if fω extends regularly over the t particular curves
Eα. Let να be the valuation on O given by order of vanishing along Eα, and let
kα + 1 denote the order of the pole of ω along that curve. We conclude that

J = {f ∈ O : να(f) ≥ kα + 1, α = 1, 2, . . . , t}.
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In our case we can improve kα + 1 to kα.

Proposition 7.1. Let (X, o) be the germ of a Gorenstein surface singularity, whose
link is a rational homology sphere. Let (Y, E) → (X, o) be the minimal good reso-
lution, and let E1, · · · , Et be the exceptional curves of valency ≥ 3. Let kα be the
coefficient of Eα in the divisor −(K + E), and να the corresponding valuation of
the local ring O of X. Then the geometric genus of X is the colength of the ideal

J = {f ∈ O : να(f) ≥ kα, α = 1, . . . , t}.

Proof. By the preceding discussion, the statement to be proved is

H0(Y, KY ) = H0(Y −G, KY + E).

We will do this in two steps:

H0(Y,KY ) = H0(Y,KY + E) = H0(Y −G, KY + E).

Since the link of X is a Q-homology-sphere, the exceptional curve E is the
transverse union of smooth rational curves Ei, no three through a point, with
contractible dual graph. It follows that h1(OE) = 0. (Proof: write E = E1 +
F , where E1 is a component of E that meets the rest F of E in a single point;
the surjection OE → OF has kernel OE1(−F ) = O(−1), so the claim follows by
induction on the number of components of E.)

Denote KY ⊗OE(E) by KE (called the dualizing sheaf in [1] section II.1). Serre
duality implies that, for any line bundle L on E, H1(E,L) is dual to H0(E,L∗⊗KE)
(e.g., [1], Theorem II(6.1)). Taking L trivial we see h0(KE) = 0. The adjunction
sequence 0 → KY → KY + E → KE → 0 (called “residue sequence” in [1] section
II.1) now gives 0 → H0(KY ) → H0(KY + E) → H0(KE) = 0, proving the first
equality H0(KY ) = H0(KY + E).

The second equality H0(Y, KY + E) = H0(Y − G, KY + E) holds generally,
without the condition on the link. In fact, if G is any union of components of E and
L any divisor supported on E then it is easy to see that H0(Y,L) = H0(Y −G, L)
so long as L · Gi ≤ 0 for each component of G (for a stronger statement see [8]),
so we must just show that that (K + E) · Gi ≤ 0 for all i. But Gi is a smooth
rational curve, so (K + E) · Gi equals −2 plus the number of intersections of Gi

with the other curves of E. This result is −1 if Gi is an end curve of the graph, or
0 otherwise. In either case, the condition is fulfilled, and our result follows. �

While the ki are determined from the resolution graph (see Proposition 4.1), in
some cases they can be computed directly from the equations defining O.

Proposition 7.2. Let
C[z1, . . . , zs]/(f1, · · · , fs−2)

define an isolated complete intersection surface singularity at the origin. For an
exceptional curve E1 in a resolution, with valuation ν = ν1, consider the filtration
defined by In = {f : ν(f) ≥ n}. Assume that the associated graded of this filtration
is a complete intersection integral domain, with the zi inducing homogeneous gen-
erators, and defined by the ν-leading forms fj , j = 1, · · · , s− 2. Then the invariant
k1 is computed as

k1 =
s−2∑
j=1

ν(fj) −
s∑

i=1

ν(zi).
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Proof. We may interpret

ω = dz1 ∧ · · · ∧ dzs/df1 ∧ · · · ∧ dfs−2.

On the associated graded, this gives a two-form of total weight

Σν(zi)− Σν(fj).

In terms of local coordinates in a neighborhood of a general point of E1, one finds
the order of the pole of ω is one more than the weight, as desired. �

If our singularity is a complete intersection of splice type and E1 corresponds to
a node v of the splice diagram, then, in the terminology of the preceding section,
ν(zi) is the v-weight of zi, so ν(zi) is the product of splice diagram weights adjacent
to the path from node v to leaf i. It is easy to see that the formula of the above
proposition is then equivalent to that of Proposition 4.1.

Example 6. The last two propositions give a well-known result for a weighted ho-
mogeneous complete intersection: the geometric genus is the sum of the dimensions
of the graded pieces of weight less than or equal to k1 above. In particular, let
V (p1, . . . , pn) (with pi pairwise relatively prime) be a Brieskorn complete intersec-
tion, defined by

zp1
1 + a1z

pn−1
n−1 + b1z

pn
n = 0

zp2
2 + a2z

pn−1
n−1 + b2z

pn
n = 0

· · ·
z

pn−2
n−2 + an−2z

pn−1
n−1 + bn−2z

pn
n = 0.

Let P = p1 · · · pn, Pi = P/pi. Then

k1 = (n− 2)P − ΣPi = P (n− 2− Σ(1/pi)).

Using the monomial basis zi1
1 · · · zin

n with ik < pk, k = 1, · · · , n− 2, one computes

pg(V (p1, . . . , pn)) = #{(i1, i2, · · · , in) ∈ (Z≥0)n :
n∑

k=1

(ik + 1)/pk < n− 2;

ik < pk, k = 1, · · · , n− 2}.

