1. Exercise $\S 7$ (11) Find all the traces of the geodesics joining two given points of a plane, sphere, and right circular cylinder. What can you say about their number? Deduce that, in the case of the unit sphere, a geodesic of length less than π always minimizes the length between its ends.
2. Exercise $\S 7$ (12) If all the geodesics of a connected surface are plane curves, show that the surface is contained either in a plane or in a sphere.
3. Exercise $\S 7$ (13) Show that each meridian - generating curve - of a surface of revolution is a geodesic. On the other hand, show that a parallel is a geodesic if and only if it is at a critical distance from the axis of revolution.

4. Exercise $\S 7$ (16) Let $\alpha: I \rightarrow S$ be a geodesic in an oriented surface S such that

$$
\sigma_{\alpha(t)}\left(\alpha^{\prime}(t), \alpha^{\prime}(t)\right)=0
$$

for each $t \in I$. Prove that α is a segment of a straight line.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?

