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1. Introduction

In this paper we prove some results on combinatorics of triangulations of 3-dimensional
pseudo-manifolds, improving on results of [NZ], and apply them to obtain a simplicial
formula for the Chern-Simons invariant of an ideally triangulated hyperbolic 3-manifold.
Combining this with [MN] gives a simplicial formula for the η invariant also.

In effect, the main ingredient in the formula is the sum of the “Rogers dilogarithm”
of the complex parameters of the ideal tetrahedra of the triangulation, but the choice of
the appropriate branch of the Rogers dilogarithm for each simplex involves unexpected
combinatorics (cf. Remark 4 below for this interpretation of the formula).

The combinatorial part of this paper (Sects. 4–6) is self-contained and of independent
interest. For instance, T. Yoshida [Y2] has used these combinatorics (in the version of
[NZ]) to study character varieties and boundary slopes in the spirit of Culler-Shalen [CS].

In the remainder of this Introduction we summarize the application to the Chern-
Simons invariant. All manifolds in this paper are assumed to be oriented.

If M is a complete hyperbolic 3-manifold which is compact, then its Chern-Simons
invariant CS(M) is well-defined modulo 2π2. If M is non-compact then Bob Meyerhoff
has shown in [M] that there is still a natural definition of CS(M) which is well-defined
modulo π2 . Let V(M) = Vol(M)+ i CS(M), which is well-defined modulo i2π2Z or
iπ2Z.

A formula for V(M ′) mod iπ2Z, as M ′ varies over the hyperbolic Dehn surgeries
on M , was conjectured in [NZ] and proved by T. Yoshida in [Y1]. This formula
is of theoretical interest but is not practical for actually computing V(M ′). It is not
hard to reverse the derivation in [NZ] to obtain a computable formula in terms of an
ideal triangulation of M . However, the resulting formula involves an unknown constant
which depends on the combinatorics of the triangulation of M and which seems hard to
determine in general. Using a result of Dupont [D] we can find a version of the formula in
which this constant is at least a rational multiple of iπ2 (Theorem 1 below). Using a more
careful analysis of the relevant combinatorics we are able to give a version (Theorem 2)
in which the constant is conjecturally in (iπ2/6)Z and is thus determined up to a six-fold
ambiguity (since it lives in C mod iπ2Z ).

Suppose M has an ideal triangulation which subdivides it into n ideal tetrahedra

M = ∆1 ∪ . . . ∪ ∆n .

Choose an edge of the j -th tetrahedron and let z0
j be the complex parameter which then

describes this tetrahedron (we are following the notation of [NZ] which may be consulted
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for more details — see also Sect. 2). Let

Z0 =




log z0
1

...
log z0

n

log(1 − z0
1)

...
log(1 − z0

n)




.

Recall from [NZ] (see also Sect. 2) that if M has h cusps then the z0
j are determined

by so-called consistency and cusp relations which can be written in the form

UZ0 = πid ,

where U is a certain integral (n + 2h) × 2n-matrix and

d =




d1
...

dn+2h




is some integral vector. The equation

Uc = d (∗)

has a solution c = Z0/πi ∈ C2n . Since U is an integral matrix, (∗ ) also has solutions

c =




c′1
...

c′n
c′′1
...

c′′n




∈ Q2n .

We shall see that solutions c can be found in Z2n , in fact even in a certain sublattice of
Z2n .

Let M ′ be the result of a hyperbolic Dehn surgery on M obtained by deforming the
parameters z0

j to new values zj (cf. e.g., [NZ]). Topologically M ′ differs from M in
that a new closed geodesic γj has been added at the j -th cusp for some j ∈ {1, . . . , h}.
Let λj be the complex number which has real part equal to the length of this geodesic
and imaginary part equal to its torsion (the latter is only well-defined modulo 2π ). If no
geodesic has been added at the j -th cusp we put λj = 0.

Let R(z) be the “Rogers dilogarithm function,” which is related to the usual diloga-
rithm Li2 by

R(z) =
1

2
log(z) log(1 − z) + Li2(z)

=
1

2
log(z) log(1 − z) −

∫ z

0

log(1 − t)

t
dt.
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Theorem 1. Given any solution c ∈ C2n to (∗ ), there exists a constant α = α(c) such
that if M ′ is the result of hyperbolic Dehn surgery on M , then

V(M ′) = α −
π

2

h∑

j=1

λj − i

n∑

ν=1

(
R(zν) −

iπ

2

(
c′ν log(1 − zν) − c′′ν log(zν)

))
.

Moreover, if c ∈ R2n then α is pure imaginary and if c ∈ Q2n then α ∈ iπ2Q.

In Sect. 2 we will define a “parity condition” on c ∈ Z2n which depends on the
combinatorics of our situation.

Theorem 2. There exist solutions c to (∗ ) in Z2n satisfying the parity condition. For
such c, the constant α of Theorem 1 is well-defined (i.e., independent of c ) modulo
iπ2/2 (and is conjecturally an integer multiple of iπ2/6 ).

The formula of Theorem 1 is a fairly easy application of the methods in [NZ]; we
prove it in Sect. 3, along with the rationality statement for α and the second sentence
of Theorem 2. The existence of c as in Theorem 2 needs the combinatorial results of
Sects. 4–6 and is proved in Sect. 6.

Remarks. 1. If one drops the parity condition in Theorem 2 then α is well-defined
modulo iπ2/4 instead of iπ2/2 and is conjecturally an integral multiple of iπ2/12.

2. Denote Sol0 = {c ∈ Z2n : Uc = d} and Sol = {c ∈ Sol0 : c satisfies
the parity condition}. It follows from Theorem 4.2 that Sol0/Sol ∼= H1(M∗; Z/2) =
Hom(Γ/P, Z/2), where M ∗ is the end compactification of M and P is the subgroup
of Γ = π1M generated by all parabolic elements of Γ. In particular, Sol = Sol0 if
Γ/P has odd order.

3. Our formula has been implemented in Jeff Weeks’ program “snap pea” by R. Mey-
erhoff and C. Hodgson, using c in Sol0 rather than Sol (see [HMW] for a brief
description of this program). There is therefore now a large accumulation of experimen-
tal evidence for the iπ2/12 conjecture of Remark 1 above. In cases when Sol = Sol0
the computations appear to confirm the stronger iπ2/6 conjecture, but I have not checked
systematically.

4. Note that R(z) is a multivalued function of z. It has singularities at 0 and
1 and is single-valued on the universal cover of C − {0, 1}. We only need R(z)
(mod π2 ), and in fact R(z) (mod 2π2 ) is well-defined on the universal abelian cover
X of C − {0, 1} (R itself is well-defined on the universal nilpotent cover). A point of
X is determined by a point z of a fundamental domain for the cover and an integer pair
(c′, c′′) ∈ Z2 = π1(C − {0, 1}). The value of R mod 2π2 at this point is then

R(z) + iπ
(
c′ log(1 − z) − c′′ log(z)

)
,

where R(z) is the standard branch on the fundamental domain. Thus, when c is integral,
the summand

R(zν) −
iπ

2

(
c′ν log(1 − zν) − c′′ν log(zν)

)
(mod π2)
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in our formula can be thought of as representing a branch at zν of one of the four functions

R(z), R(z) +
iπ

2
log(z), R(z) +

iπ

2
log(1 − z), or

R(z) +
iπ

2

(
log(1 − z) + log(z)

)
(mod π2) ,

according to the parity of c′ν and c′′ν . Each of the first three of these functions can be
naturally associated to the choice of an edge of the ideal tetrahedron with parameter z,
since choosing a different edge replaces z by 1 − 1/z or 1/(1 − z) and R(z) satisfies
the functional equations

R(1 −
1

z
) = R(z) +

iπ

2
log(z) −

π2

6

R(
1

1 − z
) = R(z) +

iπ

2
log(1 − z) +

π2

6
.

The last of the above four functions is mapped to a different branch of itself, up to a
constant, by the transformation z 7→ (1 − 1/z).