To extend this calculation to singularities of splice type for more complicated
splice diagrams we need to be able to find a monomial basis for the filtration defined
by any node of the splice diagram.

Suppose we have a complete intersection (X, p) of splice type corresponding to
a splice diagram ∆. Let ν be the valuation associated to the node v of ∆. Let the
edges around v be e1, . . . , en with weights dvei

= pi, i = 1, . . . , n at v. For each
node v′ of ∆ the equations have the form

∑
ae′Mv′e′ = 0, sum over the edges e′ at

v′, where Mv′e′ is an admissible monomial at v′ and ae′ ∈ C. If v′ 6= v and e′ is the
edge on the path from v′ to v we will call Mv′e′ a near monomial at v′ for v. Thus
there is one near monomial for v associated to each node other than v.

Theorem 7.3. The associated graded ring R of (X, p) with respect to the filtration
associated to ν is a reduced and irreducible complete intersection, defined by the
same equations as (X, p) but with the coefficients of all near monomials for v set
to zero (so only the equations associated to the node v remain unchanged). Its
normalization is the Brieskorn complete intersection V (p1, · · · , pn).

We will need a specific basis of the graded ring R.
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Proposition 7.4. Choose an edge e at v and picture the edge e as horizontal,
with v on the left. Cut the edge e at its midpoint and use this midpoint as root
of the resulting trees ∆L

e on the left and ∆R
e on the right (so these are rooted

trees and ∆L
e contains v). Let ML

e and MR
e be monomial bases for the monomial

curves of ∆L
e and ∆R

e , constructed as in subsection 6.1. Then the set of monomials
ML

eMR
e = {M1M2 : M1 ∈ ML

e ,M2 ∈ MR
e } forms a C-basis of the associated

graded ring R. The integer kv is given by

kv = dve(CL − 1) +
dv

dve
(CR − 1)

(
= pj(CL − 1) + Pj(CR − 1) if e = ej

)
where CL and CR are the conductors of the semigroups sg(∆L

e ) and sg(∆R
e ).

Proof of Theorem 7.3 and Proposition 7.4. Let ν′ be the valuation associated to v′.
If zw is the variable associated to a leaf w then one checks easily that

ν(zw)
ν′(zw)

=
`′v′v
dv′e′

De′1
. . . De′k

where:
• `′v′v is, as usual, the product of weights adjacent to the path from v′ to v,

omitting weights at v′;
• dv′e′ is the weight at v′ on the first edge e′ = e′1 on the path from v′ to v;
• e′1, . . . , e

′
k are the edges that are on the path from v′ to v but not on the

path from w to v;
• for any edge e, De is the product of the edge weights on e divided by the

product of edge weights directly adjacent to e (so De > 1 by the edge
determinant condition).

Thus ν(zw)/ν′(zw) takes its minimum value (namely `′v′v/dv′e′) if and only if w is
beyond v′ from the point of view of v. It follows that the admissible monomials
at v′ all have the same ν-weight except for the near monomial for v, which has
higher ν-weight. Hence, the equations which define the associated graded ring R
are obtained by setting coefficients of near monomials equal to zero.

For convenience of notation we will take e = en for this proof. We may assume
(see Section 2) that the equations associated to the node v are

Me1 + a1Men−1 + b1Men = 0
. . . . . .

Men−1 + an−2Men−1 + bn−2Men
= 0

For each i = 1, . . . , n, let ∆i be the tree cut off away from v at the midpoint of ei

(so ∆n = ∆R
e ). By the Scholium to Theorem 6.1, the equations for the associated

graded R that correspond to nodes in ∆i give a complete intersection description of
the monomial curve C[Xsg(∆i)

i ]. Let φi : C[zw, w a leaf of ∆i] → C[Xsg(∆i)
i ] be the

corresponding homomorphism. Then φi(Mei
) = ciX

pi for some ci ∈ C∗. Together
these homomorphisms φi give a homomorphism φ of R to the Brieskorn complete
intersection defined by the equations

c1X
p1
1 + cn−1a1X

pn−1
n−1 + cnb1X

pn
n = 0

...
...

...(6)

c1X
p1
1 + cn−1an−2X

pn−1
n−1 + cnbn−2X

pn
n = 0
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Let z1, . . . , zk be the variables corresponding to nodes of ∆ in ∆L
e and zk+1, . . . , zN

the remaining variables, corresponding to nodes in ∆R
e . The graded equations cor-

responding to nodes in ∆L
e are equations for the complete intersection curve defined

by ∆L
e except for additional terms biMen

(in the equations corresponding to node
v). The procedure of subsection 6.1 to put a monomials in normal form will there-
fore change a monomial M in the variables z1, . . . , zk into a linear combination of
monomials of the form M ′Mα

en
, α ≥ 0, with M ′ ∈ML

e . Thus, given any monomial
in z1, . . . , zN , we first apply the graded equations corresponding to nodes in ∆L

e

to put anything involving z1, . . . , zk in ML
e -normal form (at the expense of adding

factors Men
), and then apply the graded equations corresponding to nodes in ∆R

e

to put anything involving zk+1, . . . , zN into MR
e -normal form. It follows that the

set ML
eMR

e is a C spanning set for the graded ring R. On the other hand, one can
check that the set

