Math 402/500 HW#2, due Friday 2/12/21 NAME:

1. Lee 4-6 [SECOND]

Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k > 0. A submersion is a smooth map whose differential is surjective.

2. Lee 5-1 [SECOND]

Consider the map $\Phi : \mathbb{R}^4 \to \mathbb{R}^2$ defined by

$$\Phi(x, y, s, t) = (x^2 + y, x^2 + y^2 + s^2 + t^2 + y).$$

Show that (0,1) is a regular value of Φ . (Note: the level set $\Phi^{-1}(0,1)$ is diffeomorphic to S^2 .)

3. Lee 8-11 [SECOND]

For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\{(x, y) \in \mathbb{R}^2 \mid x > 0\}$.

(a)
$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$$

(b) $Y = x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}$

4. Lee Exercise 11.17 (page 280, SECOND) Given polar (r, θ) and rectangular $(x := r \cos \theta, y := r \sin \theta)$ coordinates on \mathbb{R}^2 we have that the coordinate vector fields transform, using Equation (11.4) on page 275, by

$$\begin{array}{rcl} \displaystyle \frac{\partial}{\partial r} & = & \displaystyle \frac{\partial x}{\partial r} \frac{\partial}{\partial x} + \displaystyle \frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\ \displaystyle \frac{\partial}{\partial \theta} & = & \displaystyle \frac{\partial x}{\partial \theta} \frac{\partial}{\partial x} + \displaystyle \frac{\partial y}{\partial \theta} \frac{\partial}{\partial y} \end{array}$$

thanks to my Fall 2019 Math 444/539 students who proved this proposition for arbitrary coordinate transformations in any finite dimension. Using this fact, consider $f(x, y) = x^2$ on \mathbb{R}^2 and let X be the vector field

$$X = \text{grad } f = 2x \frac{\partial}{\partial x}$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using the above proposition and show that it is *not* equal to

$$\frac{\partial f}{\partial r}\frac{\partial}{\partial r} + \frac{\partial f}{\partial \theta}\frac{\partial}{\partial \theta}$$

Takeaway: The partial derivatives of a smooth function cannot be interpreted in a coordinateindependent way as the components of a vector field. However, they can be interpreted as the components of a covector field. This is the most important application of covector fields, aka differential 1-forms.

everyone: How difficult was this assignment? How many hours did you spend on it?