5. We believe there should be a topological interpretation of an integer vector c as in
Theorem 2: it should be associated with some kind of extra structure on M . Remark 4
and Section 2 both give some support for this belief.

Acknowledgements. The support of the N.S.F. for this work is gratefully acknowledged.
Don Zagier encouraged me to finally write up this work, despite the lack of proof of the
conjecture of Theorem 2.

2. Consistency and cusp conditions, and the conditions on c

An ideal hyperbolic structure on a tetrahedron ∆ is specified by assigning a complex
number with positive imaginary part to each edge, these numbers being related as in
Fig. 1. The geometric meaning of these parameters is that the Euclidean triangle cut off
by a horosphere section at a vertex is similar to the Euclidean triangle pictured in Fig. 1
with vertices 0, 1, and z in the complex plane; the parameter z is only well-defined
after choosing an edge of ∆, and parameters for different edges are related as illustrated.
Instead of these parameters z, 1/(1 − z), and (z − 1)/z, it will be convenient to use
their natural logarithms

log(z), − log(1 − z), log(1 − z) − log(z) + πi

(unless otherwise stated, log is always the standard branch on C − (−∞, 0] ). We call
these the log-parameters of the tetrahedron.

Given a tetrahedron ∆, we shall choose a labelling of its edges e1, e2, . . . , e6 as in
Fig. 2. Thus ej and ej+3 are opposite edges for j = 1, 2, 3.

Let M be a hyperbolic 3-manifold which is ideally triangulated as

M = ∆1 ∪ . . . ∪ ∆n . (2.1)

Choose a labelling ej , j = 1, . . . , 6, of the edges of each ∆ν as above. Let zν be the
parameter for ∆ν with respect to the edge e1 of ∆ν . We do not assume the hyperbolic
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Figure 2

structure on M is complete, but we assume it results by deforming from a complete
structure on M with tetrahedral parameters z0

ν say.

Consistency conditions. Each edge of each tetrahedron of the triangulation of M has
an associated log-parameter. The condition that the ideal tetrahedra fit together around
an edge E of the triangulation is equivalent to the condition that the log-parameters sum
to 2πi around this edge. We call this the consistency condition at the edge E . It has
the form

n∑

ν=1

r′ν(E) log(zν) + r′′ν (E) log(1 − zν) = d(E)πi (2.2)

for some integer d(E) and integers r′ν(E) and r′′ν (E), (ν = 1, . . . , n ).
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We can describe the integer d(E) as follows. Associate an integer εi(∆ν) to the i-th
edge of ∆ν as follows:

ε1(∆ν) = ε4(∆ν) = 0 ,

ε2(∆ν) = ε5(∆ν) = 0 ,

ε3(∆ν) = ε6(∆ν) = 1 .

(2.3)

Associate a complex number ζj(∆ν) to the j -th edge of ∆ν by:

ζ1(∆ν) = ζ4(∆ν)

ζ2(∆ν) = ζ5(∆ν)

ζ3(∆ν) = ζ6(∆ν)

= log(zν) ,

= − log(1 − zν) ,

= − log(zν) + log(1 − zν) .

(2.4)

The log-parameters of ∆ν are then

µj(∆ν) = ζj(∆ν) + εj(∆ν)πi, j = 1, . . . , 6 . (2.5)

Equation (2.2) is the result of equating the sum of log-parameters around the edge E
with 2πi and moving the εj(∆ν)πi terms to the right of the equation. Thus

Lemma 2.1. d(E) = 2−
∑

κ εjκ
(∆νκ

) where the sum is the sum of the εj(∆ν) around
the edge E .

Cusp conditions. The torus T section of an end of M is triangulated by triangles cut
off the vertices of the ∆ν by horospheres. Each vertex of a triangle of this triangulation
determines some edge of a tetrahedron, and hence has an associated log-parameter, which
can be written µ = ζ + επi as in equation (2.5).

C

6

5

43

2

1 µ

µ

µµ

µ

µ
µ(C) = −µ1 +µ2 −

µ3 − µ4 + µ5 −
µ6 + . . .

Figure 3

Let C be an essential simple closed curve in T which is in general position with
respect to the 1-skeleton of the triangulation of T and, moreover, “has no back-tracking,”
in the sense that it never departs a 2-simplex across the same edge by which it entered.
Then as C passes through a 2-simplex it determines a vertex of the 2-simplex, the vertex
between the entering and departing edges, and a sign + or − according as it goes past
this vertex counter-clockwise or clockwise. Let µ(C) =

∑
±µj be the sum over the

vertices that C passes of the corresponding log-parameter µj with sign ± as above
(Fig. 3). Clearly,

µ(C) =

n∑

ν=1

r′ν(C) log(zν) + r′′ν (C) log(1 − zν) − d(C)πi (2.6)

for some integer d(C) and integers r′ν(C) and r′′ν (C), (ν = 1, . . . , n ).
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It is not hard to see (cf. Sect. 6 or [NZ]) that, given the consistency conditions, µ(C)
only depends on the homology class of C in T and µ gives a homomorphism from
H1(T ) to C. In fact, µ(C) = 2 log λ(H(C)), where λ(H(C)) is an eigenvalue of the
holonomy H(C) of C .

The cusp condition corresponding to C is the condition that C have parabolic
holonomy, that is, µ(C) = 0, which by (2.6) can be written

n∑

ν=1

r′ν(C) log(zν) + r′′ν (C) log(1 − zν) = d(C)πi. (2.7)

Just as for Lemma 2.1 one sees:

Lemma 2.2. d(C) = −
∑

±εj , where the εj are the ε ’s (cf. equation (2.3)) at the
vertices that C passes, with signs ± given as above.

Consistency and cusp conditions. For each edge E of our triangulation we have
the consistency condition (2.2). At each cusp of M choose two curves C as above
representing a basis of the first homology of the cusp and consider the corresponding cusp
conditions (2.7). The complete hyperbolic structure on M — the one with tetrahedral
parameters z0

ν — is determined by all of these consistency and cusp conditions together.
This is a system of linear equations with integral coefficients, which can be written

UZ0 = πid ,

as described in the Introduction, with

Z0 =




log z0
1

...
log z0

n

log(1 − z0
1)

...
log(1 − z0

n)




.

Now suppose we are given a 2n-vector c = (c′1, . . . , c′n, c′′1 , . . . , c′′n)t . Assign
numbers ηi(∆ν) to the edges of ∆ν as follows:

η1(∆ν) = η4(∆ν) = c′ν ,

η2(∆ν) = η5(∆ν) = −c′′ν ,

η4(∆ν) = η6(∆ν) = −c′ν + c′′ν + 1 .

(2.8)

Proposition 2.3. The equation Uc = d (equation (∗) of the Introduction) is equivalent
to the following conditions:
C1. the sum of the η ’s around any edge E of the triangulation is 2;
C2. for any path C as above in a torus section of an end of M , the signed sum of the

η ’s over the vertices adjacent to the path C is zero.

Proof. Replace log(z0
ν) by c′ν and log(1− z0

ν) by c′′ν in the proofs of Lemmas 2.1 and
2.2.
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The parity conditions. We consider an integral vector c ∈ Z2n . Thus, the ηj(∆ν)
defined above are integers. Let C be any closed path in M which is in general position
with respect to the 2-skeleton of our triangulation. We also assume C “has no back-
tracking” in the sense that it never departs a 3-simplex across the same face by which it
entered. Then as C passes through a 3-simplex it determines an edge of the 3-simplex —
the edge common to the entering and departing faces — and hence an integer η as above.
We call the modulo-2 sum of these η ’s along C the parity of c along C .

The parity condition on c is the condition:
C3. The parity of c along C is even for all C as above.

The combinatorial part of Theorem 2 is re-formulated and made precise in part (i) of
the following theorem, which will be proved in Sect. 6.

Theorem 2.4.
(i) There exists c ∈ Z2n satisfying the above conditions C1, C2, and C3.
(ii) Any two elements c1 and c2 of Z2n satisfying conditions C1, C2, and C3, differ by

an integral linear combination of the vectors

J2nr(E) = (r′′1 (E), . . . , r′′n(E),−r′1(E), . . . ,−r′n(E))t ,

where the r(E) are the coefficient vectors of the consistency conditions and

J2n =

(
0 In

−In 0

)
.