{φ(M1M2) : M1 ∈ML
e ,M2 ∈MR

e } ⊂ C[X1, . . . , Xn]/(relations (6))

is linearly independent (we will not give a detailed proof of this, since it is immediate
in the case below to which we apply this proposition). HenceML

eMR
e is a monomial

basis for R. Moreover, since φ is birational, φ is the normalization of R. Finally,
the calculation of kv is straightforward, using either Proposition 7.2 or Proposition
4.1. �

Note that the monomial basis given by the above proposition depends on the
choice of edge and also on the ordering of the variables. Although the proposition
gives the same monomial basis for the valuations corresponding to the two ends of
the edge, if we take a different node we will have to take a different edge and will
in general get a different monomial basis. However, to apply this proposition to
compute the geometric genus of (X, p) we shall need the same monomial basis for
all the valuations. This turns out to be possible for the splice diagram

◦ ◦

∆ =
... ◦

p1

JJJJJJJJJ

pk1ttttttttt
q1 q′1 ◦

pk1+1







pk2

11
11

11
11

1
q2 __ __

q′r−1 ◦
pkr−1+1







pkr

11
11

11
11

1
qr q′r ◦

pN
ttttttttt

pkr+1 JJJJJJJJJ ...

◦ . . . . . . ◦
◦ ◦ ◦ ◦

We number the nodes and edges of this diagram v0, . . . , vr and e1, . . . , er from left
to right. The valuation for node vi will be denoted νi.

For the edge e = ei joining nodes vi−1 and vi we divide the variables z1, . . . , zN

into two groups, ordered as follows:

zki
, zki−1, . . . , z1,

zki+1, zki+2, . . . , zN

We apply the above proposition for this particular edge e. Example 5 gives the
monomial bases

ML
e = {zα1

1 . . . z
αki

ki
: 0 ≤ αi < pi for i = 2, . . . , ki}

MR
e = {zαki+1

ki+1 . . . zαN

N : 0 ≤ αi < pi for i = ki + 1, . . . , N − 1}

for the two semigroups in question, so we get:
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Lemma 7.5. For each valuation νi of the above ∆,

M := {zα1
1 . . . zαN

N : 0 ≤ αi < pi for i = 2, . . . , N − 1}
is a monomial basis for the associated graded ring R. �

We continue to consider the edge e = ei of ∆ with left end node v = vi−1. We
can consider ∆L

e and ∆R
e also as splice diagrams, and then ∆ is the result of splicing

them at their root leaves.

Theorem 7.6. The geometric genus pg(∆) of the splice type singularity determined
by ∆ is given inductively by

(1/4)CLCR + pg(∆L
e ) + pg(∆R

e )

where CL, CR are the conductors of the semigroups sg(∆L
e , w′) and sg(∆R

e , w′)

Corollary 7.7. The Casson Invariant Conjecture holds for the splice type singu-
larity determined by the above splice diagram ∆

Proof of Corollary. By Theorem 3.3, the corollary follows by induction as soon as
we know that the geometric genus satisfies an appropriate formula. The formula of
Theorem 7.6 is the right one since CL and CR are the Milnor numbers of the knots
corresponding to the root leaves of ∆L

e and ∆R
e (Theorem 2.2). �

Proof of Theorem 7.6. The canonical ideal of the singularity (X, p) consists of those
f for which νj(f) ≥ kvj for j = 0, . . . , r. Using the linearly independent monomials
of the above lemma, the geometric genus thus equals the number of elements M of

M = {zα1
1 . . . zαN

N : 0 ≤ αi < pi for i = 2, . . . , N − 1}
satisfying

(7) νi(M) < kvi
for some i = 0, . . . , r.

We will call this condition “condition K(vi).” So we want to count the M ∈M for
which condition K(v) holds for some node v.

Let e = ei. For a monomial M = zα1
1 . . . zαN

N , write M = MLMR with ML =
zα1
1 . . .m

αki

ki
and MR = z

αki+1

ki+1 . . . zαN

N . The monomial M is in M if and only if ML

and MR are normal form monomials for the semigroups sg(∆L
e ) and sg(∆R

e ).
Denote the nodes at the left and right end of e = ei by v = vi−1 and v′ = vi and

the associated valuations by ν = νi−1 and ν′ = νi. Denote

`e(ML) :=
ki∑

j=1

αj`w′wj
, `e(MR) :=

N∑
j=ki+1

αj`w′wj

where w′ is the root vertex of ∆L
e or ∆R

e and `w′wj is computed in ∆L
e or ∆R

e .
(Thus `e(ML) and `e(MR) are the values in the semigroups sg(∆L

e ) and sg(∆R
e )

corresponding to the monomials ML and MR.) Then

ν(M) = dve`e(ML) + (dv/dve)`e(MR).

