Math 444/539 HW \# 9, due Friday 11/15/19 NAME:

1. (a) Suppose that $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear map and V is a vector subspace of \mathbb{R}^{n}. Check that $A \pitchfork V$ is equivalent to $A\left(\mathbb{R}^{K}\right)+V=\mathbb{R}^{n}$.
(b) If V and W are linear subspaces of \mathbb{R}^{n}, check that $V \pitchfork W$ is equivalent to $V+W=\mathbb{R}^{n}$.
2. For which values of R does the hyperboloid defined by $x^{2}+y^{2}-z^{2}=1$ intersect the sphere $x^{2}+y^{2}+z^{2}=R$ transversely? What does the intersection look like for different values of R ?
3. (Lee Second 6-9) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map defined by

$$
F(x, y)=\left(e^{y} \cos x, e^{y} \sin x, e^{-y}\right)
$$

(a) For which positive numbers r is F transverse to the 2-sphere of radius $r, S_{r}(0) \subset \mathbb{R}^{3}$?
(b) For which positive numbers r is $F^{-1}\left(S_{r}(0)\right)$ an embedded submanifold of \mathbb{R}^{2} ?
4. Lee 11.7 [SECOND].

In the following subproblems, M and N are smooth manifolds, $F: M \rightarrow N$ is a smooth map, and ω is a covector field on N. Compute $F^{*} \omega$ in each case.
(a) $M=N=\mathbb{R}^{2}, F(s, t)=\left(s t, e^{t}\right)$,
$\omega=x d y-y d x$
(b) $M=\mathbb{R}^{2}$ and $N=\mathbb{R}^{3}, F(\theta, \varphi)=((\cos \varphi+2) \cos \theta,(\cos \varphi+2) \sin \theta, \sin \varphi)$, $\omega=z^{2} d x$
(c) $M=\left\{(s, t) \in \mathbb{R}^{2} \mid s^{2}+t^{2}<1\right\}$ and $N=\mathbb{R}^{3} \backslash\{0\}, F(s, t)=\left(s, t, \sqrt{1-s^{2}-t^{2}}\right)$, $\omega=\left(1-x^{2}-y^{2}\right) d z$
5. Lee Exercise 11.17 (page 280, SECOND)

Given polar (r, θ) and rectangular $(x:=r \cos \theta, y:=r \sin \theta)$ coordinates on \mathbb{R}^{2}. Using this fact, consider $f(x, y)=x^{2}$ on \mathbb{R}^{2} and let X be the vector field

$$
X=\operatorname{grad} f=2 x \frac{\partial}{\partial x}
$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using Equation (11.4) on page 275, and show that it is not equal to

$$
\frac{\partial f}{\partial r} \frac{\partial}{\partial r}+\frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta}
$$

Takeaway: The partial derivatives of a smooth function cannot be interpreted in a coordinateindependent way as the components of a vector field. However, they can be interpreted as the components of a covector field. This is the most important application of covector fields.
math* Lee SECOND 6-10: Suppose $F: N \rightarrow M$ is a smooth map that is transverse to an embedded submanifold $X \subset M$, and let $W=F^{-1}(X)$. For each $p \in W$, show that $T_{p} W=\left(d F_{p}\right)^{-1}\left(T_{F(p)} X\right)$. Conclude that if two embedded submanifolds $X, X^{\prime} \subset M$ intersect transversely, then $T_{p}\left(X \cap X^{\prime}\right)=T_{p} X \cap T_{p} X^{\prime}$ for every $p \in X \cap X^{\prime}$.
everyone: How difficult was this assignment? How many hours did you spend on it?