Remark. The parity condition C3 implies that C1 holds modulo 2. Given that C1 holds
modulo 2, the parity of c along C is easily seen to depend only on the homology class
of C and to give a homomorphism H1(M ; Z/2)→Z/2. If C2 holds modulo 2, this
homomorphism vanishes on H1(E; Z/2), where E is the union of the ends of M . Thus,
one then need only check the parity condition on a set of representatives for generators of
H1(M ; Z/2)/ ImH1(E; Z/2) = H1(M

∗; Z/2), where M ∗ is the end compactification
of M .

3. The formula for the Chern-Simons invariant

In this section we prove Theorems 1 and 2 of the Introduction, assuming Theorem 2.4,
which will be proved in Sect. 6.

Proof of Theorem 1. Let M be triangulated, as in the previous section, into ideal
tetrahedra with parameters zν . We do not assume M has the complete hyperbolic
structure. Under certain conditions that we recall below, the metric completion M ′ of
this structure on M is a hyperbolic manifold, in which case it is a Dehn filling of M in
the topological sense. To review the conditions we need some notation.

Number the ends of M by j = 1, . . . , h say. Choose a specific oriented basis lj ,
mj for the homology of the j -th end of M for each j , and let

uj = µ(mj), vj = µ(lj), (j = 1, . . . , h) ,

where µ(mj) means µ(C) for some curve C representing mj , and the same for µ(lj).
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If uj = vj = 0 then M is still complete at the j -th end, that is, it has a cusp there.
If coprime integers pj and qj exist with

pjuj + qjvj = 2πi,

then M ′ is a hyperbolic manifold near the j -th end of M , obtained by adding a geodesic
γj to M there in such a way that it is topologically a (pj , qj)-Dehn filling, that is, a
Dehn filling which kills the homology class pjmj + qjlj . In all other cases M ′ is not a
hyperbolic manifold at the j -th end of M .

Remark on orientations. In [NZ] {mj, lj} was an oriented basis rather than {lj,mj}.
For the justification of the different convention used here, see the “Note on orientations”
in section 6 of [NR] (these Proceedings) or in [MN].

Assume now that M ′ is a hyperbolic manifold. Let λj be as in the Introduction:
λj = 0 if the j -th end of M is complete, and otherwise λj is the “complex length” of
the added geodesic γj , that is, its length plus i times its torsion.

Lemma 3.1. Re λj = − 1
2π

Im(vjuj).

Proof. This is Proposition 4.3 of [NZ], except that uj and vj have been interchanged,
in keeping with the above orientation convention.

Following equation (2.6), we can write

uj =

n∑

ν=1

(
r′ν(mj) log(zν) + r′′ν (mj) log(1 − zν)

)
− d(mj)πi

vj =
n∑

ν=1

(
r′ν(lj) log(zν) + r′′ν (lj) log(1 − zν)

)
− d(lj)πi.

Given a solution c = (c′1, . . . , c′n, c′′1 , . . . , c′′n)t to the equation Uc = d, we can rewrite
this

uj =

n∑

ν=1

(
r′ν(mj)(log(zν) − c′νπi) + r′′ν (mj)( log(1 − zν) − c′′νπi)

)

vj =

n∑

ν=1

(
r′ν(lj)( log(zν) − c′νπi) + r′′ν (lj)( log(1 − zν) − c′′νπi)

)
.

(3.1)

As in [NZ], we write the matrix U as

U =




M
L
R


 =

(
C
R

)
,
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where the rows of R are the coefficients of the consistency conditions and

L =




r′1(l1) . . . r′n(l1) r′′1 (l1) . . . r′′n(l1)
...

...
...

...
r′1(lh) . . . r′n(lh) r′′1 (lh) . . . r′′n(lh)


 ,

M =




r′1(m1) . . . r′n(m1) r′′1 (m1) . . . r′′n(m1)
...

...
...

...
r′1(mh) . . . r′n(mh) r′′1 (mh) . . . r′′n(mh)


 .

We also write

Z =




log z1
...

log zn

log(1 − z1)
...

log(1 − zn)




.

Then equations (3.1) can be written in matrix form:




u1
...

un

v1
...

vn




= C(Z − cπi) , (3.2)

and the consistency relations can be written

R(Z − cπi) = 0 . (3.3)

We recall the main combinatorial lemma of [NZ]. Let J2m denote the 2m × 2m
matrix

J2m =

(
0 I
−I 0

)
.

Lemma 3.2. Given x and y in C2n satisfying Rx = Ry = 0, we have

xtJ2ny =
1

2
xtCtJ2hCy .

Proof. This is Corollary 2.4 of [NZ], modified in accordance with our different orienta-
tion convention. It also follows easily from Theorem 4.1 below.



Combinatorics of Triangulations and the Chern-Simons Invariant for Hyperbolic 3-Manifolds 253

We can apply this lemma with x = y = Z − cπi to get

h∑

j=1

Im(vjuj) =
i

2
(u1, . . . , vh)J2h




u1
...

vh




=
i

2
(Z − cπi)tCtJ2hC(Z + cπi)

= i(Z − cπi)tJ2n(Z + cπi)

= −2

n∑

ν=1

Im
(
log zν log 1− zν

)

+ 2π

n∑

ν=1

Re
(
c′ν log(1 − zν) − c′′ν log zν

)

+ iπ2ctJ2nc .

By Lemma 3.1 this gives

π

2
Re

( h∑

j=1

λj

)
= α0 +

1

2

n∑

ν=1

Im
(
log zν log 1 − zν

)

−
1

2
π Re

( n∑

ν=1

(
c′ν log(1 − zν) − c′′ν log zν

))
,

with α0 = −(i/4)π2ctJ2nc, which vanishes if c is real. Combining this with the
elementary formula

1

2
Im

(
log z log 1 − z

)
=

1

2
Im

(
log z log(1 − z)

)
− log |z| arg(1 − z) ,

we get

π

2
Re

( h∑

j=1

λj

)
= α0 +

1

2

n∑

ν=1

Im
(
log zν log(1 − zν)

)
−

n∑

ν=1

log |zν | arg(1 − zν)

−
1

2
π Re

( n∑

ν=1

(
c′ν log(1 − zν) − c′′ν log zν

))
. (3.4)

The function log |z| arg(1−z)+ImLi2(z) is called the “Bloch-Wigner dilogarithm.”
It is the volume of the ideal tetrahedron with parameter z (cf. [NZ], for example). Thus

Vol(M ′) =

n∑

ν=1

(
log |zν | arg(1 − zν) + Im Li2(zν)

)
. (3.5)
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Adding (3.4) to (3.5) gives

Vol(M ′)+
π

2
Re

( h∑

j=1

λj

)
= α0 +

1

2

n∑

ν=1

Im
(
log zν log(1 − zν)

)
+

n∑

ν=1

Im Li2(zν)

−
1

2
π Re

( n∑

ν=1

(
c′ν log(1 − zν) − c′′ν log zν

))

= α0 +
n∑

ν=1

Im R(zν) −
1

2
π Re

( n∑

ν=1

(
c′ν log(1 − zν) − c′′ν log zν

))
,

which can be written

Re

(
V(M ′) +

π

2

h∑

j=1

λj

)
=

α0 + Re

(
−i

n∑

ν=1

(
R(zν) −

iπ

2
(c′ν log(1 − zν) − c′′ν log zν)

))
.

(3.6)

This confirms the real part of the formula of Theorem 1. But T. Yoshida shows in
[Y1], confirming a conjecture of [NZ], that V(M ′) + π

2

∑h
j=1 λj is a complex analytic

function. Since a complex analytic function is determined up to a constant by its real part,
the formula of Theorem 1 is proved.

To complete the proof of Theorem 1 we must show that the constant α is in iπ2Q if
c is rational. We use work of Dupont [D] (that builds on work of Bloch and Wigner and
Dupont and Sah), which we now quote.