By Proposition 7.4 condition K(vi−1) can thus be written

(8) dve(`e(ML)− CL + 1) + (dv/dve)(`e(MR)− CR + 1) < 0

By symmetry, condition K(vi) can be written

(9) (dv′/dv′e)(`e(ML)− CL + 1) + dv′e(`e(MR)− CR + 1) < 0.
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Denote
Xi := `e(ML)− CL + 1 Yi := `e(MR)− CR + 1 ,

so (8) and (9) can be written

(10)
K(vi−1) : dveXi + (dv/dve)Yi < 0,

K(vi) : (dv′/dv′e)Xi + dv′eYi < 0.

Note that Xi 6= 0 since `e(ML) is in the semigroup sg(∆L
e ) with conductor CL.

Similarly Yi 6= 0. We will count the monomials M ∈M that satisfy condition K(v)
for some node v by subdividing into the following cases.

(1) Xi < 0 and Yi < 0 (so K(vi−1) and K(vi) hold),
(2) Yi > 0 and K(vj) holds for some j ≤ i− 1,
(3) Xi > 0 and K(vj) holds for some j ≥ i,
(4) Yi > 0 and K(vj) holds for some j ≥ i and fails for all j ≤ i− 1.
(5) Xi > 0 and K(vj) holds for some j ≤ i− 1 and fails for all j ≥ i,

These cases cover all possibilities. We shall show that cases (4) and (5) are empty
and that Cases (1), (2), (3) are mutually exclusive and lead to the three terms on
the right in the theorem.

(1) The number of monomials ML in normal form with `e(ML) < CL − 1 is
the number of elements bounded by CL in the semigroup sg(∆L

e ). This is exactly
CL/2. Similarly for MR, so the set of M ∈M with both `e(ML)−CL +1 < 0 and
`e(MR)− CR + 1 < 0 contributes the (1/4)CLCR of the theorem.

(2) The inequality `e(MR) − CR + 1 > 0 says `e(MR) ≥ CR, so there exists a
unique monomial MR in normal form with such a value of `e(MR). That is, if we
put α = `e(MR) − CR then there is no constraint on α ≥ 0 for a corresponding
MR to exist. Consider the monomials MLMR and MLzα, which are normal form
monomials for the splice diagrams ∆ and ∆L

e respectively. A simple calculation,
which we omit, shows that MLMR satisfies condition K(vj) for ∆ with j ≤ i − 1
if and only if MLzα satisfies K(vj) for ∆L

e . Thus the monomials M = MLMR

satisfying (2) are in one-one correspondence with the monomials that count pg(∆L
e ).

(3) By symmetry, these monomials count pg(∆R
e ).

(4) One calculates that

Yi = (dvi
/q′iqi+1)Yi+1 + (dvi

/qi)
ki+1∑

j=ki+1

1
pj

(αj + 1− pj)

(we are using the explicit weights dvie = q′i etc. from the picture of ∆). Since
αj < pj for j = ki + 1, . . . , ki+1, the sum on the right is non-positive so Yi > 0
implies Yi+1 > 0. Thus, if we are in case (4) we can, by increasing i if necessary,
assume that Yi > 0 and K(vj) holds for j = i and fails for j = i − 1. By (10) we
then have

dv/d2
ve > −Xi/Yi, d2

v′e/d′v < −Xi/Yi .

Thus dv/d2
ve > d2

v′e/d′v, whence dvdv′/(dvedv′e) > dvedv′e, contradiction the edge
determinant condition. Thus case (4) cannot happen, and by symmetry the same
holds for case (5).

It remains to show that cases (2) and (3) are mutually exclusive (Case (1) is
clearly disjoint from (2) and (3)). But if both (2) and (3) hold then K(vi) must
fail. Since K(vj) holds for some j > i and Yi > 0, the same argument as in (4)
leads to a contradiction. �
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8. The semigroup condition

Let (X, o) be a normal surface singularity whose link Σ is an integral homology
sphere. Each leaf of the splice (or resolution) diagram gives a knot in Σ, unique
up to isotopy. A key point in the proof in [29], that splice diagram equations give
integral homology sphere links, is to show that the variable zi associated to a leaf
cuts out the corresponding knot in Σ. In other words, the curve Ci given by zi = 0
is irreducible, and its proper transform Di on the minimal good resolution is smooth
and intersects transversely the exceptional curve corresponding to the leaf of the
splice diagram. We show that the existence of such functions implies the semigroup
condition on the splice diagram.

Theorem 8.1. Let (X, o) be a normal surface singularity whose link Σ is an integral
homology sphere. Assume that for each of the t leaves wi of the splice diagram ∆
of Σ, there is a function zi inducing the end knot as above. Then

(1) ∆ satisfies the semigroup condition
(2) X is a complete intersection of embedding dimension ≤ t
(3) z1, · · · , zt generate the maximal ideal of the local ring of X at o, and X is

a complete intersection of splice type with respect to these generators.

Proof. Let (Y, E) → (X, o) be the minimal good resolution, z = z1 a function as
above, C ⊂ X the irreducible Cartier divisor defined by z = 0, D ⊂ Y its proper
transform, and E1 ⊂ Y the exceptional curve (which intersects D in one point)
corresponding to the leaf of the splice diagram.

