Math 402/500 HW #4, due Friday 3/5/21 NAME:

- 1. Consider the function $f(x, y) = \sin(4\pi x)\cos(6\pi y)$ on the torus $\mathbb{T} = \mathbb{R}^2/\mathbb{Z}^2$.
 - (a) Prove that f is a Morse function, e.g. that every critical point is nondegenerate. Calculate the number of minima, saddles, and maxima. You can appeal to the standard second derivative test from calculus.
 - (b) Describe the evolution of the sublevel sets $f^{-1}((-\infty, c))$ as c varies from the lowest minimum value to the highest maximum value. You may use wolfram alpha or another computer aided means in your quest.
- 2. Let M be a smooth manifold with a Riemannian metric $g: TM \otimes TM \to \mathbb{R}$. If $f: M \to \mathbb{R}$ is a smooth function, the *gradient* of f with respect to g is the vector field ∇f defined by

$$df = g(\nabla f, \cdot).$$

- (a) In local coordinates $\{x^i\}$, if $g(\partial/\partial x^i, \partial/\partial x^j) = g_{ij}$, explain how to compute ∇f in terms of g_{ij} and $\partial f/\partial x^i$. *Hint:* Recall #1 and #2 on HW # 3.
- (b) Let $f: M \to \mathbb{R}$ and let $p \in M$. Show that if $V \in T_p M$ satisfies $df_p(V) > 0$, then there exists a Riemannian metric g on M with $\nabla f(p) = V$.
- 3. (a) Suppose that $A : \mathbb{R}^k \to \mathbb{R}^n$ is a linear map and V is a vector subspace of \mathbb{R}^n . Check that $A \pitchfork V$ is equivalent to $A(\mathbb{R}^k) + V = \mathbb{R}^n$.
 - (b) If V and W are linear subspaces of \mathbb{R}^n , check that $V \pitchfork W$ is equivalent to $V + W = \mathbb{R}^n$.
- 4. For which values of R does the hyperboloid defined by $x^2 + y^2 z^2 = 1$ intersect the sphere $x^2 + y^2 + z^2 = R$ transversely? What does the intersection look like for different values of R?

everyone: How difficult was this assignment? How many hours did you spend on it?