Let PC be the “Bloch group”, generated by symbols {z} with z ∈ C−{0, 1} subject
to the relations

4∑

i=0

{[a0 : . . . : âi : . . . : a4]} = 0 for distinct points a0, . . . , a4 ∈ C −∞ ,

where [z0 : z1 : z2 : z3] means the cross-ratio (z0 − z2)(z1 − z3)/(z0 − z3)(z1 − z2).
There is a commutative diagram with exact rows

H3(SL(2, C)δ; Z)
σ

−→ PCyc

yρ

C/Q
1∧id
−→ Λ2

QC ,

where the map of importance to us is ρ, given by the formula

ρ({z}) =
log z

2πi
∧

log(1 − z)

2πi
+ 1 ∧

R(z)

2π2
. (3.7)

Dupont shows that the map c is 2Ĉ2 , where Ĉ2 is the Cheeger-Chern-Simons class
associated to the Chern polynomial c2 . Our hyperbolic manifold M ′ represents an



Combinatorics of Triangulations and the Chern-Simons Invariant for Hyperbolic 3-Manifolds 255

element of H3(SL(2, C)δ; Z) and in our terminology his result is that

n∑

ν=1

ρ({zν}) = 1 ∧ 2Ĉ2(M) = 1 ∧
i

2π2
V(M ′) . (3.8)

This equation will be our starting point.
(Dupont used Λ2

ZC rather than Λ2
QC. They are the same thing: if s and t are integers

and z, w ∈ C then in Λ2
ZC we have (s/t)z ∧ w = (s/t)z ∧ t(1/t)w = sz ∧ (1/t)w =

z ∧ (s/t)w. For us Λ2
QC is more convenient.)

Now suppose M ′ results from M by (pj , qj)-Dehn surgery at the j -th end. Then,
as described at the start of this section,

pj

uj

2πi
+ qj

vj

2πi
= 1 .

Choose integers rj and sj with pjsj − qjrj = 1. Then in [NZ] it is shown that

rj

uj

2πi
+ sj

vj

2πi
=

λj

2πi
.

([NZ] had a different sign due to the differing orientation convention.) Hence, taking
wedge product of these two equations,

uj

2πi
∧

vj

2πi
= 1 ∧

λj

2πi
. (3.9)

For w = (w1, . . . , w2m) and w′ = (w′
1, . . . , w′

2m) in C2m we define w ∧ w′ =

(1/2)
∑m

j=1(wj ∧w′
m+j −wm+j ∧w′

j) ∈ Λ2
QC. It is a formal observation that whenever

rational matrices R and C satisfy Lemma 3.2, they will satisfy:

Rx = Ry = 0 =⇒ x ∧ y =
1

2
Cx ∧ Cy, for x,y ∈ C2n . (3.10)

( C could be replaced by any Q-vector space for this.)
Now suppose we have a rational solution c to Uc = d. We shall denote Z− cπi by

Z0. Using, in turn, (3.8) and (3.7), (3.10), and (3.9),
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1 ∧
i

2π2
V(M ′) =

Z

2πi
∧

Z

2πi
+

n∑

ν=1

1 ∧
R(zν)

2π2

=
Z0

2πi
∧

Z0

2πi
+

1

2

(
Z

2πi
∧ c + c ∧

Z

2πi

)
−

1

4
c ∧ c +

n∑

ν=1

1 ∧
R(zν)

2π2

=
1

2

h∑

j=1

uj

2πi
∧

vj

2πi
+

1

2

n∑

ν=1

(
c′ν ∧

log 1 − zν

2πi
− c′′ν ∧

log zν

2πi

)

+

n∑

ν=1

1 ∧
R(zν)

2π2

=
1

2

h∑

j=1

1 ∧
λj

2πi
+

1

2

n∑

ν=1

(
1 ∧ c′ν

log 1 − zν

2πi
− 1 ∧ c′′ν

log zν

2πi

)

+

n∑

ν=1

1 ∧
R(zν)

2π2
.

Hence

i

2π2
V(M ′) =

1

2

h∑

j=1

λj

2πi
+

1

2

n∑

ν=1

(
c′ν

log 1 − zν

2πi
− c′′ν

log zν

2πi

)

+
n∑

ν=1

R(zν)

2π2
(mod Q) ,

which is the desired rationality result.

Proof of Theorem 2. We assume Theorem 2.4. Suppose we have two c ’s as in Theorem
2, that is, satisfying the conditions C1, C2, and C3 of Section 2 (cf. Theorem 2.4). Denote
their difference by s. Replacing one of these c ’s by the other in the formula of Theorem
1 changes the formula by (π/2)stJ2nZ. To prove Theorem 2 we must show this is a
multiple of iπ2/2. But by Theorem 2.4, stJ2n is a linear combination of the rows of the
coefficient matrix R of the consistency condition, so the consistency condition (equation
(2.2)) implies that stJ2nZ is πi times an integer.

Remark. It is easy to check that the formula for V(M ′) of Theorem 2 is invariant
modulo iπ2/6 under “cocycle moves” to change the triangulation: replace two ideal
simplices 〈V0, V1, V2, V3〉 and 〈V ′

0 , V1, V2, V3〉 which have a common face by three —
〈V0, V

′
0 , V1, V2〉, 〈V0, V

′
0 , V2, V3〉, and 〈V0, V

′
0 , V3, V1〉.
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4. Combinatorics of 3-cycles

By an n-cycle with boundary will be meant any n-complex K obtained from a finite
disjoint union of closed n-simplices by iteratively gluing together pairs of free (n −
1)-faces by simplicial identification maps (a “free” face is one that has not yet been glued)
in such a way that any open q-simplex still embeds after the identification. If no free
faces remain K will be called a closed n-cycle or just an n-cycle (these are also called
“n-dimensional normal pseudo-manifolds” in the literature). Alternatively, 1-cycles
are compact quasi-simplicial 1-manifolds and n-cycles can then be defined inductively
for n ≥ 2 as finite quasi-simplicial complexes whose vertex links are connected (n −
1)-cycles. (A “quasi-simplicial complex” is a finite CW-complex built from simplices
such that the attaching map ∂∆q →Kq−1 for each q-simplex is simplicial and is injective
on each open (q−k)-face of ∆q . The second barycentric subdivision of such a complex
is a simplicial complex.) We will not distinguish notationally the complex K and its
underlying topological space. The complement K − K n−3 of the (n − 3)-skeleton of
an n-cycle K is a manifold, and by an orientation of K we mean an orientation of this
manifold.

For n ≤ 2 an n-cycle is an n-manifold. A 3-cycle is topologically a manifold except
for finitely many singular points where the local structure is that of a cone on a closed
connected surface.

To an oriented 3-simplex ∆ we shall associate a 2-dimensional bilinear space J∆

over Z as follows. As a Z-module J∆ is generated by the six edges e1, . . . , e6 of ∆
(see Fig. 2) with the relations:

ei − ei+3 = 0 for i = 1, 2, 3 .

e1 + e2 + e3 = 0 .

Thus, opposite edges of ∆ represent the same element of J∆ , so J∆ has three “geo-
metric” generators, and the sum of these three generators is zero. The bilinear form on
J∆ is the non-singular skew-symmetric form given by

〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = −〈e2, e1〉 = −〈e3, e2〉 = −〈e1, e3〉 = 1 .

Now suppose K is an oriented 3-cycle. For each i let Ci be the free Z-module
on the unoriented i-simplices of K . Let J be the direct sum

∐
J∆ , summed over

the oriented 3-simplices of K . There is a unique reasonable way of defining natural
homomorphisms

α: C0 −→C1

and

β: C1 −→J .