Let V be the value semigroup of C. The orders of vanishing of the functions
z2, · · · , zt at D ∩ E1 generate a subsemigroup Γ ⊂ V which we can compute from
∆ as follows. For each exceptional curve Ei, let aij be the order of vanishing of zj

on Ei, so, as a divisor, z−1
j (0) =

∑
i aijEi + Dj . The equations z−1

j (0) · Ek = 0
imply that aij is the ij-entry of the matrix (−Ei ·Ej)−1; so aij = `ij (see Theorem
9.1). Thus Γ is the semigroup generated by `1j , j ≥ 2.

Theorem 6.1 implies 2δ(Γ) ≤ µ(∆, w1), where µ(∆, w1) is described there and
δ(Γ) denotes the number of gaps of Γ. But, by Theorem 2.2, µ(∆, w1) is also equal
to the µ-invariant µ(C) of the curve C. Now µ(C) = 2δ(V ) (since we do not know
a priori that the curve is Gorenstein, we must appeal to Buchweitz and Greuel
[2] for this). Since the inclusion Γ ⊂ V implies δ(V ) ≤ δ(Γ), we conclude that
2δ(V ) = 2δ(Γ) = µ(∆, w1). Thus Γ = V , and, by Theorem 6.1 again, Γ = V
is a complete intersection semigroup. This implies that C is a positive weight
deformation of the monomial curve C[tγ : γ ∈ Γ] (e.g., Teissier’s appendix to [34] or
[30]) and in particular is itself a complete intersection (with maximal ideal generated
by the images of z2, · · · , zt). It follows that (X, o) is a complete intersection (with
maximal ideal generated by z1, . . . , zn). Finally, repeating the argument at every
leaf gives all the semigroup conditions.

It remains to show that, using the functions z1, · · · , zt above, we can find splice
equations for the singularity. This will proceed as follows: for each node v of
valency δ = δv, we will write down appropriate monomials in the zi which have the
same weight at the node (i.e., order of vanishing along the corresponding exceptional
curve), and conclude there are δ−2 independent linear dependence relations among
these monomials, mod higher weight terms.

Let Ev be the exceptional curve corresponding to the node v and let E1, . . . , Eδ

be the exceptional curves with intersect Ev, corresponding to the edges e1, . . . , eδ
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at v. Choose a monomial Mi of weight dv associated to each edge ei at v (their
existence is guaranteed by the semigroup condition). On the exceptional curve Ev

these monomials all vanish to order dv. If we go to an adjacent node v′ of the splice
diagram, as in

...
v

◦
p1

MMMMMMMM

pδ−1qqqqqqqq
pδ q′δ v′◦

q1
qqqqqqqq

qδ′−1 MMMMMMMM ...

then the order of vanishing of Mi is p1 . . . pδ−1q1 . . . qδ′−1 for i 6= δ and the order
of vanishing of Mδ is pδqδ′ . In particular, at the exceptional curve corresponding
to v′, Mδ vanishes to order D more than the other Mi’s, where D is the edge
determinant of edge eδ. Now in the (unreduced) maximal splice diagram (see the
Appendix; Section 9) we have a node for every exceptional curve and all edge
determinants are 1. Thus we see that on each exceptional curve Ei that intersects
Ev, the Mj with j 6= i vanish to a common order and Mi vanishes to one higher
order. Thus, if we fix one of the neighboring exceptional curves, say Eδ, then each
ratio Mi/Mδ for i 6= δ gives a function on Ev that has a pole of order 1 at the point
Ev ∩ Eδ, a simple zero at the point of intersection Ev ∩ Ei, and no other poles or
zeros. It follows that there are δ − 2 linearly independent relations among the Mi

up to higher order at Ev, as desired.
This gives us a collection of higher weight perturbations of equations of strict

splice type and they are the complete intersection description of (X, o) since they
give the appropriate complete intersection curves when intersected with zj = 0. �

It is a Riemann-Roch problem to determine if a Gorenstein singularity with
homology sphere link has functions z with the properties described above. An
equivalent formulation is as follows: Let F1 be the effective exceptional cycle on
the minimal good resolution Y so that it dots to 0 with every exceptional curve, save
E1, with which it dots to -1. Then O(−F1) should be a base-point free line bundle.
(In such a case, a generic section z will have the desired property). However, it is
not even known if there is any function at all giving an irreducible divisor on X;
this is certainly not the case for a general hypersurface singularity [13].

We give an application of the above theorem. Recall that we showed in Section 5
that if a surface singularity of the form zn = g(x, y) has homology sphere link, then
there is a splice type singularity with the same topology (and this singularity is
analytically equivalent to one given by an equation of the form zn = f(x, y)). This
left open the question whether the original singularity zn = g(x, y) is an equisingular
deformation of the strict splice type singularity zn = f(x, y) and hence of splice
type.

Corollary 8.2. Any surface singularity with homology sphere link given by an
equation zn = g(x, y) is a splice type singularity.

