Math 444/539 HW#9, due Friday 11/15/19 NAME:

- 1. (a) Suppose that $A : \mathbb{R}^k \to \mathbb{R}^n$ is a linear map and V is a vector subspace of \mathbb{R}^n . Check that $A \pitchfork V$ is equivalent to $A(\mathbb{R}^K) + V = \mathbb{R}^n$.
 - (b) If V and W are linear subspaces of \mathbb{R}^n , check that $V \pitchfork W$ is equivalent to $V + W = \mathbb{R}^n$.
- 2. For which values of R does the hyperboloid defined by $x^2 + y^2 z^2 = 1$ intersect the sphere $x^2 + y^2 + z^2 = R$ transversely? What does the intersection look like for different values of R?
- 3. (Lee Second 6-9) Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the map defined by

$$F(x,y) = (e^y \cos x, e^y \sin x, e^{-y}).$$

- (a) For which positive numbers r is F transverse to the 2-sphere of radius $r, S_r(0) \subset \mathbb{R}^3$?
- (b) For which positive numbers r is $F^{-1}(S_r(0))$ an embedded submanifold of \mathbb{R}^2 ?

4. Lee 11.7 [SECOND].

In the following subproblems, M and N are smooth manifolds, $F: M \to N$ is a smooth map, and ω is a covector field on N. Compute $F^*\omega$ in each case.

- (a) $M = N = \mathbb{R}^2$, $F(s,t) = (st,e^t)$, $\omega = xdy - ydx$
- (b) $M = \mathbb{R}^2$ and $N = \mathbb{R}^3$, $F(\theta, \varphi) = ((\cos \varphi + 2) \cos \theta, (\cos \varphi + 2) \sin \theta, \sin \varphi)$, $\omega = z^2 dx$
- (c) $M = \{(s,t) \in \mathbb{R}^2 \mid s^2 + t^2 < 1\}$ and $N = \mathbb{R}^3 \setminus \{0\}, F(s,t) = (s,t,\sqrt{1-s^2-t^2}), \omega = (1-x^2-y^2)dz$

5. Lee Exercise 11.17 (page 280, SECOND)

Given polar (r, θ) and rectangular $(x := r \cos \theta, y := r \sin \theta)$ coordinates on \mathbb{R}^2 . Using this fact, consider $f(x, y) = x^2$ on \mathbb{R}^2 and let X be the vector field

$$X = \text{grad } f = 2x \frac{\partial}{\partial x}$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using Equation (11.4) on page 275, and show that it is *not* equal to

$$\frac{\partial f}{\partial r}\frac{\partial}{\partial r} + \frac{\partial f}{\partial \theta}\frac{\partial}{\partial \theta}.$$

Takeaway: The partial derivatives of a smooth function cannot be interpreted in a coordinateindependent way as the components of a vector field. However, they can be interpreted as the components of a covector field. This is the most important application of covector fields.

math^{*} Lee SECOND 6-10: Suppose $F : N \to M$ is a smooth map that is transverse to an embedded submanifold $X \subset M$, and let $W = F^{-1}(X)$. For each $p \in W$, show that $T_pW = (dF_p)^{-1}(T_{F(p)}X)$. Conclude that if two embedded submanifolds $X, X' \subset M$ intersect transversely, then $T_p(X \cap X') = T_pX \cap T_pX'$ for every $p \in X \cap X'$.

everyone: How difficult was this assignment? How many hours did you spend on it?