Namely, α takes a vertex to the sum of the incident edges (with an edge counted twice if
both endpoints are at the given vertex). The J∆ component of β takes an edge E of K
to the sum of those edges ei in the edge set {e1, e2, . . . , e6} of ∆ which are identified
with E in K .
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The natural basis of Ci gives an identification of Ci with its dual space and the
bilinear form on J gives an identification of J with its dual space. With respect to these
identifications, the dual map

α∗: C1 −→C0

is easily seen to map an edge E of K to the sum of its endpoints, and the dual map

β∗: J −→C1

can be described as follows. To each 3-simplex ∆ of K we have a map j = j∆ of the
edge set {e1, e2, . . . , e6} of ∆ to the set of edges of K : put j(ei) equal to the edge
that ei is identified with in K . For ei in J∆ we have

β∗(ei) = j(ei+1) − j(ei+2) + j(ei+4) − j(ei+5) (indices mod 6).

This is shown pictorially in Fig. 4.

i
e

Figure 4

We shall show that Im β ⊆ Kerβ∗ . Since Kerβ∗ = (Im β)⊥ , the form on J then
induces a form on Kerβ∗/ Im β which is non-degenerate on (Kerβ∗/ Imβ)/{Torsion}.
We shall denote this form also by 〈 , 〉.

Let K0 be the result of removing a small open cone neighborhood of each vertex V
of K , so ∂K0 is the disjoint union of the links LV of the vertices of K .

Theorem 4.1. The sequence

J: 0−→C0
α

−→C1
β

−→ J
β∗

−→C1
α∗

−→C0 −→ 0

is a chain complex. Tensored with Z[ 12 ], it is exact except in the middle, where its
homology is the first homology of ∂K0:

(Kerβ∗/ Im β) ⊗ Z[
1

2
] = H1(∂K0; Z[

1

2
]) =

∐

V ∈K0

H1(LV ; Z[
1

2
]) .

Moreover, the bilinear form 〈 , 〉 on (Kerβ∗/ Im β)⊗Z[ 12 ] is twice the intersection form
on H1(∂K0; Z[12 ]).

Note that only vertices at which K is not a manifold contribute their homology in this
theorem. Thus the chain complex J computes the “local homology” of the singularities
of K .
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Remark. In [NZ, Theorem 2.2 to Proposition 2.5] combinatorial results equivalent to
the above Theorem were proved under the extra assumption that the complement of the
vertices, K − K0, carries a complete hyperbolic structure of finite volume.

We will need the homology of J without tensoring with Z[ 1
2 ], but the result is more

technical. We number homology groups of J as follows:

0 −→ C0
α

−→ C1
β

−→ J
β∗

−→ C1
α∗

−→ C0 −→ 0 .

H5(J) H4(J) H3(J) H2(J) H1(J)

Theorem 4.2. The homology groups Hi(J) are

H5(J) = 0, H4(J) = Z/2, H1(J) = Z/2 ,

H3(J) = H ⊕ H1(K; Z/2), H2(J) = H1(K; Z/2) ,

where H = Ker(H1(∂K0; Z)→H1(K0; Z/2)). The isomorphism H3(J)/{Torsion}
→H is an isometry for the form on H3(J) = Kerβ∗/ Im β and the intersection form
on H ⊆ H1(∂K0) =

∐
H1(LV ).

Remark. The isomorphism of H2(J) with H1(K; Z/2) is given by the obvious map —
an element of Kerα∗ represents a modulo-2 simplicial 1-cycle in K . The torsion of
H3(J) then follows by the universal coefficient theorem. The map of H3(J)/{Torsion}
to H is less obvious, and is pictured in Fig. 9 below. In Theorem 5.1 we give a more
direct computation of H3(J) in terms of cohomology, which we need later, but its proof
uses the above theorem.

Proof. We shall work over Z. The version over Z[ 1
2 ] follows by the same proof, or

directly from the result over Z.
To show that J is a chain complex we must show β ◦ α = 0, β∗ ◦ β = 0, and

α∗ ◦ β∗ = 0. The first and third of these equations are dual to each other and hence
equivalent, and the third equation is clear from Fig. 4. For the second equation note that,
for an edge E of K , β∗β(E) is a sum of contributions ±E ′ over edges E ′ which are
adjacent to E in some 3-simplex ∆ of K . Each such E ′ spans with E a 2-simplex
face of ∆ and contributes also with opposite sign to β∗β(E) for the 3-simplex on the
other side of this face. Thus β∗β(E) is zero.

We must next discuss the homology groups Hi(J).
H1(J) is Coker(α∗) and we must show it is Z/2. If ε: C0 →Z/2 is the map which

takes an element to the mod-2 sum of its coefficients, then certainly Im(α∗) ⊆ Ker(ε).
For any 2-simplex F of K , let E1 , E2 , and E3 be the three edges of F (which may
not be distinct, since K is just quasi-simplicial). Then α∗(E1 +E2−E3) = 2V , where
V is the common vertex of E1 and E2 in F , and α∗(E2 − E3) = V − V ′ , where V ′

is the vertex at the other end of E1 . Since Ker(ε) is generated by elements of these two
types, Im(α∗) = Ker(ε), as was to be proved.

Any element of Ker(α∗), taken modulo 2, is a simplicial mod-2 1-cycle in K . Thus
we have a map Ker(α∗)→H1(K; Z/2). This map vanishes on Im(β∗) (see Fig. 4), so
it induces a map H2(J)→H1(K; Z/2). We claim this is an isomorphism.
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A closed simplicial path in K represents an element of H1(K; Z/2) (the mod-2
sum of the 1-simplices along the path) and H1(K; Z/2) is generated by such elements.
If the path has odd length, it can be modified to have even length by replacing some
1-simplex E by the sum of the other two edges of some 2-simplex containing E . Once
it has even length, the alternating sum of the 1-simplices along the path is an element
of Ker(α∗) which represents the given element of H1(K; Z/2). In particular, the map
H2(J)→H1(K; Z/2) is onto.

Figure 5

H2(J) is generated by such alternating sums along paths, so we can draw elements
of H2(J) as in Fig. 5. Alternating paths as in Fig. 4 give the relations. Now if F and
F ′ are 2-simplices with a common edge E , and E1 and E2 (respectively E′

1 and E′
2 )

are the other two edges of F (respectively F ′ ), then any occurrence of E1 − E2 in an
alternating path can be replaced by E ′

1 − E′
2 without changing the represented element

of H2(J) (see Fig. 6a; there is an orientation of E determined by E1−E2 which should
agree with the one determined by E ′

1 − E′
2). Indeed, if F and F ′ represent adjacent

vertices in the link of E then this uses a single application of a relation of the type in
Fig. 4, so in general it follows from the connectedness of the link of E . We therefore
denote E1 −E2 by E+− or E−+ (this assumes an implicit orientation of E ) and draw
it as in Fig. 6b.

1

++ −−+

+

+

−

−

−

E

2E´1E´

2EE

Figure 6 (a) and (b)

In a similar way, the connectedness of the link at a vertex easily implies that the
configuration of Fig. 7a represents 0 in H2(J), so an E followed by a −E ′ is equivalent
to E+− followed by E ′+− (Fig. 7b).

Thus any alternating path is equivalent to the corresponding path of +− edges, or,
doing the conversion in the opposite direction around the path, also to the corresponding
path of −+ edges. In particular, it is equivalent to its own negative, so the signs on the
path are irrelevant to the represented element in H2(J). Moreover, the boundary of a
2-simplex represents 0 (since E+−

1 + E+−

2 + E+−

3 ∼ E+−

1 + E2 − E3 = 0 ), so
H2(J) is H1(K; Z/2), as claimed.

The computation of H4(J) and H5(J), as well as the torsion in H3(J), now follows
by standard duality arguments (the universal coefficient theorem for cohomology), since
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(b)(a)

++ −
+ −−

+−+−

+−

+ −+ −

Figure 7

our chain complex is self-dual. It remains to compute the free part of H3(J). To do so
we will need to define maps γ: H3(J)→H and δ: H1(∂K0)→H3(J).

Recall that K0 denotes the result of removing a small open cone neighborhood of
each vertex in K . K0 can be constructed by gluing truncated tetrahedra (Fig. 8).

