Math 402/500 HW\#2, due Friday 2/12/21 NAME:

1. Lee 4-6 [SECOND]

Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \rightarrow \mathbb{R}^{k}$ for any $k>0$. A submersion is a smooth map whose differential is surjective.
2. Lee 5-1 [SECOND]

Consider the map $\Phi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by

$$
\Phi(x, y, s, t)=\left(x^{2}+y, x^{2}+y^{2}+s^{2}+t^{2}+y\right) .
$$

Show that $(0,1)$ is a regular value of Φ. (Note: the level set $\Phi^{-1}(0,1)$ is diffeomorphic to S^{2}.)
3. Lee 8-11 [SECOND]

For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}$.

$$
\begin{aligned}
& \text { (a) } X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \\
& \text { (b) } Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
\end{aligned}
$$

4. Lee Exercise 11.17 (page 280, SECOND)

Given polar (r, θ) and rectangular $(x:=r \cos \theta, y:=r \sin \theta)$ coordinates on \mathbb{R}^{2} we have that the coordinate vector fields transform, using Equation (11.4) on page 275, by

$$
\begin{aligned}
\frac{\partial}{\partial r} & =\frac{\partial x}{\partial r} \frac{\partial}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\
\frac{\partial}{\partial \theta} & =\frac{\partial x}{\partial \theta} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta} \frac{\partial}{\partial y}
\end{aligned}
$$

thanks to my Fall 2019 Math 444/539 students who proved this proposition for arbitrary coordinate transformations in any finite dimension. Using this fact, consider $f(x, y)=x^{2}$ on \mathbb{R}^{2} and let X be the vector field

$$
X=\operatorname{grad} f=2 x \frac{\partial}{\partial x}
$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using the above proposition and show that it is not equal to

$$
\frac{\partial f}{\partial r} \frac{\partial}{\partial r}+\frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta}
$$

Takeaway: The partial derivatives of a smooth function cannot be interpreted in a coordinateindependent way as the components of a vector field. However, they can be interpreted as the components of a covector field. This is the most important application of covector fields, aka differential 1-forms.
everyone: How difficult was this assignment? How many hours did you spend on it?

