Math 402/500 HW\#1, due Friday 3/5/20 NAME:

1. Consider spherical coordinates on \mathbb{R}^{3} (not including the line $\left.x=y=0\right) \rho, \phi, \theta$ defined in terms of the Euclidean coordinates x, y, z by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi .
$$

(a) Express $\partial / \partial \rho, \partial / \partial \phi$, and $\partial / \partial \theta$ as linear combinations of $\partial / \partial x, \partial / \partial y$, and $\partial / \partial z$. (The coefficients in these linear combinations will be functions on $\mathbb{R}^{3} \backslash(x=y=0)$.)
(b) Express $d \rho, d \phi$, and $d \theta$ as linear combinations of $d x, d y$, and $d z$.
2. Lee 8-10 [SECOND]

Let M be the open submanifold of \mathbb{R}^{2} where both x and y are positive and let $F: M \rightarrow M$ be the map

$$
F(x, y)=\left(x y, \frac{y}{x}\right)
$$

Show that F is a diffeomorphism, and compute $F_{*} X$ and $F_{*} Y$ where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} ; \quad Y=y \frac{\partial}{\partial x}
$$

Note: The definition of the pushforward yields $\left(F_{*} Z\right)_{(s, t)}=d F_{F^{-1}(s, t)} Z_{F^{-1}(s, t)}$. everyone: How difficult was this assignment? How many hours did you spend on it?