Figure 8

ei

Figure 9 Figure 10

Definition of γ: H3(J)→H . The triangular faces of the truncated tetrahedra give a
quasi-simplicial triangulation of ∂K0. Let Si(∂K0), Zi(∂K0), and Bi(∂K0) be the
groups of simplicial chains, cycles, and boundaries for this triangulation. Let ∆ be
a 3-simplex of K . To an edge ei of this simplex we associate a simplicial 1-chain
γ0(ei) ∈ S1(∂K0) as in Fig. 9. For opposite edges ei and ei+3 (1 ≤ i ≤ 3) of ∆ one
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has γ0(ei) = γ0(ei+3). Also, γ0(e1 + e2 + e3) is a boundary cycle. Thus γ0 induces
a map γ1: J →S1(∂K0)/B1(∂K0). Moreover, it is easy to see that γ1 maps Im β to
boundaries and maps Kerβ∗ to cycles, so it induces a map

γ: H3(J) = Kerβ∗/ Im β →H1(∂K0) .

Note that, if we work modulo 2, then γ0(ei) differs from the geometric representative
for β∗(ei) by a 1-boundary in ∆ (Fig. 10). Thus γ followed by the map H1(∂K0)→
H1(K0; Z/2) is zero; that is

Im γ ⊆ H = Ker(H1(∂K0)→H1(K0; Z/2)) .

Definition of δ: H1(∂K0)−→H3(J) . We use the dual cell decomposition of the quasi-
triangulation of ∂K0 to compute H1(∂K0). A simple cellular path C in the dual cell
decomposition of ∂K0 determines a vertex of each 2-simplex it passes through— the
vertex common to the two edges of the 2-simplex that it crosses — and a sign + or −
according as C goes counterclockwise or clockwise around this vertex. A vertex of
a 2-simplex of ∂K0 corresponds to an edge of a 3-simplex ∆ of K , and hence to
an element e of J =

∐
J∆ . Define δ(C) to be the signed sum of these elements e

over all 2-simplices of ∂K0 that C crosses (Fig. 11). By inspection, β∗δ(C) = 0, so
δ(C) ∈ Kerβ∗ . We consider δ(C) as an element of Kerβ∗/ Imβ = H3(J).

−

+

−−

++

Figure 11

Figure 12

The definition of δ extends in the obvious fashion to arbitrary closed paths in the dual
cell complex of ∂K0 (the contribution where a path back-tracks, i.e., enters a 2-simplex
and immediately departs across the same edge is zero). Eliminating back-tracking in a
closed path C does not change the value of δ(C), see Fig. 12. If the path C is the
boundary path of a 2-cell, then δ(C) is β of the corresponding edge of K , so it is zero
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in H3(J). It follows that δ(C) ∈ H3(J) only depends on the homology class of C , so
δ gives a well-defined homomorphism from H1(∂K0) to H3(J).

Lemma 4.3.
(i) γ ◦ δ: H1(∂K0)→H1(∂K0) is multiplication by 2.
(ii) γ and δ are isomorphisms after tensoring with Z[ 12 ].
(iii) 〈δx, δy〉 = 2x · y, where x · y means intersection form in H1(∂K0).
(iv) γa · γb = 2〈a, b〉 for a, b ∈ H3(J).
(v) x · γa = 〈δx, a〉 for a ∈ H3(J) and x ∈ H1(∂K0), that is, γ: H3(J)/{Torsion}

→H1(∂K0) and δ: H1(∂K0)→H3(J)/{Torsion} are adjoint maps with respect
to the forms on H1(∂K0) and H3(J)/{Torsion}.

Proof. For (i) it suffices to show that γδ(C) is homologous to 2C for a simple closed
cellular path C . Now (see Fig. 13), γδ(C) will consist of contributions “near” C and
contributions “far from” C .

−

+

−−

++

Figure 13a. The “near” contributions.

Figure 13b. The “far” contributions.

Contributions of the various types may overlap, but this does not affect the argument.
By inspection one sees that the “near” contribution is homologous to 2C (it is the
boundary of a regular neighborhood of C ), while each “far” contribution is located at the
far end of an edge of K which starts at a vertex of a 2-simplex of ∂K0 through which
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C passes, and is a null-homologous loop of length equal to the number of 2-simplices of
∂K0 that C passes through as it passes that vertex. Thus (i) holds.

Since we already know that H3(J) has only even torsion, to deduce (ii) from (i) it
suffices to show that the ranks of H3(J) and H1(∂K0) agree. But the rank of H3(J)
equals the Euler characteristic of our chain complex, which is n0−n1 +2n3−n1+n0 =
2(n0 − n1 + n3), where ni is the number of i-simplices of K . Since 2n3 = n2 (every
2-simplex is on two 3-simplices and every 3-simplex has four 2-faces), 2(n0−n1+n3) =
2(n0 − n1 + n2 − n3) = 2χ(K). The desired equation 2χ(K) = rank H1(∂K0) now
follows from the fact that the Euler characteristic of a compact 3-manifold is half the
Euler characteristic of its boundary.

Note that (iii) through (v) are mutually equivalent, given (i) and (ii). (iii) is proved in
[NZ, Section 3] (in [NZ] ∂K0 consists of tori, but this is not used in the proof) but for
completeness we give a proof here. Let S1 and S ′

1 be the groups of simplicial 1-chains
of ∂K0 and 1-chains for the dual cell complex of ∂K0. Intersection number defines a
bilinear form S ′

1×S1 →Z, which induces the usual intersection form on H1(∂K0). By
inspection one sees that, for a closed cellular path C in the dual cell complex of ∂K0 and
an edge e of a 3-simplex of K , C · γ0(e) = 〈δ(C), e〉 (on the right of this equation e is
interpreted as an element of J ). Part (v) follows, and (iii) and (iv) follow from (v) — for
instance x · (2y) = x · γδ(y) = 〈δ(x), δ(y)〉.

The proof of the theorem is now easily completed. A standard duality argument shows
that the kernel K of H1(∂K0)→H1(K0) satisfies K = K⊥ (orthogonal complement
with respect to the intersection form) and is hence a direct summand of H1(∂K0) of rank
h = (rankH1(∂K0))/2. It follows that H = Ker(H1(∂K0)→H1(K; Z/2)) has index
2h in H1(∂K0). On the other hand, since the intersection form on H1(∂K0) and the
form 〈 , 〉 on H3(J)/{Torsion} are both non-singular, part (iv) of the lemma implies
that Im γ has index 2h in H1(∂K0). Since H contains Im γ , they are equal.

Remark and Definition. δ(C) can be defined as above for any closed path C in ∂K0

which is in general position with respect to the 1-skeleton of the quasi-triangulation of
∂K0. In the next section we will need an analogous construction for closed curves C in
K which are in general position with respect to the 2-skeleton of K . We shall therefore
simply say that a path in ∂K0 or in K is general if it is in general position with respect
to the 1-skeleton of ∂K0, respectively the 2-skeleton of K . Let C be such a closed path
in ∂K0. We say C has no back-tracking if it never enters a 2-simplex and immediately
leaves again across the same edge. Similarly, we say a closed path in K has no back-
tracking if it never enters a 3-simplex of K and immediately leaves it again across the
same face.

5. Cohomological computation of H3(J)

The main result of this section is Theorem 5.1, which gives an explicit computation
of H3(J) in terms of two maps γ′: H3(J)→H1(∂K0; Z) and γ′

2: H3(J ⊗ Z/2)→
H1(K0; Z/2). We must first define these maps.

γ′: H3(J)→H1(∂K0; Z) is just the Poincaré dual of the map γ of the previous
section, that is γ′ = PD ◦ γ , where PD: H1(∂K0)→H1(∂K0) is the Poincaré duality



Combinatorics of Triangulations and the Chern-Simons Invariant for Hyperbolic 3-Manifolds 265

isomorphism. We can also express it as the dual of the map δ: H1(∂K0)→H3(J) as
follows:

γ′(a)(c) = 〈a, δ(c)〉 for c ∈ H1(∂K0) . (5.1)

Indeed, γ ′(a)(c) = PD(γ(a))(c) = γ(a) · c = 〈a, δ(c)〉, where the last equality is by
Lemma 4.3.