Proof. We just sketch the proof. If the splice diagram for the plane curve g(x, y) = 0
is

◦ p1◦ 1 p2

q1
◦

q2

1 pk◦
qk

1 //

◦ ◦ ◦

,

then it is known (see, e.g., [30]) that curves corresponding to ends of this splice
diagram are cut out by polynomials (namely certain “approximate roots” gi(x, y)
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of g(x, y)). It is easy to check that the functions gi(x, y) then cut out curves in the
surface zn = g(x, y) corresponding to the ends of its splice diagram

◦ p1◦ n p2

q1
◦

q2

n pk◦
qk

n ◦

◦ ◦ ◦

,

so Theorem 8.1 applies. �

9. Appendix: Splicing and plumbing

In this appendix we recall the classification of Z-homology sphere singularity
links in terms of splice diagrams and describe how to recover a resolution diagram
from the splice diagram.

We start with Seifert fibered manifolds. For the following results see [23]. Let
Σ be a Seifert fibered homology 3-sphere other than S3. Then it has at least
3 singular fibers and the degrees p1, . . . , pr of these singular fibers are pairwise
coprime. Conversely, given a set {p1, . . . , pr} of pairwise coprime integers pi > 1
with r ≥ 3, there is a unique Seifert fibered homology sphere Σ(p1, . . . , pr) up to
orientation with these singular fiber degrees. Moreover, Σ(p1, . . . , pr) has a unique
orientation for which it is a singularity link, so we give it this orientation. It is, in
fact, the link of the Brieskorn complete intersection

V (p1, . . . , pr) := {(z1, . . . , zr) ∈ Cn : ai1z
p1
1 + · · ·+ airz

pr
r = 0 for i = 1, . . . , r − 2},

for a sufficiently general matrix (aij) of coefficients. By Hamm [9], “sufficiently
general” means that all (r − 2)× (r − 2) minors should be non-singular.

We represent the homology sphere Σ(p1, . . . , pr) by the splice diagram

◦ . . . . . . ◦
◦

prhhhhhhhhhhh
pr−1

VVVVVVVVVVV
p2

iiiiiiiiiii
p1 VVVVVVVVVVV

◦ ◦
Each of the singular fibers of Σ(p1, . . . , pr) represents a knot in Σ(p1, . . . , pr)

which we represent in a splice diagram by adding an arrowhead to the corresponding
edge. Thus

◦ ◦
2 &&MMMMMM
3

88qqqqqq5

represents the link in Σ(2, 3, 5) consisting of the degree 2 and 3 singular fibers. Non-
singular fibers are represented by adding new arrows at the central vertex weighted
by 1, so

◦ ◦
◦
2 KKKKKK
3

ssssss
5

KKKKKK

1yyssssss

◦
represents the knot in Σ(2, 3, 5) consisting of one non-singular fiber.

There are Seifert fibrations of the 3-sphere with 2 or less singular fibers. For
instance, S3 can be fibered by copies of the (p, q) torus knot, with one p-fold
singular fiber and one q-fold singular fiber, so the splice diagram

◦
◦
p KKKKKK
q

ssssss1oo

◦
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is the diagram for the (p, q) torus knot in S3. Similarly

◦ ◦
1 &&MMMMMM
1

88qqqqqqq

represents a pair of parallel (1, q) torus knots (unknotted curves which link each
other q times).

If K1 ⊂ Σ1 is a knot in a homology sphere and K2 ⊂ Σ2 is another, then we
form the splice of Σ1 to Σ2 along K1 and K2 as follows. Let Ni be a closed tubular
neighborhood of Ki in Σi for i = 1, 2 and let Σ′

i be the result of removing its
interior, so ∂Σ′

i = T 2. The splice is the manifold

Σ = Σ′
1 ∪T 2 Σ′

2 ,

where the gluing matches meridian in Σ1 to longitude in Σ2 and vice versa. (“Merid-
ian” and “longitude” in Σ′

1 are the simple curves in ∂Σ′
1 = T 2 that are null-

homologous respectively in the removed solid torus N1 or in Σ′
1.) We denote the

splice by

Σ = Σ1
K1 K2 Σ2 .

We represent splicing in terms of splice diagrams by gluing the diagrams at the
arrowheads that represent the knots along which we are splicing. For instance,

◦ ◦
◦

2
OOOOOOO

3ooooooo ◦
2 OOOOOOO
3

ooooooo77

◦ ◦

represents the splice of two copies of Σ(2, 3, 7) along the knots represented by the
degree 7 fibers.

As described in Section 1, the splice diagrams that classify homology sphere
singularity links are precisely the splice diagrams with pairwise coprime positive
weights around each node and with positive edge determinants (recall that the edge
determinant is the product of the two weights on the edge minus the product of
the weights adjacent to the edge).

The splice diagram for a homology sphere singularity link can be computed very
easily from a resolution diagram for the singularity. Let (X, o) be a normal surface
singularity germ and Σ its link, that is, the boundary of a regular neighborhood of
o in X. Assume for the moment only that Σ is a rational homology sphere, that is
H1(Σ) is finite.

Let π : X → X be a good resolution. “Good” means that the exceptional divisor
E = π−1(o) has only normal crossings. The rational homology sphere condition
implies that E is rationally contractible; that is,

• each component of E is a smooth rational curve;
• the dual resolution graph T (the graph with a vertex for each component

of E and an edge for each intersection of two components) is a tree.