In a similar way we shall describe γ′
2: H3(J⊗Z/2)→H1(K0; Z/2) as the dual of a

map δ2: H1(K0; Z/2)→H3(J ⊗ Z/2):

γ′
2(a)(c) = 〈a, δ2(c)〉 for c ∈ H1(K0; Z/2) , (5.2)

where δ2 is defined as follows.
If c ∈ H1(K0; Z/2) is represented by a general closed path C in K0, then each

time C passes through a 3-simplex ∆ from one face to another, it determines an edge
e of ∆, namely the edge common to the two faces, and hence an element, also denoted
e, of J ⊗ Z/2. We let δ2(c) be the class in H3(J ⊗ Z/2) of the sum of these elements
e. The proof that this sum is indeed a cycle, i.e., in Ker(β∗ ⊗ Z/2), and that modulo
Im(β ⊗ Z/2) it only depends on the homology class of C , is entirely analogous to the
corresponding proof for δ.

Let ι: H3(J)→H3(J ⊗ Z/2) be the natural map. We shall be interested in the
composition

γ′
2ι: H3(J)

ι
→H3(J ⊗ Z/2)

γ′

2→H1(K0; Z/2) .

Theorem 5.1. The following diagram is a pullback diagram:

H3(J)
γ′

−→ H1(∂K0; Z)
yγ′

2ι

yr

H1(K0; Z/2)
i∗

−→ H1(∂K0; Z/2) ,

where i∗ is induced by i: ∂K0 →K0 and r is reduction modulo 2. Equivalently, the
following sequence is exact:

0→H3(J)
(γ′,γ′

2ι)
−−−−→H1(∂K0; Z) ⊕ H1(K0; Z/2)

r−i∗

−−−→H1(∂K0; Z/2)→ 0 .

Proof. The commutativity of the diagram is immediate from (5.1) and (5.2) and the fact
that if C is a cellular curve on ∂K0 and C2 is the result of pushing C inside K0 , then
δ2(C2) = δ(C) (mod 2 ).

The rest of the proof will take several steps.

Step 1. γ′
2: H3(J ⊗ Z/2)→H1(K0; Z/2) is surjective.

Until further notice coefficient group Z/2 is understood.
Step 1 is most easily seen by translating to homology via the Poincaré duality iso-

morphism H1(K0)→H2(K0, ∂K0). Note that H2(K0, ∂K0) = H2(K) by the exact
sequence for the pair (K, K − K0) and excision. We shall construct a map γ2: H3(J ⊗
Z/2)→H2(K) and show it is the Poincaré dual of γ ′

2: H3(J ⊗ Z/2)→H1(K0).
Let, for the moment, S2 , Z2 , and B2 denote the groups of simplicial 2-chains,

2-cycles, and 2-boundaries of K with coefficients Z/2. For an edge e of a 3-simplex
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∆ of K , let γ2(e) ∈ S2 be the sum of the two 2-simplices represented by the two
faces of ∆ that meet in e. This clearly induces a map γ2: J →S2/B2. Moreover, it is
geometrically clear that this map maps Ker(β∗ ⊗ Z/2) to cycles and Im(β ⊗ Z/2) to
zero, and hence induces a map

γ2: H3(J ⊗ Z/2)→H2(K) .

Now for an edge e of a 3-simplex of k and a closed curve in K0, we have by inspection,
γ2(e) · C = 〈e, δ2(C)〉 (mod 2). Thus, for a ∈ J we have γ2(a) · C = 〈a, δ2(C)〉 =
γ′
2(a)(C), whence γ′

2 is indeed the Poincaré dual of γ2 .
Now note that any modulo-2 simplicial 2-cycle Z ∈ Z2 is a sum of an even number

of 2-simplices, since ∂Z = 0 and the boundary of a single 2-simplex is the sum of an odd
number of 1-simplices. Call two 2-simplices of K “adjacent” if they lie on a common
3-simplex and call their sum an “adjacent pair”. Any sum of two 2-simplices can be
rewritten modulo 2 as a sum of adjacent pairs (connect the two 2-simplices by a path in
K and form adjacent pairs from the successive 2-simplices that the path meets). Thus
any Z ∈ Z2 is a sum of adjacent pairs. Each of these adjacent pairs determines an edge
of a 3-simplex, hence an element e of J ⊗ Z/2. Let a be the sum of these elements e.
Clearly Z = γ2(a), and the fact that ∂Z = 0 translates directly to a ∈ Ker(β∗ ⊗Z/2).
Thus γ2: H3(J ⊗ Z/2)→H2(K) is surjective. Hence γ′

2 is surjective.

Step 2. The following sequence is exact (coefficients Z/2 ):

0→H1(K0)
δ2−→H3(J ⊗ Z/2)

γ′

2−→H1(K0)→ 0 .

We have just shown the surjectivity of γ ′
2 and the injectivity of δ2 follows from this

and equation (5.2), since δ2(c) = 0 implies γ′
2(a)(c) = 0 for all a, hence x(c) = 0 for

all x ∈ H1(K0), hence c = 0.
The equation γ ′

2δ2 = 0 is equivalent, by the definition of γ ′
2 , to the condition that

〈δ2(C), δ2(C
′)〉 = 0 (mod 2) for any two closed curves C and C ′ in K0. We can

assume each curve is general, and then it is easy to see that 〈δ2(C), δ2(C
′)〉 (mod 2)

counts the number of instances of C and C ′ passing through the same 2-face of a 3-
simplex of K . But for each such instance, they pass through the same face viewed as a
face of the adjacent 3-simplex, so the total number is zero modulo 2.

We now know Im δ2 ⊆ Ker γ ′
2 , and to show this inclusion is an equality it suffices to

show that dim H3(J⊗Z/2) = dim H1(K0)+dimH1(K0), that is, dim H3(J⊗Z/2) =
2 dim H1(K0). But Theorem 4.2 and the universal coefficient theorem imply that H3(J⊗
Z/2) has dimension dim H1(∂K0) + 2 dimH1(K), so we must show dim H1(K0) =
(1/2) dimH1(∂K0) + dim H1(K). The long exact sequence for (K, K − K0) and
excision show H2(K, K0) = H1(∂K0), and inserting this in the long exact sequence for
(K, K0) gives an exact sequence

H1(∂K0)
i∗→H1(K0)

j∗
→H1(K)→ 0 ,

where the maps are the natural maps. Since dim Ker(i∗) = (1/2) dimH1(∂K0) by
Poincaré duality, the desired equality follows.

Note that the above sequence induces a short exact sequence

0→K
i∗→H1(K0)

j∗
→H1(K)→ 0 ,



Combinatorics of Triangulations and the Chern-Simons Invariant for Hyperbolic 3-Manifolds 267

with K = H1(∂K0)/ Ker(i∗).

Step 3. (Coefficients are still Z/2. ) There is a commutative diagram with exact rows and
columns:

0 0

↓ ↓

0 → K
δ(2)

−→ H3(J) ⊗ Z/2
γ′

2ι
−→ H1(K0) → 0

yi∗

yι

y=

0 → H1(K0)
δ2−→ H3(J ⊗ Z/2)

γ′

2−→ H1(K0) → 0
yj∗

yκ

H1(K)
=

−→ H1(K)

↓ ↓

0 0

Here the middle vertical sequence is the universal coefficient theorem for the chain
complex J and the middle horizontal sequence is the sequence of Step 2. We must
describe the top horizontal sequence and prove commutativity of the diagram; exactness
of the top sequence then follows by a diagram chase.

The map δ(2) is induced by the map δ ⊗ Z/2: H1(∂K0)→H3(J) ⊗ Z/2: indeed,
ι(δ ⊗ Z/2) = δ2i∗ (this was pointed out at the beginning of the proof of Theorem 5.1),
so δ ⊗ Z/2 has kernel Ker(i∗), so δ(2) can be defined to make the upper left square
commute.

It remains to show commutativity of the lower square. For a ∈ H3(J ⊗ Z/2) one
computes κ(a) as follows. Represent a by an element A ∈ J . Then β∗(A) is 0 modulo
2. The desired element κ(a) ∈ H2(J) = H1(K) is represented by (1/2)β∗(A).