We weight each vertex v of T by the self-intersection number Ev · Ev of the
corresponding component Ev of E. The intersection matrix for T is the matrix



COMPLEX SURFACE SINGULARITIES WITH INTEGRAL HOMOLOGY SPHERE LINKS 37

A(T ) with entries avw = Ev · Ew, that is,

avw = 1 if v 6= w and v and w are joined by an edge
avw = 0 if v 6= w and v and w are not joined by an edge
avv = Ev · Ev

It is well known that A(T ) is negative-definite and its cokernel (also called the
discriminant group) is H1(Σ). In particular,

d(T ) := det(−A(T ))

is the order of H1(Σ).
We now assume that Σ is an Z-homology sphere, so d(T ) = 1, that is, A(T )

is unimodular. The splice diagram ∆ for Σ has the same overall shape as the
resolution graph T ; it’s underlying graph is obtained from T by suppressing valency
two vertices. The weights on edges are computed by the following procedure: At
A vertex v of ∆ Let Tve be the subgraph of T cut off by the edge of T at v in
the direction of e, as in the following picture. The corresponding weight is then
dve := d(Tve).

...
v

avv

◦

U U U U U U

i i i i i i
e

aww

◦
ggggggg

WWWWWWW ...

︸ ︷︷ ︸
Tve

Example 7. Here is an example of a resolution graph with homology sphere link.
The reader can check that A(T ) is negative definite and unimodular.

−2
◦

−2
◦

T =
−1
◦

QQQQQQ

mmmmmm
−17
◦

−1
◦

mmmmmm
QQQQQQ

−3
◦

−3
◦

−2
◦

Its splice diagram is:

◦ ◦
∆ = ◦

2
TTTTTTT

3jjjjjjj ◦
5 TTTTTTT
2

jjjjjjj117

◦ ◦
For example, the weight 7 on the left node of ∆ is d(Tve) with

−2
◦

Tve =
−17
◦

−1
◦

nnnnnn
PPPPPP
−3
◦

−2
◦

An algorithm to recover the resolution diagram from the splice diagram is given
in [7]. Here we describe an easier method that arose from conversations with Paul
Norbury (developed independently by Pierrette Cassou-Nogues [3], whose terminol-
ogy of “maximal splice diagram” we have adopted—we called it “adjoint diagram”).
The maximal splice diagram is simply the version of the splice diagram that we get
from the resolution graph if we do not first eliminate vertices of valency 2, and
include edge weights at all vertices — also the leaves. Thus, for the above example,
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the maximal splice diagram is:

◦ ◦
∆′ = ◦

2
11QQQQQQ

3
5

mmmmmm
7 1 ◦ ◦

2
28mmmmmm

5
9

QQQQQQ111

◦ ◦
2 5

◦

To compute the resolution graph from the splice diagram we will give algorithms
to:

• compute the resolution graph from the maximal splice diagram, and
• compute the maximal splice diagram from the splice diagram.

We will need the following properties of the maximal splice diagram, which we
prove later.

Theorem 9.1. 1. For any pair of vertices v and w of the maximal diagram let `vw

be the product of the weights adjacent to, but not on, the shortest path from v to w
in ∆′. Then the matrix L := (`vw) is the inverse matrix of −A(T ).

2. Every edge determinant for the maximal splice diagram is 1.
3. The edge-weight adjacent to a leaf v of the maximal splice diagram is equal to

da/be where a is the product of edge-weights adjacent to and just beyond the nearest
node to v and b is the remaining weight adjacent to that node.

We remark that part 3. is valid also for the valency 2 vertices between the leaf
and its nearest node. For example, for the right-most leaf of the above example
5 = d22/5e = d9/2e.

9.1. Resolution graph from maximal splice diagram. The only issue is to
recover the self-intersection weights ev := avv at vertices. The matrix equation
LA(T ) = −I gives equations that will do this. We use the notation w–v to mean
vertices w and v are connected by an edge. Then for any vertex w′ adjacent to v,
the vw′ entry of this matrix equation gives:

ev =
−1
`vw′

 ∑
{w:w–v}

`ww′

 .

Note that the product of the weights just beyond w′ from v cancel in this formula,
so they may be replaced by 1 for the calculation. For example, for

◦
2WWWWW
5

ggggg 7 3◦2 5◦3 7◦4 9◦5 11◦
2 ggggg
3

WWWWW ,

we get the resolution graph string

◦
SSSSS
kkkkk

−5
◦

−2
◦

−2
◦

−2
◦ ◦

kkkkk
SSSSS
.

9.2. Maximal splice diagram from splice diagram. We describe how to re-
cover the string of vertices and weights of the maximal splice diagram between any
two vertices of a splice diagram. Suppose first both vertices are nodes with weights
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as follows,

... ◦
a1

LLLLLLLLLLa2

RRRRRRRRR

arlllllllll
b c ◦

d1

ssssssssss d2

mmmmmmmmmm

ds QQQQQQQQQQ ...

and put a =
∏r

1 ai, d =
∏s

1 dj . If one of the vertices (say the right one) is a leaf
instead of a node then we put d = 1. The desired string of vertices and weights
between our two nodes will only depend on a, b, c, d, so we replace the above diagram
by

a◦ b c ◦d
.