R

L

Figure 14 Figure 15

Consider a general path C in K0. As C passes through a 3-simplex ∆ it determines
an edge e of ∆, as previously described, and δ2(C) is represented by the sum of the
elements of J corresponding to these e. Call the edge E of K corresponding to e
the “axis” of C passing through ∆. In the next 3-simplex C may continue around
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−−

−−

+

+
++

C

Figure 16

the same axis, turn left, or turn right (see Fig. 14). We can eliminate left turns from the
path C without changing its homology class, as illustrated in Fig. 15. Thus, without
loss of generality, C has no left turns. The successive axes of C then form a path in
K homologous to C . Moreover, each pair of successive axes determines a face of a
3-simplex in K and hence an additional edge (the third edge of that face). By inspection,
one sees that κδ2(C) is represented by the sum of the axes minus the sum of these
additional edges (Fig. 16), and this is homologous to C modulo 2, as desired.

Step 4. (Omitted coefficients are still Z/2. ) There is a commutative diagram with exact
rows and columns:

0 0

↓ ↓

0 → H1(∂K0; Z)
δ

−−−−→ H3(J)
γ′

2ι
−→ H1(K0) → 0

y·2

y(γ′,γ′

2ι)

y=

0 → H1(∂K0; Z)
(PD,0)
−−−−→ H1(∂K0; Z) ⊕ H1(K0)

pr2
−→ H1(K0) → 0

y
yr−i∗

H1(∂K0)
PD

−−−−→ H1(∂K0)

↓ ↓

0 0

The commutativity of the top left square is by definition of γ ′ and by Lemma 4.3, and
the commutativity of the rest of the diagram is trivial. Exactness of the top row follows
directly from exactness of the top row of the previous diagram plus the fact (Lemma 4.3
and Theorem 4.2) that δ is injective with 2-torsion cokernel. Exactness of the second
row and first column is trivial. Exactness of the middle column now follows by a diagram
chase, completing the proof of Step 4 and of Theorem 5.1.
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6. Proof of Theorem 2.4

Let J∆ be defined like J∆ but without the relation e1 + e2 + e3 = 0; that is, J∆ is
generated by the six edges e1, . . . , e6 of ∆ with the relations ei = ei+3 for i = 1, 2, 3.
We give J∆ the standard bilinear form (ei, ej) = δij for i, j ∈ {1, 2, 3}. Let J be the
orthogonal sum of the J∆ . The map β∗: J →C2 can be factored as

β∗: J
β1
−→ J

β2
−→C2 ,

with β1 and β2 defined on the ∆-component by

β1(ei) = ei+1 − ei+2

β2(ei) = j(ei) + j(ei+3)

}
for i = 1, 2, 3 . (6.1)

Note that β1: J → J and the natural projection p: J → J are adjoint maps with respect
to the forms on J and J ; that is,

(β1(a), x) = 〈a, p(x)〉 for a ∈ J and x ∈ J . (6.2)

Let C be a general closed path in ∂K0 with no back-tracking. As described in Sect. 4,
as C passes through a 2-simplex of ∂K0 it determines an edge e of the corresponding
3-simplex ∆ and a sign ±, and hence an element — which we call ±e — of J . Let
δ(e) be the sum of all these ±e. Thus the map δ: H1(∂K0)→H3 of Sects. 4 and 5 is
given by

δ([C]) = [pδ(C)] . (6.3)

For x ∈ J define an integer-valued map γ(x) on the set of closed non-back-tracking
paths on ∂K0 by

γ(x)(C) = (x, δ(C)) . (6.4)

(Note that γ(x)(C) will usually not just depend on the homology class of C . ) The map
γ′ of the previous section is given by

γ′(a) = γ(β1(a)) for a ∈ J , (6.5)

since, by (6.4), (6.2), (6.3), and the definition of γ ′, γ(β1(a))(C) = (β1(a), δ(C)) =
〈a, δ(C)〉 = γ′(a)(C).

Similarly, if C is a general closed path with no back-tracking in K , then as C passes
through a 3-simplex ∆ of K it determines an edge e of ∆ (the edge common to the
two faces that it passes through), and we define δ2(C) ∈ J ⊗ Z/2 to be the modulo 2
sum of these e. For x ∈ J define a Z/2-valued map γ2(x) on the set of general closed
non-back-tracking paths in K by

γ2(x)(C) = (x, δ2(C)) (mod 2) . (6.6)

As for γ one sees that the map γ ′
2 of the previous section is given by

γ′
2(a) = γ2β1(a) for a ∈ J . (6.7)
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Lemma 6.1. Suppose every component of ∂K0 is a torus. Then there exists an element
η ∈ J satisfying:
1. the J∆ component of η has coefficient sum 1 for each 3-simplex ∆,
2. β2(η) = 2

∑
E , twice the sum of all the edges of K ,

3. γ(η)(C) = 0 for every general essential simple closed curve C in ∂K0 with no
back-tracking,

4. γ2(η)(C) = 0 modulo 2 for every general closed curve in K0 with no back-
tracking.

Moreover, any such η is unique up to Im β1β .

Proof. Choose any element x of J which satisfies condition 1. The contribution at a
vertex V of K to α∗(β2(x)−2

∑
E) is n2(V )−2n0(V ), where ni(V ) is the number

of i-simplices in the link LV of vertex V . But n2(V ) − 2n0(V ) = −2χ(LV ), which
is zero since LV is a torus. Thus β2(x) − 2

∑
E is in Kerα∗ .

Figure 17

We claim that β2(x) − 2
∑

E is in Im β∗ , that is, it represents zero in H2(J) =
H1(K; Z/2). Indeed, let x∆ be the J∆ -component of x and consider β2(x∆) as a
modulo-2 1-chain in ∆ ⊆ K . The boundary of this 1-chain is the sum of the vertices of
∆. The same is true for the 1-chain S∆ pictured in Fig. 17 (the edges of the tetrahedron
are not part of the chain). Hence β2(x∆) − S∆ is a 1-cycle in ∆ ⊆ K , hence a 1-
boundary. Thus, as a modulo-2 1-cycle, β2(x) differs from

∑
S∆ by a boundary. Since∑

S∆ is identically zero modulo 2, β2(x)− 2
∑

E is a modulo-2 boundary, as claimed.
Now choose a ∈ J with β∗(a) = β2(x) − 2

∑
E . Then y = x − β1(a) satisfies

conditions 1 and 2 of the lemma.
Now it is not hard to verify, given that y satisfies conditions 1 and 2 of the lemma, that

for a general essential simple closed curve C in ∂K0 without back-tracking, γ(y)(C)
only depends on the homology class of C . Moreover, if one restricts to curves of this type
(or more generally, to general curves C without back-tracking that are isotopic through
immersed curves to essential simple closed curves, i.e., C should have no “winding”),
the map C 7→ γ(y)(C) defines a homomorphism H1(∂K0)→Z, and hence an element
c of H1(∂K0). Similarly, evaluation of γ2 on general closed curves in K0 without
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back-tracking defines an element c2 ∈ H1(K0; Z/2). Moreover, r(c) = i∗(c2). Thus,
by Theorem 5.1, there exists a w ∈ H3(J) with (γ′(w), γ′

2ι(w)) = (c, c2). Let a ∈ J
be a representative for w. Then η = y − β1(a) satisfies conditions 1, 2, 3, and 4.

Given two elements η satisfying the conditions, their difference ζ will satisfy:
1′ . The J∆ of ζ has coefficient sum 0 for each 3-simplex ∆,
2′ . β2(ζ) = 0,
and conditions 3 and 4 of the lemma. Condition 1 ′ is equivalent to ζ ∈ Im β1, say
ζ = β1(c). Condition 2′ then says that c ∈ Kerβ∗ , so c is a cycle for H3(J).
Conditions 3 and 4 say that c represents 0 in H3(J), so c is in Im β .

Note that for any η satisfying condition 1 of the lemma one can solve equations (2.8)
for c′ν and c′′ν . Theorem 2.4 is thus just a restatement of the above lemma, so it is
proved.
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