Consider the following infinite linear graph:

1◦ 3 1◦ 2 1◦ 1 2◦ 1 3◦ 1
.

We are going to refine this by adding vertices on this line until our vertices a◦b

and c◦d appear on it. Vertices x◦y
are ordered along the line by size of

x/y. Thus such a vertex either is already a vertex of the linear graph, or it falls on
an existing edge. In the latter case we subdivide the edge as follows:

α ◦ β γ ◦ δ 7→ α◦ β α+γ◦β+δ γ ◦ δ
.

We repeat this process until both our desired vertices appear, and then the portion
of the linear graph between them is what we were seeking.

For example, here is the process to create the string for

10◦ 7 11◦ 6
.

We mark the positions of these vertices, until they are found, by ∨ .

1 ◦ 1 ∨ ∨ 2 ◦ 1

1 ◦ 1 ∨ 3 ◦ 2 ∨ 2 ◦ 1

1 ◦ 1 4 ◦ 3 ∨ 3 ◦ 2 5 ◦ 3 ∨ 2 ◦ 1

1◦ 1 4◦ 3 7◦ 5 ∨ 3◦ 2 5◦ 3 7◦ 4 ∨ 2◦ 1

1 ◦ 1 4 ◦ 3 7 ◦ 5 10• 7 3 ◦ 2 5 ◦ 3 7 ◦ 4 9 ◦ 5 ∨ 2 ◦ 1

1 ◦ 1 4 ◦ 3 7 ◦ 5 10• 7 3 ◦ 2 5 ◦ 3 7 ◦ 4 9 ◦ 5 11• 6 2 ◦ 1
.

Thus the final string is:

10•7 3◦2 5◦3 7◦4 9◦5 11•6 ,

which, by the previous subsection, gives the resolution graph string

•
−5
◦

−2
◦

−2
◦

−2
◦ •

.
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9.3. Proofs. We give proofs of Theorem 9.1 and of the above procedures. Property
1 of the theorem is easily shown by computing the adjoint matrix of −A(T ); it is
carried out in Lemma 20.2 of [7].

For property 2 of Theorem 9.1, suppose we have an edge connecting vertices v
and w of the maximal splice diagram as follows,

...
v

◦
a1

KKKKKKKKKKa2

QQQQQQQQQQ

armmmmmmmmmm
b c

w

◦
d1

ssssssssss d2

mmmmmmmmmm

ds QQQQQQQQQQ ...

and write a =
∏r

1 ai, d =
∏s

1 dj . For each i = 1, . . . , r let αi be the product of
the weights just beyond the other end of the ai-weighted edge. Then the vv- and
vw-entries of the matrix equation A(T )(`ij) = −I say:

abev + ad +
r∑
1

bαi = −1

adev + cd +
r∑
1

dαi = 0 .

Multiplying the second of these equations by b/d and then subtracting the first
from it gives the desired equation bc− ad = 1.

Property 3 of Theorem 9.1 follows from computations in [7], but it also follows
from the proof of our procedure to recover the maximal splice diagram, so we will
describe this after proving that the procedure works.

The fact that the string of the maximal splice diagram between two vertices of
a splice diagram only depends on a, b, c, d is immediate from the discussion in [7].
Consider the resolution graph

(11)
−1◦ −2◦ −2◦ −3◦ −2◦ −2◦ −2◦ −2◦ −1◦,

with associated maximal splice diagram

(12) ◦ s 1◦s−1 ◦2 1◦1 2◦1 3◦1 4◦ ◦1 t ◦,

This is a piece of the infinite linear graph we used above, and we choose s and t
large enough that our desired vertices will lie in this piece. Now we repeatedly blow
up on edges of the linear resolution graph. An easy calculation shows that blowing
up on an edge:

e1

◦
e2

◦ 7→
e1−1
◦

−1
◦

e2−1
◦

has the effect

α ◦ β γ ◦ δ 7→ α ◦ β α+γ◦β+δ γ ◦ δ
.

on the associated maximal splice diagram. Thus we need only show that our desired
vertices eventually appear in this procedure. But this is a standard fact about
Farey sequences (alternatively, one can observe that we are describing the standard
procedure to resolve the plane curve singularity (xa + yb)(xc + yd)).

This same argument applies to see how to fill in the maximal splice diagram
between a node and a leaf, even if the edge weight at the leaf is unknown. The
leaf will be the rightmost vertex of the above string (12) with t chosen as small as
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possible to accommodate our desired vertex a ◦ b . Thus, the t that we choose is
da/be (if t = 1 the initial resolution string (11) is

−1◦ −2◦ −2◦ ).
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(4) 9 (1976), 145–154. 21, 22, 24
[7] David Eisenbud and Walter D. Neumann, Three-dimensional link theory and invariants of

plane curve singularities. Ann. Math. Stud. 110, Princeton. Princeton Univ. Press (1985).
1, 4, 5, 6, 9, 10, 14, 15, 16, 20, 37, 40

[8] Jean Giraud, Improvement of Grauert-Riemenschneider’s theorem for a normal surface. Ann.

Inst. Fourier (Grenoble) 32 (1982), no. 4, 13–23 (1983). 27
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